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It is shown. that Th~~ae~s ide~tity between two :J"2 hypergeometric series of unit argument 
together wIth the tnvlal mvanance under separate pennutations of numerator and 
de~omina~or. paramete~s implies that the symmetric group Ss is an invariance group of this 
se~es. : ~lmtl~r result IS proved for the tenninating Saalschiitzian 4F3 series, where S6 is shown 
to e t ~ mvana~ce group of this series (or S5 if one parameter is eliminated by using the 
Saalschutz condItion): Here Bailey's identity is realized as a pennutation of appropriately 
d~fined parameters. Fmally, the set ofthree-tenn relations between 3F2 series of unit argument 
dIscovered by Thomae [J. Thomae, J. Reine Angew. Math. 87, 26 (1879) J and systematized 
by Whipple [F. J. Whipple, Proc. London Math. Soc. 23, 104 (1925) ] is shown to be 
transfonned into itself under ~he action of the ~roup S6 X A, where A is a two-element group. 
The 12 ~eft cosets of S6 X A WIth respect to the mvariance group Ss are the structural elements 
und~rl~mg the three-tenn relations. The symbol manipulator MACSYMA was used to obtain 
prehmmary results. 

I. INTRODUCTION 

The generalized hypergeometric function-a natural 
extension of Gauss's function [see Slater l (Chap. 2) ]-has 
proved to be of interest, not only as a mathematical object, 
but also as a tool in physical applications. For example, the 
functions 3F2 and 4F3 with unit argument occur, respective­
ly, in the definitions2 (p. 429) of the Wigner coefficients and 
the Racah coefficients for SU(2). These functions have a 
high degree of symmetry in their parameters; this property 
was investigated systematically by Thomae in 1879,3 who 
derived a two-tenn relation for 3F2' This relation was redis­
covered by Ramanujan4 (p. 104), sometime before 1919. 
Thomae's work was refonnulated by Whipple.5 In addition 
to numerous papers on generalized hypergeometric series, 
Bailey6 wrote an influential monograph in which he gave a 
two-tenn relation for the finite fonn of 4F3' which still bears 
his name. Here the fourth numerator parameter is a negative 
integer, so that the infinite series becomes a rational func­
tion. (For this identity and the Saalschiitz condition which 
must hold, see Sec. II.) Variations of Bailey's identity occur 
in the definition of the Wigner-Clebsch-Gordan coefficients 
ofSU(3).7 

For 3F2 at least, there also exist three-tenn relations, 
known since the time of Thomae. These and the two-tenn 
relations mentioned above are (partially) given in tabular 
fonn in Slater's book.! Slater, however, does not discuss the 
invariance properties that underlie these relations, nor is the 
total number of possible relations established. 

In the present paper we show that Thomae's two-tenn 
relation for :J"2 and the invariance of the series to separate 
pennutations ofthe numerator and denominator parameters 
may be subsumed under a single invariance group. Thus, we 
show that under a rescaling of the function [(2.6a) below] 
and a linear transfonnation of parameters [(3.4) below], 
the new function is invariant under all pennutations of the 
new parameters, so that the symmetric group S5 is the invar-
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iance group. A similar result is proved for the tenninating 
Saalschiitzian ~3 series, where it is Bailey's two-tenn identi­
!y [ (~.3) below] that leads to the symmetric group S6 as the 
mvanance group, or S5 if one variable is eliminated by the 
Saalschiitz condition [(3.11b) below]. For these two-tenn 
cases it is immediate that the number of distinct relations is 
5! in each case. 

The S6 symmetry property obtained here for the 4F3 se­
~es ~en~rali~es a result of Wilson.8 He found that Bailey's 
Identity Imphes an S4 symmetry in the four parameters of a 
certain class of orthogonal polynomials that are functions of 
a variable t 2, these polynomials being defined in tenns of the 
tenninating Saalschiitzian 4F3 series of unit argument. This 
S4 symmetry was also found by Biedenham and Lohe9 in 
their generalization of Bailey's identity. 

The set of three-tenn relations for 3F2 turns out to be 
transfonned into itself under the group S6 X A, where A is a 
two-element group. The 12 cosets of this group with respect 
to the invariance group S5 are the key structural elements 
leading to the detennination of all three-tenn relations. The 
num~r of distinct relations is (~2) = 220; to get this result 
reqUlres some work. 

The symbolic manipulation computer program MAC­

SYMA played a substantial role in obtaining and verifying 
many preliminary results, which led to direct proofs of many 
of the theorems. 

II. THE BASIC EQUATIONS 

A. Notational conventions 

. In general, :J"2 and 4F3 are, apart from parameters, func­
tIons of a single variable z. In fact, they are power series. In 
this paper, we shall always takez = 1. Here 3F2(Z) does not 
converge at z 1 unless the numerator parameters a,b,c and 
the denominator parameters d,e satisfy 

Re(d +e a - b -c) >0. 
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For 4F3 (z = 1) we consider only the "terminating" case 
where the numerator parameters are a,b,e, - n, with n a 
non-negative integer. We also require that the Saalschiitz 
condition be fulfilled (see Sec. II B below). In our notation 
for the generalized hypergeometric series of unit argument, 
we display only the numerator and denominator parameters 
[cf. (2.1a) below], which are then the variables for this anal­
ysis. 

In the sequel we write the ~2 parameters as a five-tuple 
a = (a,b,e,d,e). This five-tuple is treated as a column vector 
when operated on by an appropriate matrix, i.e., a linear 
transformation. Similarly for 4F3' but here the integer pa­
rameter n is fixed, and is omitted from the corresponding six­
tuple a = (a,b,e,d,eJ). 

We shall use the following notation for permutation ma­
trices. Let ej denote the n X 1 column vector with 1 in thejth 
row and 0 elsewhere. Let il ,i2, ••• ,in be a permutation of 
1,2, ... ,n. Then we define the symbol [il,iz, ... ,in ] to be the 
n X n matrix lei ,ei , ... ,ei ]. The group of n X n permutation ., " 
matrices will be denoted by Pn • For the subgroup consisting 
of the disjoint permutations i l,i2,··.,im and im+ l,im+2, ... ,in 
we write P m,n _ m' For example, a representative member of 
P3,2 is 

000 

o 0 
100 

000 

o 0 
Finally, the symmetric group on n distinct objects will 

always be denoted by Sn' 

B. Classical results 

As remarked above, the first two-term relation for 3F2 
was given by Thomae3 and rediscovered some years later by 
Ramanujan4 (p. 104). In Bailey's notation it reads 

1<' (a b e) = r(a')r(d)r(e) 1<' (a' b' e'), 
~2 d e r(a)r(d')r(e') ~2 d' e' 

where the variables 

a = (a,b,e,d,e), 

a' = (a',b ',e',d ',e') 

are related by the linear transformation 

a' = fa 

with 

-1 -1 -1 1 

-1 0 0 0 

t= -1 0 0 

-1 -1 0 

-1 0 -1 

(2.1a) 

(2.1b) 

(2.1c) 

(2.2a) 

(2.2b) 

The second two-term relation is due to Bailey6 (p. 56). 
In stating it, we use the notation 

(a)n = r(n + a)/r(a). 

The relation is then 
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b e 

e I 
b' e' 
e' I' 

-n) , (2.3) 

where the variables a and a', defined analogously to (2.1b) 
and (2.1 c ), are related by the linear transformation 

a'=ba (2.4a) 

with 

-1 0 0 0 0 
0 -1 0 0 0 
0 0 1 0 0 0 

b= 
-1 -1 0 0 1 

(2.4b) 

-1 -1 0 1 0 
0 0 0 0 0 

Relation (2.3) is valid only when n is a non-negative integer 
and the Saalschiitz condition is fulfilled: 

a+b+e-d-e-I-n+l=Q (2.5) 

In order to give the three-term relation for 3F2 [Bailey6 

(p. 15) ] in convenient form, we first define a rescaling of 3F2 

as follows: 

;2(a) = ~ze ! e) 
X [r(d)r(e)r(d + e - a - b - e)] -1, (2.6a) 

with a = (a,b,e,d,e). Next, we introduce new parameter col­
umn vectors a' and a". To define these in terms of a by linear 
transformations, we effectively extend the column vectors to 
six elements by adjoining the element 1 to each and writing 

where m l , m2 are the matrices 

1 

1 
ml= 

1 

0 

0 

0 

0 
mz= 

-1 

0 

0 

0 

0 

0 

0 

-1 

0 

0 

0 

0 

0 

-1 
0 

o 
o 
o 
-1 

o 
o 

1 

1 

o 

0 0 

0 -1 
-1 0 

0 0 

0 0 

0 0 

-1 0 

0 -1 

0 0 

0 0 

0 0 

0 0 
The three-term relation then takes the form 

A A A 

3F2(a) = a'(ahF2 (a') + a" (a)3F2(a"). 

1 

0 

The coefficients a', a" in this expression are given by 

'( ) 1Tr(1 - b) a a = ------'----'-----
r(d - a)r(e - a)r(e)sin 1T(e - a) • 

"( ) -1Tr(1-b) a a = --------'----''------
r(d - e)r(e - e)r(a)sin 1T(e - a) 

Beyer, Louck, and Stein 

(2.6b) 

(2.6c) 

(2.7) 

(2.8a) 

(2.8b) 
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We note that the device used to write (2.6b)-familiar 
to geometers working with homogeneous coordinates-al­
lows translations of parameters to be written as linear trans­
formations. We shall return to this point in Sec. IV. Finally, 
we mention the trivial symmetries of Ji'2 and 4F3 under ap­
propriate permutations of the parameters. Reverting to the 
original definitions of a and a' for these two cases, namely, 
a = (a,b,c,d,e) and a = (a,b,c,d,ej), respectively, with the 
a' similarly defined in terms of the primed parameters, we 
have 

3F2(a) = Ji'2(a'), 

4F3(a) = 4F3(a'). 

(2.9a) 

(2.9b) 

Here a' = pa in both cases, with p a permutation matrix. In 
the first case, p belongs to the (permutation) representation 
P3•2 of S3 X S2;in the second case, p belongs to the representa­
tion P3•3 of S3XS3' 

III. GROUP STRUCTURE OF THE TWO-TERM 
IDENTITIES 

The structure ofthe two relations (2.1 a) and (2.3) be­
comes trivial when expressed in terms of the proper vari­
ables. To find these variables, the first step is to write down 
two matrices A I andA2 which commute with all elements of 
P3•2 and P3•3 respectively, while also satisfying some other 
restrictions. The matrices A I and A2 are far from unique; we 
shall write down a suitable pair ad hoc, leaving their deriva­
tion to the remarks at the end of the section. 

Let 

1 0 0 
1 0 1 

AI= 0 1 1 (3.1) 

1 1 1 2 1 

1 2 

Then 

A IlpAI =P, pEP3•2 , 

A I ItA I = [1,5,4,3,2 J. 

(3.2a) 

(3.2b) 

Here t is defined by (2.2b). For the permutation matrix no­
tation on the right, see Sec. II A. Equation (3 .2a) is obvious 
in the form pA I = AlP because each row permutation p and 
column permutation p has the same action on A I; (3.2b) is 
also immediate on verifying the equality tA I 
= Al [1,5,4,3,2 J. 

The group theoretical result we need to interpret (2.la) 
is the following. 

Theorem 3.1: The matrices in P3•2 together with 
[1,5,4,3,2 J generate Ps. 

Proof Since [3,1,2,5,4 J and [1,2,3,5,4] belong to P3•2 

the matrix [3,1,2,5,4J [1,5,4,3,2] [1,2,3,5,4} = [3,4,5,1,21 
is in the set of matrices generated by P3•2 and [1,5,4,3,2 J. 
Now [3,4,5,1,21 written in cycle notation is just (l3524). 
Similarly, [3,2,1,4,5], which belongs to P3•2 , is just the two­
cycle (13). As is well known, (l3) and (13524) generatePs 
[see, for example, James and Kerberlo (p. 5)]. Hence, the 
group generated by P3•2 and [1,5,4,3,2] contains Ps. But 
since all products of 5 X 5 permutation matrices are them-
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selves 5 X 5 permutation matrices, we must obtain exactly 
~. . 

To interpret relation (2.1a) in terms of Ps we define a 
new function 3E2 by 

A 

3E 2(X) = Ji'2(A lx), (3.3a) 

with 

x = (x,y,z,u,v). (3.3b) 
A 

Thus the function 3E2 is given in terms of Ji'2 [see (2.6a) 1 by 
the change of variables 

a=Alx. (3.4 ) 

Now relation (2.1a) takes the form 

3E2(X,y,z,U,v) = 3E2(X,V,U,z,y) (3.5a) 

in consequence of (3.3a) and (3.3b). Moreover, the invar­
iance of the original 3F2 to separate permutations of the nu­
merator and denominator parameters~ and the invariance of 
the denominator in the definition of Ji'z, is expressed as 

3E2(PX) = 3E2(X), pEP3.2' (3.5b) 

Theorem 3.1 and the invariance properties of 3E2 given 
by (3.5a) and (3.5b) imply the following. 

Theorem 3.2: The group Ps is an invariance group of the 
function 3E21 i.e., 

(3.6) 

This result incorporates relation (2.1a) and the invar­
iance of the original 3F2 series under separate permutations 
(belonging to P3•2 ) of the numerator and denominator pa­
rameters into a single relationship. It also extends this result 
to the group Ps: the function ~2 is invariant under all 5! 
permutations of the variables (x,y,z,u,v). 

We next establish results analogous to Theorems 3.1 
and 3.2 for the 4F3 series relation given by (2.3). Define the 
nonsingular matrix A2 by 

0 0 
1 0 1 0 0 0 

1 0 0 0 0 
A2= 

1 0 0 
1 0 1 0 

0 0 1 

Then 

A ;:lpA2=P, PeP3•3 , 

A ;:lbA2 = [2,1,6,5,4,3J. 

Here b is the matrix defined by (2.4b). 

(3.7) 

(3.Sa) 

(3.Sb) 

We can now prove the following result by an argument 
analogous to that used in Theorem 3.1. 

Theorem 3.3: The matrices in P3•3 together with the ma­
trix [2,1,6,5,4,3] generate P6• 

To obtain results analogous to Theorem 3.2, we first 
define the polynomial 4Q3 (a) by 

Next we define the new polynomiaI4P3(x) by making 
the change of variables 
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a=A2x, 

where 

(3.lOa) 

x = (x,y,z,u,v,w). (3.lOb) 

Thus 

4P3(X) = 4Q3(A2x). (3.10e) 

Relations (2.3) and (2.5) are expressed in terms of the 
polynomials 4P3(X) and the variables x, respectively, by 

4P3(X,y,z,U,v,w) = 4P3(Y,x,W,v,u,z), (3.11a) 

x+y+z+u+v+w+n-l=O. (3.lIb) 

The invariance of 4F3(X) under separate permutations of 
numerator and denominator parameters is expressed by 

4P3(PX) = 4P3(X), pEP3,3' (3.11c) 

Theorem 3.3 and the invariance properties of 4P3 given 
by (3.11a) and (3.llc) now imply the following. 

Theorem 3.4: The group P6 is an invariance group of the 
polynomials 4P3; i.e., 

4P3(PX) = 4P3(X), pEP6' (3.12) 

for allx,y,z,u,v,w that satisfy (3.lIb). 
This theorem extends the special results in (3.11a)­

(3.11c) to the full permutation group P6 : for all (x,y, 
z,u,v,w) that satisfy x + Y + z + u + v + w + n - 1 = 0, 
the polynomial 4P3 (x,y,z,u,v,w) is invariant under a1l6! per­
mutations of these variables. (Wilsons points out a lower 
symmetry of 4FJ' namely that under S4') 

The operation of reversing the terminating Saalschiit­
zian 4F3 series [Bailey6 (p. 56) 1 is included in the group P 6' 

It is expressed in terms of the polynomials 4P3 by 

4P3(X,y,z,u,v,w) = 4P3(W,V,U,z,y,x) (3.13) 

for all (x,y,z,u,v,w) satisfying the Saalschiitz condition. 
Remarks: (a) There is considerable freedom in choos­

ing the matrices A I andA2. It is not difficult to prove that the 
most general matrices commuting with all elements of P3,2 

and P3,3' respectively, are 

a 

r 
r 

r 
r 
r 

P 
a 

P 
r 
r 
P 
a 

P 
r 
r 
r 

P 
P 
a 

r 
r 
P 
P 
a 
r 
r 
r 

r' r' 
r' r' 
r' r', 
a' P' 
P' a' (3.14) 
r' r' r' 
r' r' r' 
r' r' r' 
a' P' P' 
P' a' P' 
P' P' a' 

Consider the determination of A I' Since the trace of the 
matrix t is 1, we select any permutation matrix p with the 
propertiespEPs,jJEP3,2' tr(p) = 1, and impose the condition 
tCI = ClF with CI nonsingular. To satisfy this condition, the 
permutation corresponding to p must belong to the class 
(22,1) of Ss; moreover, each such p admits a solution C I 

when suitable restrictions on a,/3,r,a',/3 ',r' are imposed. In 
particular, thechoicep = [1,5,4,3,21 in (3.2b) requires that 
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a' = 2a, P' = r, r' = a, r = a + p. Similarly, we find that 
the equation bC2 = C1P with pEP6' Pi¢P3,3' tr(p) = 0, has a 
nonsingular solution C2 if and only if p corresponds to a 
permutation in class (23) of S6' and that each such p admits a 
solution C2 for suitable restrictions on the parameters 
a,/3,r,a',p ',r'. In particular, the choicep = [2,1,6,5,4,3] in 
(3.Sb) requires that a' = a + p, P' 2a, r' = a, 
r = a + p. Thus, the most general nonsingular matrices C I 

and C2, respectively, which can replace A I and A2 in (3.2) 
and (3.8) are 

P P a a 
a P a a 

C1 = P a a 
r r r 2a r 
r r r r (3.15) 
a P P a a 
P a P a a 

C2 = P P a a a 

r r r r 2a 

r r r 2a r 
r r r 2a 2a 

where a =l=P and r = a + p. 
(b) The invariance properties of the functions 3E2 (x) 

and 4P 3 (x) under the action of the transformation groups P s 
and P 6' respectively, can also be realized in terms of the func­
tions ;2(a) and 4Q3(a). Namely, one has 

A A 

3F2(p'a) = 3F2(a), p'EAIPsA ii, 

4Q3(p'a) = 4Q3(a), p'EA 2P(/1. 2 I. 

(3.16a) 

(3.16b) 

IV. GROUP STRUCTURES UNDERLYING THE THREE· 
TERM RELATION 

In this section we set up the group theoretical apparatus 
which we use in Sec. V to derive further three-term relations 
from (2.7} We have shown that A IPsA i l is an invariance 
grmwof 3F2(a), while its isomorphPs is an in variance group 
of 3F2(Alx). Clearly, these isomorphic invariance groups 
will have an important role in our treatment of (2.7). 

All this suggests that we look for a simple structure un­
derlying (2.7) which is similar to what we found in Sec. III. 
The matrices m l and m2 are, however, six dimensional. We 
therefore extend the matrices pEP3,2' t, and A I to 6 X 6 form 
as follows: 

(
p 0) (t 0) (AI 0) 

p---+ 0 l' tt---+ 0 l' A 11--+ 0 1; (4.1 ) 

here 0 is a column or row matrix consisting of five zeros. 
Under this substitution, (3.2a) and (3.2b) become 

and 

(~I ~)-I (~ ~) (~l ~)= [1,5,4,3,2,6]. 

(4.2b) 
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Theorem 3.1 is still valid if we replace the group P3,2 by 
the group 

(4.3) 

replace the permutation matrix [1,5,4,3,2] by [1,5,4,3,2,6], 
and use PS•I in place of Ps. 

The natural next step would be to transform the matri­
ces m l and m 2 as we transformed (~ ~) above. Unfortunate­
ly, this procedure leads to complicated results. To obtain the 
simple structure we are looking for, we must recognize, first, 
that the similarity transformation in (4.2a) and (4.2b) is not 
the only one that leaves those relations invariant, and sec­
ond, that it is the matrix m3 = m lm2 that we should trans­
form. 

The matrix m3 is given by 

0 1 -1 0 
0 0 -1 0 

0 0 -1 0 
m3= 

0 0 0 -1 0 2 
(4.4) 

0 0 0 -1 1 1 

0 0 0 0 0 
We note that the set of matrices 

M = {I,m l,m2,m3} (4.5) 

is an Abelian group of involutions. 
We find that there exists a nonsingular matrix A such 

that 

A -I~ ~) A = (~ ~), PeP3,2' (4.6a) 

A -I(~ ~) A = [1,5,4,3,2,6], (4.6b) 

A -Im~ = [3,2,1,6,5,4]. (4.6c) 

The choice of the permutation matrix p' into which m3 is 
transformed is narrowed by the requirementsp'eP6,p'fd's,l, 
tr(p') = 2, which imply that p' belongs either to the class 
(12,22) or to (12,4). Takingp' to belong to the second class 
fails to produce a solution. Withp'E( 12,22), we construct the 
required A by bordering A I with a row and column so that 
conditions (4.6a)-( 4.6c) are satisfied. This determines A up 
to a multiplicative constant, and we have 

We summarize these results in the following theorem. 
Theorem 4.1: The set of matrices 

{(~ ~)lpeP3'2}' [1,5,4,3,2,6], (4.8a) 

generates the permutation group PS,I' Then PS,I and the ma­
trix [3,2,1,6,5,4] generate P6• Equivalently, the set of matri­
ces 

(4.8b) 

generate the group A PS,I A -I. This group and the matrix m3 
generate A P~ -I. 

Proof: The only result not already proven is that PS,I and 
[3,2,1,6,5,4] generate P6• But this follows easily from the 
same argument used to establish Theorem 3.1. • 

The reason for choosing m 3, instead of m I or m 2, to 
determine the matrix A, is found in the relations 

A -lmlA =.;1[6,5,4,3,2,1], 

A -Im~ =.;1[4,5,6,1,2,3], 

where.;1 is an involution defined by 

-2 

1 .;1=-
3 

-2 
1 -2 
1 -2 
1 1 - 2 

1 1 

(4.9a) 

(4.9b) 

1 

-2 
(4.10) 

It is easy to see that.;1 commutes with every element of P6• 

This implies that no nonsingular matrix B exists such that 
BmlB -I = peP6, since then we would have p(BA) 
= [6,5,4,3,2,1].;1 (BA), and therefore, (BA) -Ip' (BA) =.;1 

for p'eP6• But since tr(.;1) = - 4 and tr(p') >0, we have a 
contradiction; this proves the nonexistence of B. In the same 
fashion, we can show that m 2 is not similar to any peP6' 

We are now ready to prove the following. 
Theorem 4.2: The set of matrices 

{(~ ~)lpeP3'2}' [1,5,4,3,2,6],.;1 [6,5,4,3,2,1] 

generates the direct product group of 1440 elements 

P6 XA = {P6 ,A.P6 }; (4.11) 

here A is the two-element group A = {I,A.}. The group 
A -IMA [withM defined by (4.5)] is a subgroup ofP6 XA. 
Equivalently, the set of matrices 

generates the group A (P 6 X A)A -I, which contains the sub­
groupM. 

Proof: By Theorem 4.1, the set of matrices 

{(~ ~)lpEP3'2}' [1,5,4,3,2,6], 

generates the group PS,I' We see that the matrix A -Im~ 
=.;1[4,5,6,1,2,3] is obtained from the matrix A -lmlA 
= .;1 [6,5,4,3,2,1] by multiplying from the right and left by 
[3,2,1,4,5,6]ePs,l' Because m3 = mlm2, we have A -Im~ 
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= (A -lmIA)(A -Im~) = [3,2,1,6,5,4]. This matrix and 
the group PS•I generate P6 (Theorem 4.1). The matrix A. is 
now obtained from A. = (A -1m IA) [6,5,4,3,2,1], and is seen 
to commute with all elements of P6 • This implies that no 
further matrices, not in P6 X A, can be generated by the ma­
trix set specified in the statement of the theorem. • 

With the application of Theorem 4.2 in mind, we digress 
here to consider some problems of notation not dealt with in 
the Introduction. In the rest of the paper we shall frequently 
beactingonfive-tuplessuchasa = (a,b,c,d,e) and x = (x,y, 
z,u,v) with 6X6 matrices. We recall that a and x are the 
coordinates on which the functions 3E2 [(3.5a)] and ;2 
[ (2.7)] are defined. We shall need a special notation for this 
action. Before introducing an appropriate symbol, we write 
down some abbreviations for quantities already defined, viz., 

G=P6 XA, GA =AGA -I, (4.12) 
H=Ps.I , HA = AHA -I. 

These definitions will be used from here on. 
Let SL (6,R) denote the group of 6 X 6 nonsingular ma­

trices over R, and let RD denote the set of all n-tuples. Let 
y = (YI'Y2'Y3'Y4,Ys)ERs and let z = (Y'Y6)ER6 denote any 
six-tuple with projection 1T on the first five coordinates given 
by1TZ = Y and withY6 a given function /ofy, i.e"Y6 =/(y). 
We now define the mapping SL (6,R) : RS 

-+ RS by the follow­
ing rule. For BESL(6,R) and YERs, the action of Bon y is 
denoted by Boy, and BOYERs is defined to be 

Boy = 1T(Bz) = y'; (4.13) 

here Bz is ordinary 6 X 6 on 6 X 1 matrix multiplication. This 
action ofSL(6,R) on RS satisfies the usual axioms. 

Let us take the elements ofRs to be a = (a,b,c,d,e) and 
apply (4.13) to the mappings G A : RS 

-+ R5. This gives 

gAoa=a', gAEGA, aER5
, (4.14) 

where a' is obtained from b = (a, 1 ) ER6 by the rule given in 
(2.6b). In particular, since eachgA has (000001) as its sixth 
row, the sixth component of gA b is also 1. 

The three-term relation (2.7), rewritten in terms of the 
new notation, reads 

A A A 

3F2(a) = a'(a)3F2(m l oa) + a" (ahF2(m2oa). (4.15) 

In order to take advantage of the simplicity of the matri­
ces in G, in contrast to those in the isomorphic group GA , we 
must make the change of coordinates from aERs to xER5 

given by 

(4.16a) 

that is, 

a = 1T(Az), (4.16b) 

for z = (x,w)ER6. The sixth coordinate w is therefore not 
independent, but is given by 

w = 1 - x - Y - z - u - v. (4.16c) 

Since (4.16a) yields a = Alx [cf. (3.4)], we find that it is the 
function 3E2 of the five variables x = (x,y,z,u,v), defined by 
(3.3a), that is associated with the new coordinates x. The 
SUbscripts 3,2 on this function prove rather unwieldy when 
further subscripts must be appended. In the sequel, there­
fore, we shall denote 3E2(x) by F(x). 

It is time to take stock of what we have achieved so far. 
The original three-term relation has been reformulated in 
new coordinates with the help of a new operation of projec­
tion. As we shall see in the next section, this reformulation 
will enable us to give a complete solution to the problem of 
finding all the distinct three-term relations for 3F2' and in a 
relatively transparent manner. 

New formulation summary: The results given below for­
mulate the original three-term relation in terms of coordi­
nates and functions chosen so that the associated groups G 
and He G have the simplest possible structures: 

l x + u + v Y + u + v z + u + v)D -I, 
F(x,y,z,u,v) = 3F2 2 

+ Y + z + u + v x + Y + z + u + 2v 

with 

D=r(x+y+z+2u+v) 

xr(x+y+z+u+2v)r(x+y+z). (4.17) 

The action of the group G on the coordinates xER5 of 
F(x) is given by 

gox = 1T(gz), gEG, xER5, 

where 

x = (x,y,z,u,v), 

z = (x, 1 - x - Y - z - u - v), 1TZ = x. 

( 4.18a) 

(4.18b) 

The basic relation (4.15) is expressed in terms of the 
coordinates x by 

where g 1,g2EG are the 6 X 6 matrices 

gl =,1[6,5,4,3,2,1], 

g2 =,1[4,5,6,1,2,3]. 

( 4.19) 

( 4.20a) 

(4.20b) 

The coefficient functions a and (3 are defined in terms of the 
new coordinates by 

1Tr(1 - Y - u - v) 
a(x) = , 

r(y +z + ulrey + z + v)r(z + u + v)sin 1T(Z - x) 
(4.21a) 

(3(x,y,z,u,v) = a(z,y,x,u,v). (4.21b) 

We note that the subgroup He G has special significance for (4.19) because it is an invariance group for F( x): 

502 J. Math. Phys., Vol. 28, No.3, March 1987 Beyer, Louck, and Stein 502 



                                                                                                                                    

F(hox) = F(x), hEll. (4.22) 

(This is actually Theorem 3.2, adjusted to the present con­
text.) An immediate consequence is the following: let kEG 
and let g be an element in the left coset Hk of H in G. Then 
g = hk for some hEll and 

F(gox) =F(ho(kox»)=F(kox). (4.23) 

If we define the function Fg by 

Fg (x) = F(gox), gEG, 

then (4.23) may be written as 

Fhk (x) = Fk (x), hEll. 

(4.24) 

(4.25) 

Thus, all functions Fg corresponding to the elements of a 
given left coset of H in G are equal. Since G contains 1440 
elements and H contains 120, there are 12 left cosets of H in 
G. In other words, the action of G on the coordinates x of F 
defines exactly 12 new functions of x, one for each coset. It is 
this fact (as will be explained in greater detail in Sec. V) that 
accounts for the 12 subtables in Tables 4.2 and 4.3 in Slater l 

(Whipple,s Bailey6). 

The next step is to partition G into its left cosets with 
respect to H. First we consider the left cosets of H = PS,I in 

P6• 

Theorem 4.3: The group P6 contains six left cosets Hk, 
where the elements kEP6 may be chosen to be elements of the 
set 

K = {k r Ir = 1,2, ... ,6}, 

where 

(4.26a) 

kl = I, k2 = [6,5,4,3,2,1], k3 = [5,6,4,3,2,1], 

k4 = [4,5,6,1,2,3], ks = [3,2,1,6,5,4], 

k6 = [3,2,1,5,6,4]. 

(4.26b) 

Proof The six sets Hkr , r = 1,2, ... ,6, are disjoint, since 
k I k - IdI for all pairs k '=1= k and k l,kEK. Hence, 

6 

P6 = U Cr, Cr = Hkr· 
r= I 

(4.27) 

• 
In the next section we shall need the multiplication table 

for these cosets. This is reproduced as Table I. 
The extension of these results on cosets of H in P6 to 

cosets of H in G is immediate, and is given by the following. 
Theorem 4.4: The left cosets of the subgroup H in G are 

Hk, kE{K,A.K}. (4.28) 

Denoting the 6 X 6 array in Table I by C, the multiplica-
tion table for the left cosets of H in G is given by the array 

TABLE I. Multiplication rules for left cosets of H in G: Cr = Hkr • 

r= 1.2 ..... 6. 

C, C2 C, C4 C, C6 

C, C, C2 C, C4 C, C6 

C2 C2 C, C, C, C4 C4 

C3 C, C6 C6 C6 C3 C3 

C4 C4 C, C, C, C2 C2 

C, C, C4 C4 C2 C, C, 
C6 C6 C, C2 C3 C6 C, 
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(4.29) 

It will be convenient for subsequent applications to de­
note the 12 matrices in the set {K,A.K} by 

k r , r = 1,2, ... ,6,1*,2*, ... ,6*. ( 4.30a) 

For r = 1,2, ... ,6, the kr are the permutation matrices defined 
by (4.26b), while the corresponding k,.. are just 

k,.. = Ak" r = 1,2, ... ,6. (4.30b) 

Thus, k I' = A, k 20 = Ak2 = A [6,5,4,3,2,1], etc. Since A is 
an involution, so that 

Ak,.. = k" (4.30c) 

we must also, for consistency, write (r*) * = r. We shall refer 
to r* as the conjugate of r. 

Finally, since only the 12 functions 

Fk, (x) = F(krox), r = 1,2, ... ,6,1*,2*, ... ,6* 

can be generated by the action of G on the coordinates xERs 

[cf. (4.23 )-( 4.25) ], we may simplify the notation still 
further by writing 

Fr(x) = Fk,(x), r= 1,2, ... ,6,1*,2*, ... ,6*. (4.31) 

Equation (4.22) exhibits the invariance of the function 
F( x) under the action of the group H. This property togeth­
er with the definition (4.31) implies that Fr (x) is invariant 
under the group Hr = k -; IHkr obtained by the automor­
phism with krEK: 

(4.32) 

v. THREE-TERM RELATIONS BETWEEN aFa SERIES 

In the notation defined by (4.30a)-( 4.3Oc) and (4.31), 
the basic three-term relation (4.19) becomes 

FI(x) =a(x)F2o(x) +P(x)F4o(x), (5.1) 

sincegl = Ak2 = k 20 andg2 = Ak4 = k 40. In this section, we 
obtain all three-term relations derivable from (5.1) byappli­
cation of the transformation group G with the action: 

Xl--+gox, gEG, (5.2) 

and by an elimination procedure to be described below. 
The mapping (5.2) can be written in the form 

~ho(krox), hEll, r= 1,2, ... ,6,1*,2*, ... ,6*. (5.3) 

This suggests carrying out the transformation of relation 
(5.1) in two steps, by first performing the mapping ~hox, 
hEll, and then the mapping ~kr ox. 

The first step, applied to (5.1), gives 

FI (x) = a(hox)Fpo (x) + P(hox)Fqo (x), (5.4a) 

where the index pair (p* ,q*) is uniquely determined by find­
ing the left cosets to which k 20 hand k4 0 h belong; that is, by 
solving the inclusion relations 

k 2• hEllkpo, k40 hEllkqo . (5.4b) 

Since the group H = PS,I contains only permutation 
matrices, it follows that p* and q* are both "*-integers" in 
(5.4a) and (5.4b). Accordingly, the index pair (p,q) maybe 
found by solving 
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(S.S) 

We found the solution of these inclusions for all hell by 
calculating (on MACSYMA) the 12 matrices k2hk -; I, 
k4hk -; I,p = 1,2, ... ,6, and identifying the representative pair 
of matrices in H. The simple solution is as follows: for each 
pair (p,q) withp:;iqe{I,2,3,4,S} define the subset Hp,q of H 
by 

(S.6) 

Each subset Hp,q then contains six elements of H. For exam­
ple, H2.4 contains the six permutation matrices 
[i l ,l,i3,3,i5 ,6] corresponding to the six permutations 
(i),i3,is ) of (2,4,S). 

Using these notations, the solutions of (S.S) are given in 
the following. 

Theorem 5.1: For each hellp,q we have 

(S.7) 

for each pair (p,q) withp:;iqe{I,2,3,4,S}. 
Proof By MACSYMA, as described above, or by verifying 

(by hand) that k2hk p-+I) ell and k4hk q-+\ ell for each 
hellp,q (it is only necessary to verify that the sixth compo­
nent in these products of permutation matrices is 6). • 

Applying Theorem (S.1) to (S.4a) gives 

F) (x) = a(hox)F(p+ I). (x) + /3(hox)F(q+ l)" (x), 

hellp,q, (5.8) 

for each pair (p,q) withp:;iqe{I,2,3,4,S}. (We show below 
that the coefficient functions in this result are invariant for 
each hellp,q') 

To obtain the transformation of the basic relation (S.I) 
by a general element geG, we must transform (5.8) by 
~k,ox [cf.(S.3)]. This results in 

F,(x) = a (gox)Fs (x) +/3(gox)Ft (x), 

with 

g = hk" hellp,q' r = 1,2, ... ,6,1 *,2*, ... ,6*. 

(S.9a) 

(S.9b) 

The indices sand t are uniquely determined by the relations 

(S.9c) 

in whichp:;iqe{I,2,3,4,5}. [Throughout the remainder of 
the section, (r,s,t) denote integers with domain {1,2, ... ,6, 
1 *,2*, ... ,6*}. It will occasionally be convenient to replace the 
statement 

re{I,2, ... ,6,1 *,2*, ... ,6*} 

with the phrase "with r in the standard domain."] The tri­
ples (r,s,t) of positive integers that can occur in (S.9a) are 
completely determined from (S.9c) above by the multiplica­
tion rules for left cosets of H in G given in Table I. To present 
the results, it is convenient to represent this table by sub­
scripts alone. 

We define the 6 X 6 array J by 
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1 

6 

6 

4 

3 

2 
(S.lOa) 

S 

6 S 

The full table for left coset multiplication is represented by 
the 12 X 12 index array 

{ 
J J*} 

J= J* J' 
(S.lOb) 

where rows and columns are enumerated by 1,2, ... ,6,1*, 
2* , ... ,6*, respectively, which coincide with the entries in col­
umn 1 and row 1. 

All possible triples (r,s,t) that can occur in (S.9a) are 
obtained by transcribing the left coset multiplications 

C(p+I).C,=Cs ' C(q+I).C,=Ct (S.lla) 

into index multiplication (denoted by .) in the array J: 

(p+l)*'r=s, (q+l)*'r=t (S.11b) 

for p:;iqe{I,2,3,4,S}. We have tabulated these multiplica­
tions in Table II. The values of r in the standard domain are 
listed in the first row; hence r is a column index. The major 
row heading is Hp,q' which includes two rows for each choice 
of p <q. We refer to this pair of rows as the "double-row 
(p,q)." The pair of entries in column r in the double-row 
(p,q) is (s,t) with s in the top row. For example, for hell3,4' 
the triples (r,s,t) that can occurin (S.9a) are determined by 
4*' r = s, S*· r = t, and are found from Table II to be 

TABLE II. Triples (r,s,f) occurring in three-term relations. 

r 2 3 4 5 6 1* 2* 3* 4* 5* 6* 

s 2* 1 * 1* 5* 4* 4* 2 1 5 4 4 
3* 6* 6* 6* 3* 3* 3 6 6 6 3 3 

s 2* 1 * 1 * 5* 4* 4* 2 1 5 4 4 
4* 5* 5* 1* 2* 2* 4 5 5 2 2 

s 2* 1 * 1 * 5* 4* 4* 2 I 5 4 4 
5* 4* 4* 2* 1 * 1 * 5 4 4 2 1 

s 2* 1 * 1 * 5* 4* 4* 2 1 5 4 4 
6* 3* 2* 3* 6* 5* 6 3 2 3 6 5 

H2•3 s 3* 6* 6* 6* 3* 3* 3 6 6 6 3 3 
4* 5* 5* 1* 2* 2* 4 5 5 2 2 

s 3* 6* 6* 6* 3* 3* 3 6 6 6 3 3 
5* 4* 4* 2* 1* 1* 5 4 4 2 1 

H 2., s 3* 6* 6* 6* 3* 3* 3 6 6 6 3 3 
6* 3* 2* 3* 6* 5* 6 3 2 3 6 5 

s 4* 5* 5* 1 * 2* 2* 4 5 5 1 2 2 
5* 4* 4* 2* 1* 1* 5 4 4 2 1 1 

s 4* 5* 5* 1* 2* 2* 4 5 5 I 2 2 
6* 3* 2* 3* 6* 5* 6 3 2 3 6 5 

H •. , s 5* 4* 4* 2* 1* 1* 5 4 4 2 1 

6* 3* 2* 3* 6* 5* 6 3 2 3 6 5 
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(1,4*,5*), (2,5*,4*), (3,5*,4*), 

(4,1*,2*), (5,2*,1*), (6,2*,1*), 

(1*,4,5), (2*,5,4), (3*,5,4), 

(4*,1,2), (5*,2,1), (6*,2, I). 

We have included in Table II only those subsets Hp,q 
CH havingp < q. The table can be extended to include the 
Hp,q havingp > q by interchanging the two rows appearing to 
the right of Hq,p' leaving the indices sand t in place. Since 
there are six elements of H in each set Hp,q' where p =/=q 
= 1,2,3,4,5, all 1440 relations (5.9a) are accounted for in 

the extended table. Some of these relations, however, are 
identically the same in consequence of properties of the func­
tions a(x) andp(x). Indeed, we prove in Theorem 5.4 be­
low that the distinct relations (5.9a) are exactly those corre­
sponding to the 120 triples (r,s,t) given in Table II, 

We need two theorems on the properties of the coeffi­
cient functions a(x) and P(x) that occur in (5,1) and are 
defined by (4.21a) and (4.21b). 

Theorem 5.2: Let h,h 'EHp,q forp=/=qe{I,2,3,4,5}. Then 

a(hox) =a(h'ox), P(hox) =P(h'ox). (5.12) 

Proof' The functions a(x) andp(x) are invariant under 
all permutations of (y,u,v), that is, under the group of per­
mutation matrices R defined by 

R = {[1,i2,3,i4 ,is,6] I (i2,i4 ,is ) a permutation of (2,4,5)}, 

We can prove the theorem by showing that h ' h - IER for h " 
hEHp,q [see (5.6)]. The product of any two 6 X 6 permuta­
tion matrices, h ' and h -I, the first of which has columns 
p,q,6 given by el ,e3,e6 , respectively (see the Introduction for 
the notation), and the second of which has rowsp,q,6 given 
by 

(100000), (001000), (000001), 

always has columns 1,3,6 equal to el ,e3,e6 ; i.e" h 'h -IER,. 
Theorem 5.3: Let hEHp,q and h 'EHq,p with 

p=/=qe{I,2,3,4,5}. Then 

a(hox) =P(h'ox), P(hox) =a(h'ox). (5.13) 

Proof' Let h" = [3,2,1,4,5,6]. Then, from the defini­
tions (4.21a) and (4.21b) ofa andp, 

P(x) = a(h "ox), (5.14) 

and, from the definition (5.6) of Hp.q, 

Hq,p = h "Hp,q' (5.15) 

These results together with Theorem 5.2 imply the stated 
properties of a and p. • 

We can now prove the first ofthree principal results for 
three-term relations between 3F2 series. 

Theorem 5.4: There are 120 distinct relations between 
the functions {Fr Ir = 1,2,00.,6,1 *,2*,00.,6*} obtainable from 
the basic relation (5.1) by the group of transformations 
x~gOx, gEG. These relations are 

Fr(x) = ars*, 0 (x)Fso (x) +Prs*'o (x)F,* (x), (5.16a) 

Fr*(x) =ar*s,(x)Fs(x) +Pr*st(x)Ft(x), (5.16b) 

where (r,s,t) is any of the 60 triples satisfying 

re{I,2,00.,6}, s<tE{I,2,oo.,6} - {r}. (5.16c) 
The coefficient functions in these relations are obtained ex-
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plicitly in terms of a(x) andp(x) as follows, using Table II. 
For each triple (r,s,t) determine, in column r, the double­
row (p,q) in whichs* and t * occur (in either order), and let 
h be any representative element hEHp,q' If s* occurs in the 
top row, and t * in the bottom row, then 

ars*tO (x) = a(hkrox), Prs*t' (x) =P(hkrox); 
(5.17a) 

if s* occurs in the bottom row and t * is in the top row, then 

a rs'" (x) = P(hkrox), Prs'" (x) = a(hkrox). 
(5.17b) 

The coefficients with conjugate indices are given by 

ar*st (x) = a rs.,. (..tox), PrOst (x) = Prs'" (..tox). 
(5.17c) 

Proof' By Table II, its extension to p > q, and Theorems 
5.2 and 5.3. Observe in particular that the 120 triples in the 
set {(r,s*,t *), (r,t * ,s*)} obtained by the conditions (5.16c) 
enumerate exactly the triples in the left half of the extended 
Table II, with half in Table II. • 

Properties of the coefficient functions a(x) and P(x) 
are very important for deriving distinct relations between 
the 12 functions F r , as shown by the application of Theorems 
5.2 and 5.3. These properties can be quite tedious to verify. 
In what follows we prove an important result that implies 
the existence of various properties of these coefficients which 
allows us to ignore, for some purposes, the details. Let us 
define a relation between the 12 functions Fr to be "F linear" 
if the relation is invariant under the substitutions Frt---+f.LFr 
for r= 1,2,00.,6,1*,2*,00.,6*, ,uER. The following theorem 
then greatly simplifies the proofs of the results obtained in 
the sequel. 

Theorem 5.5: Let (r,s,t) be distinct integers in the stan­
dard domain. Then one can derive from the basic relation 
(5.1) at most one F-linear three-term relation 

Fr (x) = a rs' (x)Fs (x) + Prst (x)Ft (x) (5.18) 

between the functions Fr(x), F.(x), andF,(x). 
Proof' If there are two relations of the form (5.18), then 

Fr (x), Fs (x), and Ft (x) are pairwise related, i.e., two-term 
relations exist between these functions. Applying the trans­
formation ~kp ox to these three (hypothetical) two-term 
relations, we find two-term relations between all functions 
with index pairs given by (r-p,s'p), (r-p,t·p), and (s·p,t·p), 
withpE{I,2,00.,6,1 *,2*,00.,6*}. 

Let us write r-s if Fr (x) = Yrs (x)Fs (x), where Yrs is a 
quotient of products of gamma functions. The relation - is 
then an equiValence relation between the integers r and s. 
The existence of two relations of the form (5.18) then im­
plies that 

r-p-s·p-t·p, pE{I,2,00.,6,1*,2*,00.,6*}. (5.19a) 

Our strategy is to use this last result, which is implied by 
the existence of two relations of the form (5.18), to show 
that 2*-4*, i.e., that F2* (x) and F40 (x) are related by a 
two-term relation. But this is false, since, by assumption, the 
basic relation (5.1) is a three-term relation. This contradic­
tion will then prove the theorem. 

We need to show that the set of equivalence relations 
(5.19a) implies 2*-4* for every possible choice of (r,s,t) 
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with r < s < t. In many instances, it is possible to show that 

,.p-s·p, pE{I,2, ... ,6,1*,2*, ... ,6*} (S.19b) 

implies 2* -4*. We consider these cases first. 
Recall that r - s implies all the equivalences (S .19b ) , 

i.e., each pair of integers occurring in the same column and 
row r and row s of the index array J is equivalent. For exam­
ple, for (r,s) = (1,3) we find from columns 2* and 4* that 
1-3 implies 2*-6* and 6* -4*, i.e., 1-3 implies 2* -4*. 
The conjugate result, 1*-3* implies 2-4 is obtained simi­
larly. In this way, we verify that 

r-s implies 2*-4*, r*-s* implies 2-4 

for all pairs 

(S.20a) 

(r,s) = (1,3),(1,S),(1,6),(2,3)(2,4), 

(2,6), (3,4 ),(3,S),( 4,6), (S,6). (S.20b) 

For the "missing" pairs (r,s) = (1,2),(1,4),(2,S), 
(3,6),( 4,S), we find 1-2 implies 1-3, 1-4 implies 2-6, 
2 - S implies 1-4, 3 - 6 implies 2 - 6, and 4 - S implies 
1-2. Combining these equations first among themselves, as 
necessary, and then with (S.20a) and (S.20b), we find that 
relation (S.20a) is also valid for 

(r,s) = (1,2),(1,4),(2,S),(3,6),(4,S). (S.20c) 

Next, we use the fact that the existence of two three­
term relations between the same three functions implies the 
equivalence, not of pairs of indices, but of triples, as given by 
(S.19a). Since each triple always includes a pair of indices in 
the sets (S.20b) and (S.20c) or the conjugates of these pairs, 
we conclude that r-s-t implies 2* -4* for all possible tri­
ples. • 

Remark: Theorem S.S implies that the relations between 
theaandp functions given in (S.17a) and (S.17b) must be 
true, for otherwise the theorem would be false (by contradic­
tion). Theorem S.S simplifies considerably the task of enu­
merating all additionalF-linear three-term relations that can 
be derived from the results given in Table II. 

Theorem S.4 gives 120 relations derivable from the basic 
relation (S.l) by direct application of the group of transfor­
mations 'Xl---+gox, geG. Further F-linear three-term relations 
can be found from these 120 by the process of elimination. 
We show next how this is done. There are two kinds of rela­
tions (given in Theorems S.6 and S.7 below). 

Consider three relations of the form given by (S .16a) in 
Theorem S.4: 

F, (x) = a,pOqO (x)Fpo (x) + P,pOqO (x)Fqo (x), (S.21a) 

Fs (x) = aspoqo (x)Fpo (x) + Pspoq• (x)Fq• (x), (S.21b) 

F t (x) = a tp•q• (x)Fpo (x) + Ptpoqo (x)Fq• (x), (S.21c) 

where each triple (r,p,q), (s,p,q), (t,p,q) is chosen by the 
rule (S.l6c) and such that r<s<t. We can now prove the 
second principal result for three-term relations. 

Theorem 5.6: There are 40 distinct F-linear relations 
between the functions F" with r in the standard domain, 
obtainable by elimination between triples of relations of type 
(S.21a)-(S.21c). Twenty are given by 

Yrst (x)F, (x) + brst (x)Fs (x) + Erst (x)Ft (x) = 0, (S.22a) 

and 20 by the conjugates to these: 
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YrOsOt. (x)FrO (x) + b rOs•t • (x)Fs• (x) 

+ ErOs•t • (x)Ft • (x) = 0, (S.22b) 

there being a relation of each type for each triple (r ,s,t) such 
that 

r < s < te{1,2, ... ,6}. (S.22c) 

The coefficient functions are given explicitly in terms of 
a(x) andp(x) by Eqs. (S.17a)-(S.17c) and the following 
relations and their conjugates: 

Yrst (x) = a sp•q• (x)Ptp•q• (x) - a tp•q• (x)Psp•q• (x), 
(S.23a) 

b rst (x) = a tp•q• (x)P,p.q. (x) - a,p.q. (x)Ptpoq. (x), 
(S.23b) 

Erst (x) = a,pOq. (x)Psp•q• (x) - asp.qo (x)P,p.q. (x). 
(S.23c) 

Proof; Equation (S.22a), with coefficient functions giv­
en by (S.23a)-(S.23c) follows directly from the three rela­
tions (S.21a)-(S.21c). The conjugate relation (S.22b) isob­
tained similarly. Thus, to prove the theorem, we must show 
that there are 20 distinct sets of three relations of the form 
(S.21a)-(S.21c); i.e., a set for each triple (r,s,t) satisfying 
conditions (S.22c). 

Consider the left half of Table II (columns 1 through 6). 
The set of 60 triples {( r,p* ,q*)} associated with this half of 
the table can be described as follows. Select any pair p¥=q 
from the set {1,2, ... ,6}, and then r from the set {1,2, ... ,6} 
- {p,q} = {r l ,r2,r3,r4 }. Then one of the two triples (rp 

p*,q*) or (r;.q*,p*), but not both, occurs in the table for 
each i = 1,2,3,4. This is true for all 30 choices of the pair 
(p,q), thus giving all (30/2) X 4 = 60 triples. For each pair 
(p,q), then, there are four sets of three relations of the form 
(S.2la)-(S.21c), a set for each triple (r,s,t) with r<s<t 
selected from {r l ,r2 ,r3,r4 }. 

We illustrate the preceding results with some examples. 
For p = 1, q = S, we find (2,1*,S*), (3,1*,S*), (4,S*,I*), 
and (6,1* ,S*) from the table, so that 
{rl ,r2,r3,r4 } = {2,3,4,6}; the four sets of three relations 
(S.21a)-(S.21c) all have (p,q) = (1,S) and correspond to 
(r,s,t) = (2,3,4), (2,3,6), (2,4,6), or (3,4,6). A second ex­
ample p = 1, q = 2 leads to (r,s,t) = (3,4,S), (3,4,6), or 
(4,S,6), which illustrates that a given triple-in this case 
(r,s,t) = (3,4,6)-may be repeated, even though the index 
pairs (p,q) = (1,S) and (1,2) are not equal. For this reason, 
the same three functions F 3, F4> and F6 can be expressed in 
terms of Fl. and F 5., or in terms of Fl. and F 2 • • Either of 
these sets of three relations must lead, however, by Theorem 
S.S, to the same relation (S.22a), uptoacommonmultipleof 
the coefficient functions. 

Considering all IS sets of four triples that can be ob­
tained from the left half of Table II, we find all the possible 
(~) = 20 triples (r,s,t) with r<s < te{I,2, ... ,6}. Some triples 
are repeated, as noted above, but by Theorem S.S, only one 
new relation per triple can be produced. The 20 relations 
corresponding to these index choices are relations between 
the F, with r = 1,2, ... ,6; hence, all are new (i.e., not obtain­
able directly from Table II). Since the right half of the table 
is gotten by applying the *-operation to the left half, we also 
obtain relations (S.22b) for all r ,s,t satisfying (S.22c). • 
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There is a second process of elimination that leads to 
three-term relations not obtainable from Theorems S.4 and 
S.6. We select any triple (r,s·,t·) with r#s#tE{1,2, ... ,6} 
from the left half of the table, where we always find either 
(s·,r,t) or (s·,t,r). The corresponding three-term identities 
are 

F, (x) = a rs.,. (x)Fs' (x) + PI'S'" (x)F,. (x), (S.24a) 

Fs' (x) = a" rt (x)F, (x) + P"rt (x)Ft (x), (S.24b) 

where the coefficient functions are given explicitly by 
(S.17a)-(S.17c). We now eliminate Fs' (x) between 
(S.24a) and (S.24b), which leads to the third principal re­
sult for three-term relations. 

Theorem 5.7: There are 60 distinct F-linear relations 
between the F" with r in the standard domain, obtainable by 
elimination between pairs of relations of type (S.24a) and 
(S.24b). Thirty are given by 

Srtt' (x)F,(x) + 11m' (x)F,(x) + tm. (x)F,. (x) = 0, 
(S.2Sa) 

and 30 by the conjugates to these: 

Sr*'" (x)Fr* (x) + 1Ir*'" (x)F,. (x) 

+ tr*'" (x)F, (x) = 0, 

there being a relation of each type for each 

r#te{1,2, ... ,6}. 

(S.2Sb) 

(S.2Sc) 

The coefficient functions are given explicitly in terms of 
a(x) andp(x) by Eqs. (S.17a)-(S.17c) and the following 
relations and their conjugates: 

Sm' (x) = ars*" (x)as' n (x) - 1, 

11m' (x) = a,s.,. (x)Ps.,,(x), 

tm. (x) =P,s'" (x). 

(S.26a) 

(S.26b) 

(S.26c) 

All indices in these relations should be conjugated in obtain­
ing the coefficient functions in Eqs. (S.2Sb). 

Proof Elimination of Fs' (x) between the expressions 
(S.24a) and (S.24b) gives (S.2Sa) with the coefficients de­
fined by (S.26a)-(S.26c). We find from Table II that all 
choices of indices r#te{1,2, ... ,6} occur, some pairs (r,t) 
more than once for the same s·. Whenever (S.24) occur, so 
do their conjugates. By Theorem S.S, we can obtain one rela­
tion, up to a common factor between the coefficients, for 
each triple (r,t,t·). • 

Our final theorem is the following. 
Theorem 5.8: All F-linear three-term relations between 

the 12 functions Fro with r in the standard range, which are 
obtainable from (S.l) by transformations from the group G 
and by elimination, are given in Theorems S.4, S.6, and S.7. 

Proof There are n2) = 220 distinct choices of the in­
dices r < s < t, with the indices in the standard range, and we 
have given exactly this number of three-relations in Theo­
rems S.4, S.6, and S.7. Moreover, none of these relations can 
degenerate to a two-term relation (for general values of x), 
since Theorem S.S would then be violated. • 

We note that each of the possible 220 choices of the 
triple (r,s,t) corresponds to an F-linear three-term relation. 
If there were a direct way of seeing this, our paper could be 
considerably shortened. 
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Remark: As noted earlier, the coefficient functions 
a(x) andp(x) must possess a number of properties beyond 
those already given in Theorems S.2 and S.3 in order that 
Theorem S.S be valid. Let us give an illustrative example. 
Consider the transformation of the basic relation (S.l) cor­
responding to the elements of the Abelian group of involu­
tions {I,k2• ,k •• ,ks}, which is the transformation A -1M A of 
the group M defined by (4.S). This leads to three additional 
relations: 

F2• (x) = a(k2• ox)FI (x) + P(k2• ox)Fs(x), (S.27a) 

F •• (x) = a(k •• ox)Fs(x) + {3(k •• ox)FI (x), (S.27b) 

Fs(x) = a(ksox)F •• (x) + P(ksox)F2. (x). (S.27c) 

Eliminating F2• (x) between (S.l) and (S.27a) leads to a 
relation betweenFI (x), F •• (x), andFs(x), which is exactly 
the relation (S.27b) because ofthe identities, 

a(x)a(k2• ox) + P(x){3(k •• ox) = 1, 
(S.28) 

a(x)p(k2• ox) + p(x)a(k •• ox) = O. 

The correctness of these relations may be verified directly 
from the definitions (4.21a) and (4.21b). The compatibility 
ofthe set off our relations (S.l) and (S.27a)-(S.27c) is im­
plied by (S.28). 

We conclude this section by noting the relationship 
between the results obtained here and those of Whip pieS (see 
also Bailey6 and Slaterl

). We refer to Slater's tabulation of 
these results, and use the notation introduced there. The set 
Fp (p) [resp. F" (p)] for eachpE{O,l, ... ,S} is defined by 

Fp (p) = {Fp (p;U,1') IU<"TE{O,l, ... ,S} - {pH, (S.29a) 

[resp. 

F" (p) = {F" (p;U,1') IU<"TE{O,l, ... ,S} - {pH.] 
(S.29b) 

Each of the ten symbols in a given one of these sets de­
notes a 3F2 series having distinct sets of numerator and de­
nominator parameters. Thus, we have defined in Eqs. (S.29) 
12 sets, each containing ten ~2 series with distinct param­
eter sets. (The letters p and n serve to denote two types of 
sets.) In all, we have 120 ~2 series, each with its distinct 
parameter set, distributed into 12 sets often each. The 12 sets 
are given in Tables 4.2 and 4.3 of Slater, where typical pa­
rameters of the ten functions in each set are listed. 

It is convenient to extend the sets Fp (p) [resp. F" (p) ] 
to 120 functions, obtained by including all 12 "place" per­
mutations of the numerator and denominator parameters 
for each of the ten 3F2 series in the set. We denote these 
extended sets by the notation Yp (p) [resp. Y,. (p)]. We 
now have 1440 distinct ~2 series (counting the place permu­
tations of numerator and denominator parameters as dis­
tinct) distributed into 12 sets, each containing 120 functions. 
Finally, we also introduce the 12 sets of functions Y, de­
fined by 

Y,={F,(hox)lhEH; x=A-1oa}, (S.30a) 

each r in the standard domain. The functions in this set may 
also be written [cf. (2.6a), (3.4), (4.17), (4.18a)] as 

A 

F,(hox)I,,=,r'oa =~2(k;h'oa), (S.30b) 

where 
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k;=Ak,A-t, h'=AhA- 1
• (5.3Oc) 

With these preliminaries, the results obtained by Whip­
ple (Tables 4.2 and 4.3 in Slater) have the following compre­
hensive explanation in terms of the group G and the sub­
groupH. 

(i) The sets of functions Yp (p), Y n (p), and Y, are 
related by 

Yp(p) = Y p+ 1> Y n (p) = Y(p+ I)·' 

p = 0,1, ... ,5 
(5.31) 

[see (4.26a) and (4.26b), (4.30b) and (4.30c), and 
(4.31) ]. Thus, the 12 sets off unctions given in Slater's two 
tables are one-to-one with the left cosets of H in G (equiv­
alently, with the left cosets of H A in G A ). The functions in a 
given set, e.g., Fp (p) [resp. Fn (p) ], which is now trivially 
extended to Yp (p) [resp. Y n (p)], and contains 120 func­
tions as described above, are those with parameters 

a'=k;+lh'oa (resp. a'=k'p+l).h'oa), 

h'EllA • 

The functions within a given set are then all equal because 
the subgroup H is an invariance group of the function F( x), 
or, equivalently, because H, = k ,- IHk, is an invariance 
group of the functionF,EY, [see (4.32)]. It is important to 
observe that this implies there are no new results for two­
term relations beyondF(hox) = F(x), hEll, which are con­
tained in Slater's tables: the invariance of the functions in the 
set Y, under the group H, is equivalent to the invariance of 
the functions in the set Y 1 = Y p (0) under the group H. 

(ii) Theorems 5.4, 5.6, and 5.7 together give 220 rela­
tions between the 12 functions F, (x), with r in the standard 
range. As noted, these relations split into a set of 110 rela-
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tions and a set of 110 conjugate relations, where the relation 
conjugate to a given one is obtained by the transformation 
Xi--+AOX. [This transformation interchanges the letters nand 
pin (5.29) and (5.31).] The results given in Slater's Sec. 
4.3.2 (or Sec. 3.7 in Bailey) are related to those given in 
Theorems 5.4,5.6, and 5.7 as follows. Slater's (4.3.2.1) and 
its conjugate (4.3.2.2) are two of the 120 relations given in 
Theorem 5.4; (4.3.2.3) and its conjugate (4.3.2.4) are two of 
the 40 relations given in Theorem 5.6; and (4.3.2.5) and its 
conjugate (4.3.2.6) are two of the 60 relations given in 
Theorem 5.7. 
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Continuous Hahn polynomials have surfaced in a number of somewhat obscure physical 
applications. For example, they have emerged in the description of two-photon processes in 
hydrogen, hard-hexagon statistical mechanical models, and Clebsch-Gordan expansions for 
unitary representations of the Lorentz group SOC 3, 1). In this paper it is shown that there is a 
simple and elegant way to construct these polynomials using the Heisenberg algebra. 

I. INTRODUCTION 

Most of the familiar orthogonal polynomials of math­
ematical physics satisfy second-order linear eigenvalue dif­
ferential equations. The Hahn polynomials are unusual in 
that they satisfy a second-order difference rather than differ­
ential equation. 

Originally, the Hahn polynomials l were constructed as 
totally discrete analogs of the more conventional polynomi­
als of mathematical physics. These polynomials were origin­
ally defined by two three-term recursion relations, one in the 
index and one in the argument, and were shown to satisfy a 
discrete orthogonality relation. It was only very recently in 
1985, that Atakishiyev and Suslov2 and Askey3 generalized 
these discrete polynomials to continuous polynomials in the 
following sense: (1) the argument can be extended from a 
discrete variable to a continuous variable; (2) the orthogo­
nality relation can be written as an integral rather than as a 
sum over a weight function; and (3) the index can be analyti­
cally continued to complex numbers. This continuous gener­
alization establishes a complete analog between the Hahn 
polynomials4 and the more conventional polynomials of 
mathematical physics except for the fact that the continuous 
Hahn polynomials satisfy functional difference rather than 
differential equations. 

In this paper we consider a special class of continuous 
Hahn polynomials which we designate SrI (x). We have or­
ganized our presentation as follows. Section II discusses the 
elementary properties of SrI (x), some of which are new re­
sults. In Sec. III we give the main result of this paper; name­
ly, the connection between the Heisenberg algebra and 
SrI (x). More detailed mathematical properties of SrI (x), 
such as its asymptotic behavior, its zeros, its representation 
as a generalized hypergeometric function, and the expansion 
off unctions as a series of SrI (x), are discussed in Sec. IV. 

II. ELEMENTARY PROPERTIES OF Sn(x) 

The first few polynomials SrI (x) are 

So(x) = (1), 

SI(X) =x, 

S2(X) = !(x2 - 1), 

S3(X) = i(x3 
- 5x), 

aJ Permanent address: Physics Department, University of Southem Missis­
sippi, Hattiesburg, Mississippi 39401. 

S4(X) = MX4 - 14x2 + 9), 

Ss(x) = rk(x5 
- 30x3 + 89x), 

S6(X) = ,k(x6 - 55x4 + 439x2 - 225), (2.1) 

S7(X) = (1I7!)(x7 91x5 + 1519x3 
- 3429x), 

Sg(x) = (l/8!)(x8 140x6 + 4214x4 

- 24 940x2 + 11 025), 

S9(X) = (119!) (x9 - 204x7 + 10038x5 

- 122 156x3 + 230 481x), 

SlO(X) = (1I1O!)(xI0 
- 285x8 + 21 378x6 

- 463 49Ox4 + 2250 621x2 
- 893025). 

To compute these polynomials we can use the two-term re­
cursion relation 

nS" (x) =xS" _I (x) - (n - 1)Sn_2 (x). (2.2) 

If we define the generating function G(t) by 
00 

G(t) = L t"S,,(x), (2.3) 
,,=0 

then the recursion relation (2.2) gives a simple differential 
equation satisfied by G(t): 

(1 + t 2 )G'(t) = (x t)G(t). (2.4) 

The solution to (2.4) satisfying the normalization condition 
G(O) = 1 is 

(2.5) 

Applying the Cauchy integral formula to (2.5) gives a sim­
ple integral representation for SrI (x): 

1 1. dz if' arctan z 

S,,(x) = 211"; YCz"+1 (1 +r)1/2 ' 
(2.6) 

where C is a contour encircling the origin in the z plane. 
The functional difference equation that the polynomials 

Sn (x) satisfy is 

(1 - ix)Sn (x + 2i) + (1 + ix)S" (x - 20 

= (4n + 2)S" (x). (2.7) 

It is not easy to find equations that relate SrI (x) and its de­
rivatives. The simplest such relation we have found is 

U" - 1)/2] S . (x) 
S~(X)= L n-~-q (_l)i. (2.8) 

j=O 2J+ 1 
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It is easy to discover the weight function W(x) for the 
orthogonality relation satisfied by 8n (x) using experimental 
methods. If we require that 8 n (x) satisfy an orthonormality 
relation of the general form 

[a dx W(x)8n (x)8m (x) Dmn , (2.9) 

we can assume that W(x) is an even function because the 
polynomials exhibit parity. Then we can compute the first 
few even momentsll2n of W(x): 

1l2n = f~adx W(x)x
2n

. (2.10) 

The results are Ilo = 1, 112 1, 114 5, 116 61, Ils 
= 1385, ... , which we recognize are just the absolute values 

ofthe Euler numbers 

1l2n = IE2n I· (2.11) 

From the integral formulas 

J.. fro dx x2n = IE
2n 

I, 
2 - ro cosh(1TxI2) 

(2.12) 

we immediately identify a = 00 in (2.10) and the weight 
function 

W(x) == 1/2 cosh ( 1TX/2). (2.13) 

It is easy to verify the orthogonality condition 

f ro dx 8n (x)8m (x) 

-00 2cosh(1TxI2) =Dmn · 
(2.14 ) 

We insert the complex integral representation for 8n (x) in 
(2.6) and interchange orders of integration. Then we use the 
integral identity6 

1 fro d cosh (xz) 
- x 
2 - 00 cosh(1TxI2) 

(Izl < 1T12) , (2.15) 
cosz 

and the trigonometric identity 

(z2 + 1) 1/2(Z'2 + 1) 1/2 cos (arctan z + arctan z') 

l-zz'. 

The result is 

f ro dx 8n (x)8m (x) 

- ro 2 cosh (1TxI2) 

=_I_J: J: dzdz' =D
mn

. 
(21Ti)2 :rc:rc zm + IZ'n+ 1(1 - zz') 

(2.16) 

Further mathematical properties of the polynomials 
8 n (x) are discussed in Sec. IV. 

III. CONNECTION WITH QUANTUM MECHANICS 

We now proceed with a discussion of the connection 
between 8 n (x) and the Heisenberg algebra. 

The Heisenberg algebra consists of two Hermitian oper­
ators p and q which satisfy the commutation relation 

[q,p] = i. (3.1 ) 

In terms of q andp we construct a set of homogeneous poly­
nomial operators T m,n • Here T m,n is defined as the sum of all 
possible terms containing m factors of p and n factors of q 
and is thus a totally symmetric Hermitian object containing 
(m + n)!/(m!n!) individual terms. For example, 
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To, I =q, 

TI,I =pq+qp, 

T2,t = p2q + pqp + qp2, 

T2,2 = qpqp + pqpq + pq2p + pq2q + p2q2 + q2p2. 

The operators T m,n exhibit some very elementary prop­
erties: 

[q,Tm,n] =i(m+n)Tm l,n' (3.2) 

[Tm,n'P] =i(m+n)Tm,n_I' (3.3) 

T - (2m + k)!m! I {T k} (34) 
m.m+k - (2m)!(m + k)! 2 m,m,q +, . 

T = (2m + k)!m! 1 {T k} (35) 
m + k,m (2m)!(m + k)! 2 m,m'P +. . 

The connection between the operators T m n and the 
polynomials 8 n (x) is extremely simple. First co~sider Tn•n • 

Using the commutation relation (3.1) one can always re­
structure Tn, .. as a polynomial in TI,I; this polynomial is 
proportional to 8 n (Tt,l) (see Ref. 7): 

Tn,n = [1/(2n - 1)!!]8n (TI ,I)' (3.6) 

Using (3.4) we can generalize (3.6) slightly to read 

T (2m + k)! {k,s (T)} (37) 
m,m+k = (m + k)!2m + I q m 1.1 +. . 

In fact, we could regard (3.6) as the defining equation for 
8 n (x). The formula in (3.4) would then be in exact analogy 
with the defining equation for Chebyshev polynomial; the 
fact that cos(n8) is a polynomial in cos 8 allows one to de­
fine the nth Chebyshev polynomial Tn (x) by 

cos(n8) == Tn (cos 8). 

We conclude this section with a heuristic discussion of 
the connection between the algebra of the polynomials 
8n (x) and quantum mechanics. We argue that the polyno­
mials 8n (x) are, in fact, the discrete analogs of the Hermite 
polynomials Hen (x). The first few Hermite polynomials are 

Heo(x) 1 

Hel(x) x, 

He2 (x) x 2 
- 1, 

He3 (x) = x 3 
- 3x, 

He4 (x) X4 - 6x2 + 3, 

Hes(x) = x 5 
- lOx3 + 15x. 

(3.8) 

The Hermite polynomials satisfy an eigenvalue differential 
equationS 

He:(x) - x He~ (x) + n Hen (x) O. (3.9) 

The eigenvalue difference equation in (2.7) may be re­
cast in a form in which the discrete differences are explicit: 

8 n (x + 2i) 28n (x) + 8 n (x - 2i) 

(2i)2 

8 n (x + 2i) 8 n (x 2i) 
- x ---.:.:.----~--- + n8n (x) 

4i 
O. (3.10) 

The first term in (3.10) is the central second difference, 

D28~X) [8n (x + h) - 28n + 8 n (x - h»/h 2, 
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and the second term is the central first difference, 

DSn (x) = [Sn (x + h) - Sn (x - h)]/(2h), 

where h = 2i. Thus (3.9) takes the form 

D 2Sn (x) - xDSn (x) + nSn (x) = 0, (3.11 ) 

which is the lattice analog of 3.9. This similarity between 
difference and differential formulations of quantum me­
chanics has arisen in a very natural way. The polynomials 
Sn (x) emerge from a formulation of quantum mechanics on 
a discrete-time lattice using the method of finite elements 
(see Ref. 7). Apparently, the Hahn polynomials Sn (x) are 
the natural basis for the states in discrete-time quantum me­
chanics just as the Hermite polynomials Hen (x) are the nat­
ural coordinate space basis in the continuum. Both sets of 
polynomials arise from the same underlying Heisenberg al­
gebra [q,p] = i. 

IV. FURTHER MATHEMATICAL PROPERTIES OF Sn(x) 

A. Raising and lowering operators 

It is well known that the Hermite polynomials Hen (x) 
listed in (3.8) can be constructed by means of raising and 
lowering operators at,a. If we define a = d Idx and at 
= x - d Idx, we find that 

a Hen (x) = n Hen_I (x), 

at Hen (x) = Hen + 1 (x), 

where [a,a t ] = 1. 

In similar fashion we can find a lowering operator A for 
the Hahn polynomials Sn (x): 

A = tan( ! ) . ( 4.1) 

The operator A has the property that 

ASn(x) = {Sn_I(X), n>O, 
0, n =0, 

(4.2) 

which follows easily from the integral representation for 
Sn (x) in (2.6). The operator A is well defined as a conver­
gent Taylor series in powers of d Idx. 

By the same logic the raising operator A t is 

A t = cot( ! ) . (4.3) 

Evidently this operator exists only in a formal sense; A t is 
actually a nonlocal integral operator. 

Note that since both A and A t are functions of d Idx 
only, we seem to conclude formally that 

[A,A t] = 0, (4.4) 

in contrast with [a,a t] = 1. Indeed, the identity (4.4) holds 
when [A,A t] operates on Sn (x) (n > 0). However, (4.4) is 
false when it operates on So(x) = 1 apparently because of 
ambiguities associated with the definition of [d I dx] - I. 

B. Representation of Sn(x) as a generalized 
hypergeometric function 

In Ref. 3 a general four-parameter class of continuous 
Hahn polynomials Pn (x) is described. In this paper Pn (x) 
satisfies an orthogonality relation 

f OO Pn (x)P
m 

(x) W(x)dx = r(n + a + c)r(n + a + d)r(n + b + c)r(n + b + d) 0nm, 
- 00 (2n + a + b + c + d - 1)r(n + a + b + c + d - 1) . 

(4.5) 

where 

. r(a+c+n)r(a+d+n) . 
Pn (x) = ,n 3F2( - n,n + a + b + c + d - l,a -Ix;a + c,a + d;1) (4.6) 

and 

rca + c)r(a + d)n! 

W(x) = rea + Lx)r(b + ix)r(c - ix)r(d - ix) 
217' 

(4.7) 

We obtain the connection between Sn (x) and Pn (x) if 
we expand our weight function in (2.13) as a product off our 
gamma functions. By comparing the result with (4.7) we 
can identify the parameters a,b,c,d: 

a=c=~, b=d=~. (4.8) 

From this result and a comparison of the orthogonality rela­
tions in (4.5) and (2.14), we can identify our polynomials 
Sn (x) as generalized hypergeometric functions of argument 
1: 

in ( 1 LxI) Sn(x) =--3F2 -n,n + 1,---;-,1;1 . 
.[iif 4 4 2 

(4.9) 

The connection between our continuous Hahn polynomials 
and 3j symbols is given in Eq. (1) of Ref. 3. 
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C. Asymptotic behavior of Sn(x) and distribution of 
zeros 

One of the most prominent features of polynomials are 
their zeros. Using MACSYMA we computed the first one 
hundred polynomials Sn (x) and their zeros. We found that 
the zeros of Sn (x) are real and occur in symmetrical pairs 
centered about x = 0 in a band that ranges just above 
x = - 2n to just below x = + 2n. Our numeral results also 
suggest that as n -+ 00 the separation between adjacent zeros 
near a fixed value of x slowly vanishes. In addition, the zeros 
of Sn (x) and Sn + 1 (x) interlace. 

We now present an explicit asymptotic analysis which 
demonstrates the correctness of the above numerical obser­
vations for large n. We begin by rewriting the integral repre­
sentation for Sn (x) in (2.6) in Laplace form: 

Sn (x) = f ::'i ¢(z)e<!>czl, 4.10) 

where 

(4.11 ) 
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ifJ(z) = - n lnz +x arctanz (4.12) 

It is simplest to use the method of steepest descents9 to 
evaluateSn (x) in (4.10) as n- 00. We find the saddle points 
by solving ifJ' (z) = O. There are two saddle points located at 

(4.13 ) 

Note that the value of z ± is a function of n. If Ixl < 2n then 
z ± -x/2n ± i (n- 00). 

The controlling factor9 (the most rapidly varying com­
ponent) of the leading asymptotic behavior of Sn (x) as 
n -+ 00 is given by 

(4.14 ) 

When ifJ (z ± ) is imaginary S" (x) is oscillatory and 
when ifJ(z ± ) is real Sn (x) is growing and not oscillatory. 
From (4.13) we can see that the transition between these 
two distinct behaviors occurs when z ± changes from com­
plex to real. This happens at Ix I = 2n. Thus, asymptotically, 
the zeros ~k (k = 1,2,3, ... ,n) of Sn (x) must lie in the range 
- 2n<~k<2n. 

It is easy to illustrate this result numerically using ~n' 
the largest positive zero of Sn (x). We have determined that 

~!(/1O = 1.3428, ~20120 = 1.5638, 

~2s/25 = 1.6191, ~30130 = 1.6594, 

~sol50 = 1.7520, ~!()(/100 = 1.8399. 

If we extrapolate these values of ~n/n we find that ~n/n-2 
asn-oo. 

Next, we substitute (4.13) into (4.14) to obtain an ex­
plicit form for the controlling factor of the asymptotic be­
havior of Sn (x) for large n. When - 2n<x<2n we obtain 
the oscillatory controlling factor 

cos(x In(4ne/x) 1/
2

). 

Thus the k th zero ~ k of Sn (x) satisfies the equation 

~k In( 4ne/~k) 1/2 - (k - (n + 1 )/2)1T 

(n- 00, k = 1,2, ... ,n). ( 4.15) 

Therefore the separation /l. = ~ h + 1 - ~ k between two large 
consecutive zeros of Sn (x) satisfies the asymptotic formula 

( 4.16) 

where t = (~k + ~k+ 1 )/2. Note that for fixed t, /l. decays 
logarithmically as n increases. 

The asymptotic result in (4.16) is extremely accurate. 
In Table I we compare the exact value of /l. with the asymp­
totic prediction in (4.16) for the positive zeros of Sso(x). 
Observe that except near k = 25 and k = 50 the relative er­
ror is much less than 1 %. 

From (4.15) it is also evident that the zeros of consecu­
tive polynomials Sn (x) and Sn + 1 (x) must interlace. 

D. Expansions of functions in series of Sn(x) 

In this subsection we construct a general procedure for 
expanding an arbitrary functionJ(x) as a series in Sn (x): 

"" 
J(x) = I anSn (x). ( 4.17) 

n=O 

Let us assume thatJ(t) has a Fourier transform representa­
tion: 
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TABLE I. A comparison between the exact values of and the asymptotic 
predictions for the differences between pairs of consecutive zeros of S50( x). 
The zeros of Sso(x) are labeled tk (k = 1.2 ..... 50). Only the positive zeros 
(k = 26.27 ..... 50) are listed. The exact separation between consecutive ze­
ros is denoted ~~exoct) = tk+ I - tk' The asymptotic prediction ~~asYmptotic) 

is given in (43). Except for the smallest and largest values of t the agree­
ment between ~~exoct) and ~~asymptotic) is very strong. 

k tk 4i:exact ) aLas yrn ptotic) 

26 0.4885 1.1522 1.2001 
27 1.6407 1.3915 1.4121 
28 3.0323 1.5757 1.5874 
29 4.6079 1.7370 1.7464 
30 6.3449 1.8887 1.8971 
31 8.2337 2.0364 2.0443 
32 10.2701 2.1833 2.1907 
33 12.4534 2.3319 2.3385 
34 14.7853 2.4841 2.4894 
35 17.2694 2.6417 2.6448 
36 19.9111 2.8066 2.8063 
37 22.7177 2.9808 2.9755 
38 25.6985 3.1667 3.1541 
39 28.8651 3.3671 3.3439 
40 32.2322 3.5858 3.5474 
41 35.8181 3.8276 3.7673 
42 39.6457 4.0989 4.0073 
43 43.7446 4.4091 4.2720 
44 48.1536 4.7720 4.5677 
45 52.9257 5.2098 4.0034 
46 58.1355 5.7605 5.2925 
47 63.8960 6.4976 5.7566 
48 70.3936 7.5927 6.3358 
49 77.9863 9.6115 7.1239 
50 87.5978 

(4.18 ) 

From the orthogonality relation in (2.14), the general for­
mula for the coefficients an is 

J"" Sn (t)J(t) 
an = dt . 

_ "" 2 cosh ( 1Tt /2) 
(4.19 ) 

Substituting the expression for J(t) in (4.18) and the inte­
gral representation for Sn in (2.6) gives 

a =- dsF(s) 1 J"" f dz 
n 21Ti -00 zn+1(1+z2)1/2 

X dt , J
oo e'(is + arctan z) 

- "" 2 cosh(1Tt /2) 
(4.20) 

where we have interchanged orders of integration. 
We can evaluate the t integral using (2.15): 

1 foo d F( ) f d sec(is + arctan z) an =- s s z . 
21Ti -00 zn+1(1+z2)1/2 

=Joo ds F(s) _1_1.~ 1 . 
_ 00 cosh s 21Ti j zn + 1 1 - iz tanh s 

Next, we evaluate thez integral by expanding the denomina­
tor and integrating term by term: 

'n Joo ds F(s) (t h )" an = I an s . 
- 00 coshs 

(4.21) 

We now consider some special cases. 
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Example 1: f(x) =15(x), F(s) = (21T)-1. Using the 
general formula 10 

Loo sinhi' x = ~ r(,u + 1)/2)r(v - ,u)/2) (4.22) 

o coshv x 2 r(v + 1)/2) 

we obtain 

Thus 

l5(x) = i: S2P (x) ( - I )pr(p + p . 
p=o p!2fii 

(4.23) 

Note that this formula is a special case of the general state­
ment of completeness ofthe polynomials S n (x): 

00 Sn(x)Sn(a) 
l5(x - a) = L . 

n = 0 2 [cos h (1Tx/2) cosh ( 1Ta/2)] 1/2 

If we set a = 0 in (4.24) and use the property that 

S2n (0) = r(n +!( - 1)n/n!fii, 

S2n+ 1 (0) = 0, 

we recover (4.23). 

(4.24) 

(4.25) 

Example 2:f(x) = l5(x - a), F(s) = e- isa/21T. Here 
we are rederiving the expansion in (4.24). For this choice of 
F(s) the integral (4.21) can be done by considering a rectan­
gular complex contour whose vertices are located at 
( - 00, + 00, + 00 + i1T, - 00 + i1T). This contour en­
closes the (n + 1 )-order pole at s = i1T/2. Translating vari­
ables s = iz + i1T/2 and comparing with the expansion in 
(4.24) gives an interesting Rodrigues-like formula for 
Sn (x): 

1 . (d)nz"+Ie"Z(cosz)n 
S (x) =-hm -

n n! z_o dz (sin z)n + 1 

(4.26) 

Example 3: f(x) = [2cosh(1Tt/2)]-t, F(s) 
= (21T cosh s) -I. For this case we evaluate (4.21) using 
( 4.22) and obtain a formula for the expansion of the weight 
function W(x): 
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1 i: S2p(x)(-I)P (4.27) 
2 cosh (1Tx/2) =p=o 1T(2p+l) 

Example 4: f(x) = sin(ax), F(s) = (1/2i)[l5(s - a) 
- 15 (s + a) ]. In this case we obtain from (4.21) 

• 00 (_ 1 )P(tanh a)2p + 1 
sm(ax) = L S2P+ 1 (x). 

p=o cosh a 
(4.28) 

Similarly, we have 

00 (_ l)p(tanh a)2p 

cos(ax) = L S2P (x). 
p=o cosh a 

(4.29) 

Finally, combining (4.28) and (4.29) and replacing a by 
- ia, we have 

eOX = i: (tana)n Sn(x), (4.30) 
n=O cosa 

which is valid as long as lal < 1T/2. This formula was used in 
Ref. 7. 
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It is shown that the canonical realization ofthe representations ofSL(2,R) proposed by 
Gel'fand and co-workers yields a generating function of the Clebsch-Gordan coefficients of the 
group in the hyperbolic basis. This function is the coupled state and appears as the solution of 
an ordinary differential equation reducible to the hypergeometric equation. The desired 
expansion of the generating function that yields the Clebsch-Gordan coefficients is essentially 
a generalization of Barnes' theory of analytic continuation of the hypergeometric function. In 
this paper the normalized Clebsch-Gordan coefficients for the coupling of two representations 
of the positive discrete class are calculated. The final result is an analytic continuation of the 
corresponding expression in the SO(2) basis. The possible application of the generating 
function to the reduction of the Kronecker product of three irreducible representations is 
discussed. 

I. INTRODUCTION 

The Clebsch-Gordan problem of the group SL (2,R ) 
was investigated by Pukanszky,1 Holman and Biedenharn,z 
Ferretti and Verde,3 Wang,4 Verdiev, Kerimov, and Smoro­
dinskii,5 Barut and Wilson,6 and us 7 among others. 8 Pu­
kanszkyl confined his attention to the structure of the 
Clebsch-Gordan (CG) series for the coupling of two repre­
sentations of the continuous class. However, he did not at­
tempt the remaining couplings or the problem of explicit 
evaluation of the Clebsch-Gordan coefficients (CGC's). 
These aspects of the problem were considered by Holman 
and Biedenharnz (HB), Wang,4 and us.7 HB based their 
investigations on the fundamental recurrence relation satis­
fied by the CGC's. Their first paper was mainly concerned 
with the coupling of two representations of the discrete class, 
and other cases of coupling were considered in the second 
paper. The CG series was obtained by them by examining the 
resolvent of the Laplace-Beltrami operator in the space of 
Bargmann's representation functions. The non-normalized 
CGC's determined by Ferretti and Verde3 formed the start­
ing point of the investigations of Wang4 who attempted to 
normalize them by adopting a summation prescription ori­
ginally due to HB. All these authors used the compact 
SO(2) basis for the unitary irreducible representations 
(VIR's) ofSL(2,R). More recently we made a departure 
from the previous practice by evaluating the CGC's in the 
noncompact E( 1) basis.9 The problem of evaluation of the 
CGC's in the hyperbolic SOC 1,1) basis was attempted some 
time ago by Mukunda and Radhakrishnan. lO However, 
some of their results given in terms of the generalized hyper­
geometric functions of the 3FZ ( 1) type turn out to be diver­
gent. This may be attributed to their use of the oscillator 
realization, which does not seem to be particuarly suitable 
for this problem. 

In this paper we make a fresh attack on this problem 
along entirely different lines. We show that the realization of 
the representations of SL(2,R) proposed by Gel'fand and 
co-workersll constitutes a convenient starting point for the 

CG problem of the group in the SOC 1,1) basis. In a previous 
paperl2 (I) we analyzed this representation space in some 
detail and obtained the unitary transformations connecting 
the three subgroup reductions. We now show that the use of 
the Gel'fand realization leads to a generating function of the 
CGC's in the continuous SO ( 1,1) basis. A similar generat­
ing function made its appearance some time ago in connec­
tion with theCG problemofSL(2,R) in the compact SO(2) 
basis.7 The generators of the group were constructed in the 
space of homogeneous functions of two complex variables 
51> 5z transforming according to the fundamental represen­
tation ofSV (1,1) [isomorphic to SL(2,R)], which is essen­
tially the Bargmann realization. 13 The bases of the coupled 
representation fjm were then shown to satisfy an ordinary 
differential equation reducible to the hypergeometric equa­
tion. The CGC's then become identical with the coefficients 
of Fourier or Taylor expansion of an appropriate solution of 
this equation. The connection of this approach with that of 
HB can be established by writing the series solution of this 
equation in the form l: am,xm

,. Substitution ofthis solution 
in the differential equation yields 

(j2 + m2 + l)(jl - m l + l)am ,+ 1 

+ [jl (jl + 1) + j2(jZ + 1) - j(j + 1) + 2m 1mz] 

Xam, + (j2 - mz + l)(jl + m l + l)am,_1 = O. 

This recurrence relation is completely equivalent to the re­
currence relation of the CGC's derived by HB. However, 
since the SO ( 1, 1 ) basis is continuous no such discrete recur­
rence relation exists in this basis in the usual sense. 

On the other hand, the bases of the coupled representa­
tion in the Gel'fand realization still satisfy an ordinary dif­
ferential equation of second order. This equation turns out to 
be formally the same as the one in the SO(2) basis, but with 
m replaced by - iA. This simplification may be attributed to 
the close similarity between the monomial eigenbases of the 
continuous SO (1,1) basis in the Gel'fand realization and 
those of the discrete SO(2) basis in the Bargmann realiza-
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tion. The basic difference in the use of the generating func­
tion in the two problems lies in the intrinsic difference in the 
structure of the representation spaces of Oel'fand and Barg­
mann. This has the consequence of not only restricting the 
values of jl,j2' but also the domain of the variable x of the 
differential equation, which is determined by the exponen­
tiability of the generators to the UIR's of the group. For 
example, for the Kronecker product of two positive repre­
sentations, the variable x in both the problems is the ratio of 
two complex numbers x 1 and x 2, but the domain of the two 
variables as well as the scalar product in the Hilbert space 
(see Sec. II) are entirely different. In the Oel'fand realiza­
tion x 1 and X 2 represent two complex numbers each span­
ning the upper half-plane 1m Xl> 0, 1m x 2 > 0 whereas in the 
Bargmann realization XI and X 2 are complex numbers vary­
ing over the open unit disk 0 < IXII < 1,0< IX21 < 1. Thesolu­
tion of the above differential equation, which is once again 
reducible to the hypergeometric (HO) equation by a simple 
substitution, constitutes the generating function of the 
COC's in the SO(1,1) basis. 

We start with the coupling of two UIR's belonging to 
the positive discrete class. Since the SO(1,1) basis spans a 
continuum we look for an expansion of the generating func­
tion as an integral over the continuous SO ( 1,1) state label. 
In a sense this expansion is a generalization of Barnes' theory 
of analytic continuation 14 for the product of a binomial and a 
hypergeometric function (HOF). Although the generating 
function has two different Taylor expansions inside and out­
side the unit circle, it represents a single analytic function. It 
then follows from Barnes' theory that the desired integral 
representation must be the same in all regions of the complex 
plane. The coefficient of the product state in this integral is 
the unnormalized COCo To get the normalized COC we 
compare this integral with the inverse expansion which is 
essentially the CO series. 

II. THE FUNDAMENTAL EQUATION AND THE 
DISCRETE PART OF THE SPECTRUM 

The group SL(2,R) [isomorphic to SU(1,1)] consists 
of all 2 X 2 real matrices with determinant 1. In the realiza­
tion of Oel'fand and co-workers, II the representations of 
SL (2,R) are constructed in the space D (j,e) of functions/(x ) 
of a single real or complex variable X. As shown in Paper I 
the generators J 1, J2 , J3 can be represented as differential 
operators of the form 

J .[ (1 - x
2

) d .] 
1= -I -+Jx , 

2 dx 

J2 = i[X d~ - j] , (2.1) 

J .[ (1 + x 2
) d .] 

3=1 --JX . 
2 dx 

The generators (2.1 ) can be exponentiated to the representa­
tions of the positive discrete class when x is a complex vari­
able spanning the half-plane 1m x > O. The representation 
space then consists of functions analytic in the upper half­
plane and the generators (2.1) are Hermitian under the sca­
lar product 
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X (1m x) -2j-2 dx di. (2.2) 

For the negative discrete class the representation space con­
sists of functions analytic in the lower half-plane and the 
scalar product is given by 

X IImxl- 2j
-

2 dx ax. (2.3) 

The principal and the exceptional series of representations 
are realized, on the other hand, in the Hilbert space of func­
tions defined on the real line. The generators (2.1) are Her­
mitian for the principal series, under a local scalar product, 
and, for the exceptional series, under a nonlocal scalar prod­
uct. Although the intrinsic structure of the representation 
space is different for each class of representation the formal 
differential operators (2.1) are the same for all UIR's. 

We shall now consider the Kronecker product 

Ti'xTi'· 
The variables for the carrier space ofthe representations are, 
respectively, XI and x 2' which can be complex or real de­
pending on the nature of the representations coupled. In the 
hyperbolic SO (1,1) basis, the product states are "mono­
mials" of the form 

(2.4 ) 

whenjl andj2 belong to the UIR's of the discrete class. For 
the representations of the principal or exceptional series 
these are distributions of the form (see Paper I) 

(XI ± iO)j,-u'(x2 ± iO)j,-u,. (2.5) 

Although the product states (2.5) are fundamentally differ­
ent from (2.4) the formal operations presented below can be 
justified for both. 

By definition, the coupled states gjA. are the simulta­
neous eigenstates 

(J~ - Ii - Ji )gP. = j(j + 1 )gjA. , (2.6a) 

(2.6b) 

Equation (2.6b) implies thatgjA. is a homogeneous function 
of degree (j I + j2 - iA) in x I and x 2. This suggests the fol­
lowing transformations: 

(2.7) 
g (x X) -xj,+j,-Ue (x) jA. I' 2 - I jA.' 

Now we have to convert the partial derivatives acting on 
functions of x I and X 2 into those acting on functions of x I and 
x = X 2/X I . This can be done by noting 

a a xa ala --+----, --+--. 
aX I aX I XI ax aX2 XI ax 

(2.8) 

Using Eqs. (2.7) and (2.8) and eliminating the variable x I in 
Eq. (2.6a) we obtain, after some calculations the ordinary 
differential equation satisfied by the function ejA. (x), 
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It is interesting to note that the differential equation (2.9) is 
formally identical to the corresponding equation in Ref. 7 
with m replaced by - i..1. 

For the determination of the spectrum of j-values ap­
pearing in the reduction it seems necessary to express the 
solution ofEq. (2.9) in terms of known functions of analysis. 
This is done by the substitution 

ejA(x) = (l-x)U-j- 1F(x), (2.lOa) 

u=jl +j2 + 1, (2.lOb) 

which reduces Eq. (2.9) to the standard differential equa­
tion satisfied by the HOF: 

x(l-x) d2~ + [2j + (l-x)(jo + i..1 + 1- 2j)] 
dx 

X
dF + (j-U)(jo-j)F=O, (2.11a) 
dx 

(2.11b) 

When j bel9ngs to the discrete spectrum, the appropriate 
solution is given by 

F=F( -j+U,jo-j; -2j; I-x). (2.12) 

Whenj lies in the continuous spectrum we have to take suit­
able linear combinations of the first and second solution of 
the HO equation (2.11a). 

The discrete part of the spectrum is obtained by apply­
ing the operator 

K J O) J(2) .( a 2x a .) 
2= 2 - 2 =1 x l -- --Jo aX l ax 

(2.13 ) 

to the coupled eigenfunction 

gjA =x{,+j,-iA(l_X)u-j-1 

with 

F = F(a,b;c;x) , etc. 

We now introduce the normalized coupled eigenbases 

fjA. = ~AgjA , (2.17) 

where NjA is the normalization constant. The Hermiticity of 
K2 , i.e., 

(KdjA.>fj_lA.') = (fjA' K 2 fj_lA.') , 

now yields 

1 

NjA 12 (if -l)4l(4l- 1) 

~-lA. = (l+..12)(j~-l)lu+jI2' 

(2.18 ) 

(2.19) 

This equation determines the normalization factor and the 
range ofj-values but with a degree of uncertainty. First, Eq. 
(2.19) asserts that NOA = N _ 1/2 A = 0 so that the identity 
and D _ 1/2 representations do not appear in the reduction. 
Second, since the remaining factor on the rhs of (2.19) is 
positive, the ratio I~A/~-I AI2 will be positive if 

(a2-l)/(j~ -l»o. 

We shall analyze this condition case by case. Let us first 
consider the coupling of two discrete representations, i.e., 
D / XD J; or D j-: XD J;' For this case (u + j)/( Ijol - j) 
< O. Therefore we must have (u - j) / ( I jo I + j) < O. This is 
possible if 

j = u - l,u - 2, ... , - 00 , 

or if 

j= -Ijol, -Ijol + 1, ... , -1 (or -~). 

The first region has an upper boundary atj = jl + j2' whichj 
cannot cross, and the second region has a lower boundary at 
j = - I jo I· The first case corresponds to the coupling D j; 
XD j; and the second case to D j-: XD j; . For other cases of 
coupling involving the continuous representations, Eq. 
(2.19) permits all values ofj<. -1, -~ to appear in the 
reduction. 

III. THE COUPLING D/~ xDj; 

XF( - j + U,jo - j; - 2j; 1 - x) , (2.14) A. The CG series 

and using the Hermiticity condition. Operating gjA by the 
operator (2.13) we have 

-i(l+..12)(j~ -l)(u+j) 
K 2gjA (x) = 2l(4l- 1) gj-1A. 

..1ujo 2'(' 1) + g,'A+1U-J- g,'+lA' 
j(j + 1) 

(2.15 ) 
This result is obtained by using the recurrence relations, 

(l-x) dF =~F- ab(c - b)(c - a) 
dx c c2 (c + 1) 

X xF( a + l,b + l;c + 2) , 

(1 - x)F = [ab(c - a)(c - b)/C2 (C2 - I)] 

Xx 2F(a + l,b + l;c + 2) 

(2.16a) 

- [c(c-a-b-l) +2ab/c(c-2)]xF 

+ F(a - l,b - l;c - 2) , (2.16b) 
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To start with, we consider the coupling of two VIR's of 
the positive discrete class. For the determination of the nor­
malized COC's and the complete spectrum of j-values it is 
necessary to expand the monomials xi, - iA., in terms of the 
coupled eigenfunctions ejT • The expansion coefficients will 
be the complex conjugates ofthe COC's. We start with the 
identity 15 

xl'- = 1: (- 1)'(a)r(b)r 

r=O (c+r-I)rr! 

F [ - ft, C + r - 1, 
X3 2 b a, 

XF(a + r,b + r;c + 2r;1 - x) , (3.1) 

with 

ft = j2 - U 2 , r = u - j - 1, a = 1 - u + ir, 
b = - 2j2' C = 2 - 2u, r = A I + ..12 . (3.2) 
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A little simplification yields the desired expansion: 

[ 
- i + iA, io - i, - u - i ] 

X r 1 _ u + iT', - 2i2' - 2i - 1, u - i 

[ 
- i2 + iA2, - u - i, i + 1 - U] 

X3F 2 •• ejT • 
1 - u + IT', - 2iz 

(3.3 ) 

B. Expansion of the generating function and Barnes' 
theory of analytic continuation 

We shall now consider the problem of expansion of the 
coupled state ep .. (x) in terms of the product states x j2 - a 2• 

Since the spectrum of A2 is the entire real line, the desired 
expansion of ep .. (x) is of the form 

J
i 00 

ej..t(x) = -ioo a(z)xh-Zdz, (3.4 ) 

where the path of integration is the entire imaginary axis. 
The coefficient a(z) is then the unnormalized CGC of 
SL(2,R) in the hyperbolic basis. 

We note that the coupled state ej..t (x), being the product 
of a binomial and a HGF, defines a single analytic function 
of the complex variable x. The Taylor expansions of ej..t in­
side and outside the unit circle Ixl = 1 are, however, differ­
ent. When the contour of (3.4) is closed on the left we get the 
Taylor expansion of ej..t for Ixl < 1, and when it is closed on 
the right we get the expansion for Ixl > 1. But either of the 
expansions represents the same analytic function. It there­
fore follows that the expansions of ej..t (x) in the two regions 
Ixl < 1 and Ixl > 1 must yield the same coefficient a(z). In 
short, (3.4) is essentially the same as the expansion of the 
HGF in Barnes' theory of analytic cQntinuation, 14 except for 
a shift of the path of integration. This shift is necessary to 
avoid the poles of the integrand which may otherwise lie on 
the path of integration. But the beauty of Barnes's theory is 
that the integrand has the same form in all regions of the 
complex x plane so that it defines a single analytic function. 
The same conclusion holds good for the CGC's a(z) in our 
approach. 

To evaluate the coefficient a (z) we first expand the cou­
pled state ej..t (x) in a Taylor series and rewrite the series as 
an integral over the imaginary axis. We start from the Taylor 
expansion inside the unit circle Ixl < 1. The HGF appearing 
in ej..t (x) has a branch point at the origin x = 0. To get the 
Taylor expansion about the origin we therefore apply the 
following formula for analytic continuation 16: 

F(a,b,c,l-x) 

= r [e, 
e-a, 

c -a - b] 
c _ b F(a,b,a + b - e + 1,x) 

+ r [e, a + b - e] 
a, b 

X xC-a-bF(e-a,e-b,e-a-b+ 1,x). (3.5) 

Using Eq. (3.5) and the formula 17 
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(1 - x) I'F(a,b,e,x) 

= r (a)n (b)n ~2 
n (e)nn! 

X [ - p, 1 - e - n, - n] n 

1 - a - n, 1 - b _ n x, 

we obtain after some calculation 

r [ - i + iA, io - i, 
-2i 

-i- iA, 

= X /o.a + x-jo-aXj-jo. -a, 

where 

(3.6) 

(3.7) 

Xr [-i+iA+n,io-i+n, -io-iA-n] 

F [i + 1 - a, - io - LA. - n, - n] n 
X3 2 1 .., 1" x . + 1 - 1/1. - n, +1 - 10 - n 

(3.8) 

The various terms in the sum (3.7) are the residues at the 
simplepolesz = j2 - n andz = jl + iA - n (n = 0,1,2, ... ) of 
the analytic functions 

x(z) = r[ - i + LA. + i2 - Z, il - i - z, 

Z-il-iA, Z-i2] 

F[i+ 1 - a , -il- iA + Z, -j2+ Z] j2- Z 
X3 2 1 . :,. 1" x . + 1 - V\. - iz + z, - 11 +1 + z 

(3.9) 

Besides the singularities at z = i2 - n, z = il + LA. - n, 
which lie on the left of the imaginary axis, the function X (z) 

has simple poles at z = - i + iA + j2 + nand z = jl 
- i + n, which are situated on the right. The function has, 

in addition, simple poles at the points where one of the de­
nominator parameters of the generalized HGF becomes a 
negative integer (denominator catastrophe), i.e., at d=. 1 
+ j - iA - i2 + z = - nand e=. 1 + i-it + z = - n 
(n = 0,1,2, ... ). It can be shown that the only possible singu­
larities because of the denominator catastrophe lie on the 
right of the imaginary axis. 

Let us now choose a contour C consisting of an infinite 
semicircle on the left and the pure imaginary axis. The singu­
larities enclosed by the contour are the simple poles at 
z = i2 - nand z = il + iA - n. Therefore by Cauchy's 
theorem, 

1 1 00 -. X(z)dz = r Res[x(z)]z = j2 - n 
2'1Ti C n=O 

00 

+ r Res[x(z)]Z=j,+i..t_n, 

and we obtain 

[ 
- i + 0., io - i, 

-2j 

n=O 

-i -iA, 

=~iX(Z)dz. 
2m C 

-io -i] ej..t (x) 
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Using the asymptotic forms of the gamma function and the 
generalized HGF, it can be shown that the function X(z) 

I 

goes rapidly to zero as Izl- 00 in the region Re z < 0 pro­
vided larg xl < 1T. Thus 

( ) _ 1 fi
"" d r [ - j + a + jz z, jl - j - z, z - jl - a, z - j2' 

e ... x -- z 
} 21Ti - 100 + a, jo - j, - j - a, - jo - j 

X F [j+l-CT, -jl-a+z, -j2+Z]XJ2-Z 
3 Z 1 + j - a - j2 + z, 1 + j - jl + Z ' 

(3.12) 

where the path of integration is the entire imaginary axis. 
This integral representation was derived under the condition 
Ixl < 1. However, the integral represents a single analytic 
function ejA (x). Using the principle of analytic continuation 
we can now assert that the integral representation outside 
the unit circle (Le., Ixl > 1) must be identical and the condi­
tion Ixl < 1 can be dropped. It can in fact be verified by ex­
plicit calculation that the above integral when closed on the 
right will yield the Taylor expansion of ep• (x) for Ixl> 1. 
The formula (3.12) is therefore valid in all regions of the 
complex x plane. 

C. Evaluation of the normalized CGC's 

Let us now introduce the normalized product and cou­
pled states 

(3.13a) 

" N x j , + j, - IAe (x) JjA = jA I jA' (3.13b) 

where the normalization factors N;,A, ' N;,;." and N;A are cho­
sen in such a way that the product and the coupled states are 
orthonormal: 

(/;JA /;J' A ,f" J: ,,) = 8(A. I -A.; )8(A.2 -A. ~) , 
I I 2 2 JIA.l h"'2 

UjA'/P.') = 8il 8(A. -A.') . 
(3.14 ) 

We now write the expansion of ejA (x) in the form 

ejA = f dA.~ a(A. 2)X
j
,-iA f , (3.15) 

where a (A. 2) is given by Eq. (3.12). Using Eqs. (3.13)­
(3.15) we get 

C ~'I j2 j) """ 1 1 = (JjA,Jj,A, Jj,A,) 
I /1.2 /I. 

=8(A. -A. 1 -A.2)(N;AIN;,A, N;,;.)a(A.2). 

( 3.16) 
On the other hand, from the CG series we have 

( 3.17) 
j= - 00 

where b(j) is given by Eq. (3.3). This yields 

C~'I j2 j) (" " " 1 1 = Jj,A, Jj,A2'JjA) 
I /1.2 /I. 

= 8 (A. - A.I - A.2 )(N;,A, N;,A,IN;A )b(j) . 

(3.18 ) 

Equations (3.16) and (3.18) require that 

}A (3.19) 
I

N 12 b(j) 

N;,A, N;,A2 a(A.2 ) 

Thus b(j)la(A.z) must be a positive definite quantity. To 
ensure this we shall first show that the generalized HGF 
appearing in a(A.2 ) can be transformed into the complex 
conjugate of the one appearing in b (j). We start from the 
Thomae-Whipple identity, 18 

F [a, b, c] = ( _ ) _ er [ 1 + b - e 1 + a - e, d, e J 
3 2 d, e dee c, 1 + b + c - e, 1 + a + c - e 

[ 
c, 1 - s, 1 + c - e ] 

X3FZ , 
1 + b + c - e, 1 + a + c - e 

(3.20) 

where s = d + e - a - b - c and c = j + 1 - CT is a negative integer. From this we obtain 

b(j) = 2 r [ - j - a, - j + a, jo - j, - jo - j, - CT - j 
a(A.z) 1T - 2j - 1, CT - j, - 2j, - jl - iA. + a 2, - jl + a iA.2' - j2 + a 2, - j2 

(3.21) 

which is a positive definite quantity. This ensures the correctness of our result. Combining all these results we now obtain the 
final expression for the CGC: 

COl j2 j) = (- )u-j-I 8(A. -A.1 -A.
2
) 

UI A.2 A. ,fiii 

x{r[ -j-a, jo-j, . '1 ]} 112 -12- //1.2 CT-j, -2j, -jl-al• -jl+al, -j2+aZ' 
- j + a, - jo - j, 2j - 1, CT - j 

r [ 1 ] F [j + 1 - CT, - CT - j, - jz - a z] 
x _ 2j2' 1 _ CT - a 3 2 2j2' 1 - CT a ' (3.22) 

where we have omitted a phase. This expression is essentially the analytic continuation of the c<,>rresponding formula for the 
SO(2) basis.z,6,7 
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IV. CONCLUSION 

The principal advantage of the Gel'fand realization is 
that it provides a convenient starting point for many practi­
cal calculations particularly those requiring explicit reduc­
tion under the noncompact SOC 1,1) or E( 1) subgroups. In 
this paper we have shown that this realization yields a gener­
atingfunction of the CGC's in the continuous SOC 1,1) basis. 
The differential equation whose solution yields the generat­
ing function is the analog of the recurrence relation ofHB. In 
this paper we have used this function to evaluate the CGC's 
of SL (2,R) in the SO ( 1,1) basis for the coupling of two 
VIR's of the positive discrete class. For other cases of cou­
pling like D j-; X D J; or D 1, X D j; , the CG series has contri­
bution from the VIR's of the principal series. This presents 
an additional difficulty because the representations of the 
SO ( 1,1) subgroup within the principal series are doubly de­
generate. However, the difficulty can be circumvented by 
taking suitable linear combinations of the solutions of the 
HG equation. Calculations for this case are under way and 
the results will be communicated shortly. 

The Gel'fand realization may also tum out to be helpful 
for the reduction of the Kronecker product of three irreduci­
ble representations of SL (2,R ). There are several sets of 
commuting operators which may be diagonalized simulta­
neously for the coupling of three VIR's Dj, ' Dj" and Dj). A 
particularly convenient set is 

J (1)2 J(2)2 J(3)2 J2 J2 J 
, , 'mt" 3' 

where J(1)2 = J jl)' - J ~I)' - J il)', etc. In the above setD· 
lmt 

can be the VIR contained in Dj, X Dj" Dj, X Dj ), or Dj) X Dj , • 

Following the notation of Rose 19 the connection between the 
first two couplings is given by 

ep. (j') = L Rnep. (j") , 
r 

where l: stands for the summation over the discrete and inte­
gration over the continuousj" -values and Rn is the Racah 
coefficient of SL (2,R ). Since ep• (j') and ejA. (j") are ex­
pressible in terms ofHGF's, the problem essentially consists 
in expanding a HGF in terms of a series of other HGF's. A 
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variety offormulas of this genre have been derived by Burch­
nall and Chaundy20 and it is interesting to see whether one of 
them followed, if necessary, by a Sommerfeld Watson trans­
formation yields the Racah coefficient of SL (2,R ). This 
problem will be treated in a forthcoming paper. 
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Nonlinear equations with superposition formulas are obtained, corresponding to the action of 
the complex and real forms ofthe exceptional Lie group G2 on the homogeneous spaces G2IH. 
The isotropy group of the origin H is taken as one of the maximal parabolic subgroups of G2, 
or as one of the maximal reductive subgroups, leaving some vector space VEC7 (or VEE?) 
invariant. The parabolic subgroups, as well as the simple subgroups SL(3,C), SU(3), SL(3,R), 
or SU (2,1) lead to equations with quadratic or quartic nonlinearities. The semisimple 
subgroups SL(2,C) ® SL(2,C), SU(2) ® SU(2), and SU( 1,1) ® SU( 1,1) lead to equations 
with quadratic nonlinearities and additional nonlinear constraints on the independent 
variables. 

I. INTRODUCTION 

Part I of this series I (further referred to as I) was devot­
ed to a classification of the maximal subalgebras of the com­
plex and real forms of the exceptional Cartan Lie algebra g2 
and to an analysis of their matrix realizations. 

In this paper we make use of the results of! to construct 
the homogeneous spaces G I H. We take G to be the complex 
exceptional Lie group G2(C), the real compact Lie group 
G~(R), or the real noncompact Lie group G~c(R), and H 
to be one of the corresponding maximal subgroups. The real­
izations of the homogeneous spaces are then used to obtain 
systems of nonlinear ordinary differential equations 
(ODE's) with superposition formulas. based on the action 
of the group G on the space G I H. 

Such equations will in general have the form 

d ~ k A 

x_.~_~ ()E.-~ _. --=x - £. ai t !:oiX, fl - [, ... ,n. 
dt i=1 

(1.1 ) 

where the ai (t) are arbitrary functions of t and the ti are 
vector fields representing the Lie algebra L of the Lie group 
G. when acting on the homogeneous space G IH: 

A n a 
5i = L 5r(xl, ... ,xn) -, i= 1 ..... k. (1.2) 

V= I axv 

The general solution of Eq. (1.1) can be written as a 
function of a finite number m of particular solutions and of n 
significant constants cj : 

x~(t) =F~(XI(t),,,,,Xm(t),CI,,,,,Cn)' fl= 1 ..... n. (1.3) 

It is (1.3) that we call a "superposition formula" and 
XI (t)' .... xm (t) is a "fundamental set of solutions." 

These concepts were originally introduced by Lie. who 
also gave the necessary and sufficient conditions for a system 

aj Charge de recherches F.N.R.S .• Belgium. 

ofODE's to allow a (nonlinear) superposition formula. 2 

Out interest in ODE's with superposition formulas was 
motivated in earlier publications.3

-
1O Let us mention, as far 

as mathematical interest is concerned, that the application of 
the theory of transitive primitive Lie algebras has made it 
possible to solve a problem posed by Lie, namely to classify 
the systems of "indecomposable" ODE's with superposition 
formulas.6 From the practical point of view the superposi­
tion formulas provide a new method for obtaining analytical 
or numerical solutions of certain systems of nonlinear 
ODE·s.9.1O Finally, from the physical point of view, it should 
be stressed that ODE'softhe type (1.1) occur in many appli­
cations.5-9 A prime example are matrix Riccati equations,5 
occuring as Backlund transformations for the nonlinear (7 

model I 1.12 and in many engineering applications,13 specially 
in optimal control theory.9 

Tables of all maximal subalgebras of the Lie algebras 
g2(C), g~(R). andg~c(R) are given in Ref. 1. Use was made 
of seven-dimensional irreducible representations of these al­
gebras and the corresponding Lie groups. A given maximal 
subalgebra can be imbedded in this representation either re­
ducibly or irreducibly. A subalgebra h imbedded reducibly 
in g, by definition leaves a proper nontrivial subspace of C7 

(or R 7) invariant. This makes the construction of the corre­
sponding homogeneous space G I H much easier. In this arti­
cle we restrict ourselves to the case of reducibly imbedded 
subalgebras and we obtain the ODE's for all such cases. The 
problem for irreducibly imbedded subgroups has only been 
partially solved, even for the classical groupS.6.7 

We shall see below that the homogeneous spaces we are 
interested in, i.e., G 2 (C)IH, G~(R)IH, and G~c(R)IH, 
where H is anyone of the corresponding maximal subgroups 
(I), can always be imbedded into O(7,C)/iI, O(7)liI, or 
O(4,3)liI, respectively. Here iI, is again a maximal sub­
group of the corresponding compact or noncom pact rota­
tion group. For certain subgroups Hand iI the spaces G2/ H 
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and 0(7.F)iH are actually locally diffeomorphic (and in 
particular have the same dimension). The G2 equations for 
such spaces will be special cases of the 0 (7,F) equations. For 
other subgroups we find dim[G2IH] <dim[0(7,F)IH]. 
The G 21H space is then properly contained in the other one 
and we must find the conditions that restrict the larger space 
to the lower-dimensional one. Typically the G 2 equations are 
then obtained as 0(7,F) equations with further constraints 
imposed on the dependent variables. In principle, if not nec­
essarily in practice, these constraints can be solved and some 
redundant variables can be eliminated from the system. In 
the case of maximal reductive subalgebras the constraints 
are obtained via the invariance properties of the completely 
antisymmetric tensor T discussed in Ref. 1. 

Section II is devoted to equations related to maximal 
parabolic subalgebras of g2(C) and g~c(R). In each case 
two different maximal parabolic subalgebras exist, one in­
volving additional constraints with respect to the 0(7,C) or 
O( 4,3) case, the other not. 

The simple maximal subgroups SL(3,C) CG2 (C), 
SU(3) CG~(R), SL(3,R) CG~C(R), and SU(2,1) 
C G~c (R) are treated in Sec. III and are shown to lead to 
special cases of projective Riccati equations3,4 (with no non­
linear constraints). 

The reducibly imbedded semisimple subgroups 
SL(2,C) ® SL(2,C) CG2(C), SU(2) ® SU(2) CG~(R), 
SU(2) ® SU(2) CG~c(R), and SU(1,I) ® SU(1,1) 
CG~c(R) are shown in Sec. IV to lead to rectangular ma­
trix Riccati equations with four additional nonlinear con­
straints leading to more complicated nonlinearities in the 
equations. 

II. EQUATIONS RELATED TO MAXIMAL PARABOLIC 
SUBGROUPS 

A. General form of the equations 

It was shown in I that the noncompact groups G2(C) 
and G~c(R) have two mutually nonisomorphic maximal 
parabolic subgroups each. We denote them Paa (F), with 
a = 1 or 2, and F = Cor R; the corresponding maximal para­
bolic subalgebras of g2(C) and g~c(R) are Paa (F). 

To simplify the presentation, we shall consider the case 
F = C explicitly. All formulas of this section are equally val­
id for F = R, with the complex orthogonal group O(7,C) 
replaced by the real pseudo-orthogonal group 0 ( 4,3 ). Simi­
larly, all subgroups of 0(7,C) restrict to the relevant sub­
groups of 0(4,3). 

In order to obtain the nonlinear ODE's with superposi­
tion formulas we need to construct a coordinate realization 
of the homogeneous spaces G2(C)IPaa (C). To do this we 
first construct the corresponding homogeneous spaces 
0(7,C)IPa (C), where Pa (C) is a maximal parabolic sub­
group of 0(7,C) leaving an a-dimensiomil completely iso­
tropic vector space invariant. We then restrict from 0(7,C) 
to G 2 (C) and impose further constraints whenever neces­
sary. It was shown in I that wehaveP, (C) = SIM(5,C) and 
P2 (C) = OPT(5,C), i.e., P,(C) and P2(C) are the simili­
tude and "optical" groups'4 ofC7

, respectively. 
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The spaces 0 ( 7, C) I P a (C) can be realized as the Grass­
mannians of complex isotropic a-planes in C7Xa

• 

We use the "antidiagonal" metric, given by the symmet­
ric formJ N with (J N) ik = t5 i,N _ k' The Lie algebra o(N,C) is 
represented by matrices MECN XN satisfying J NM + M T J N 
= ° (T denotes transposition). We have 

J= [ I N- 2a Jl 
Ja 

(2.1) 

M=[~ 
BT 

-JNC~:Jl E 

-JaDTJN_2a -JaA Ja 

a = 1,2, ... ,[N 12], A,C,HEcaxa; B,DEC(N-2a)Xa, 
EEc(N-2a)X(N-2a), JaC+CTJa =0, JaH+HTJa =0, 

I N_ 2aE + E TJN_ 2a = 0. The Liealgebrag2 (C) is obtained 
by setting N = 7 and imposing further conditions on the en­
tries in (2.1). More specifically, M of (2.1) coincides with 
M" of (1.4.21) and A, ... ,H can be read off from (1.4.21), 
separately for a = 1 and 2 (notice the correction of a sign 
misprint with respect to Ref. 8). 

We shall use both homogeneous and affine coordinates 
on the Grassmannian o (N,C)IPa (C) ofisotropic a-planes. 
Homogeneous coordinates are given by the matrix elements 
of the rectangular matrix 

x,,x3Ecaxa, X2EC(N-2a)x a, rank X = a, (2.2) 

satisfying the isotropy condition 

(2.3 ) 

As usual, the homogeneous coordinates are highly redun­
dant, i.e., the matrices X and Xg with gEGL(a,C) describe 
the same point. To remove this redundancy we choose the 
point X, = 0, X2 = 0, X3 = 1a as the origin on O(N,C)I 
Pa (C) and introduce affine coordinates as components of 
the rectangular matrix 

Z, = XIX 3-'Ecaxa, Z2 =XzX 3-'EC(N-2a)Xa 
(2.4 ) 

(in the neighborhood of the origin we have detX3 #0). The 
isotropy condition (2.3) in affine coordinates is 

ZfJa + JaZ, = -ZfJN_ 2a Z 2. (2.5) 

Thus, the "J-symmetric" part of the matrix Z, is not inde­
pendent. The coordinates on O(N,C)IPa (C) can be identi­
fied with components of the two matrices 

(2.6) 

Following the usual procedure3
-

8 we can now write the non­
linear ODE's corresponding to the action of G 2 (C) on 
G 2 (C)IPa (C). 
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In homogeneous coordinates we have a set of linear 
equations 

. . dX 
X=MX, X=-, 

dt 
(2.7) 

with the nonlinear constraint (2.3) and the redundancy 

x - Xg, geGL( a,C). Going over to affine coordinates, we get 
rid of the redundancy. Moreover, we can eliminate the J­
symmetric part of ZI from the equations, using (2.5). In 
terms of the variables in (2.6) we obtain the final form of the 
O(N,C)IPa (C) equations: 

R = 2C TJa + Z J(BJa ) - (JaB T)Z2 + RCJaA TJa ) + (JaAJa)R 

+ HZJ(JN_ 2a DJa )R + RCJaD TJN_ 2a )Z2} + !R(HJa)R 

+ ~{ZJJN-2a (Zz.JaD T - DJaZ J)JN_ 2a Z 2} + !(ZJJN_2aZ2)HJa (ZJJN_2a Z 2), 

Z2 = -IN_ 2aBJA +EZ2 +Z2(JaA TJa ) - !(DJa)R + !Z2(HJa )R 

(2.8) 

+ Z2(JaD TJN_ 2a )Z2 - !(DJa)Z JJN-2a + !Z2(HJa)Z JJN-2a Z 2· 

The matrices A, B, C, D, E, and H are given functions of t, 
satisfying the conditions given in (2.1) (for all t). 

Equations (2.8) can also be viewed as equations based 
on the action of the real group O(N 12,N 12) (N even) or 
OleN + l)/2,(N - 1)/2) (N odd) on the corresponding 
Grassmannian of real isotropic a-planes (with 1 <;a 
<; [N /2]). In this case the matrices R,Z2,A, ... ,H are real. 

In order to obtain the equations related to the action of 
the group G2 on the space G21Paa we set N = 7 in all the 
above equations and consider the cases a = 1 and a = 2 sepa­
rately. 

B. The G2/Pa, equations 

We have shown in I that we have 

Pal (C) -G2 (C) nSIM(5,C), 

Pal (R) _G~C(R) nSIM(3,2). 
(2.9) 

The corresponding homogeneous spaces are diffeomorphic, 
i.e., we have 

G 2 (C)IPa ) (C) -0(7,C)/SIM(5,C), 

G~c(R)IPal (R) -0(4,3)/SIM(3,2), 

B T = ( - a lO,a20' - Ji,a03, - a 13 , - a23 ), 

D T = ( - aO),a02' - Ji,a30, - a3), - a32 ), 

-a) +a2 a21 v'2a20 
a 12 a l - 202 v'2a lO 

E= v'2a02 v'2aol 0 

a30 0 - v'2a01 

0 -a30 - v'2a02 

(2.10) 

A= -a2, 

a03 

0 

- v'2a lO 

-al + 202 
-a12 

Equations (2.11) and (2.12) provide the G2(C)IPal (C) 
ODE's if all the entries Z2,A,B,D,E are allowed to be com­
plex. The G2(R)IPal (R) equations are obtained by con­
straining the above matrices to be real. 

c. The G21Pa2 equations 

This case is somewhat more complicated and more in­
teresting. As shown in I, we have 
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[with SIM(5,C) =PI(C), SIM(3,2) =PI(R)]. Indeed, 
the dimensions satisfy 

dim G 21Pai = 14 - 9 = 5, 

dim 0(7,C)/SIM(5,C) = 21 - 15 = 5, 

and it is easy to verify that G2 (C) acts transitively on 
0(7,C)/SIM(5,C). The same is true in the real case. We 
concentrate on the complex case, all results are valid for 
G~c(R) as well. 

In view of (2.10) we can directly use the coordinates 
(2.6) for a = 1, N = 7. In this case we have Ja = 1, ZleC, 
hence R = 0 and also C = H = 0 in (2.1). Equations (2.8) 
reduce to complex conformal Riccati equations,4 which in 
this case we write as 

Z2= -JsB+ (E+A)Z2+Z2(DTJS)Z2 

- !D(ZJJSZ 2), 

Z2,B,DeCs, AeC, EeC5X5
, JsE + E TJS = O. 

(2.11 ) 

The G 2 ( C) I Pal equations are a special case of (2.11 ), ob­
tained by requiring that the matrixM of (2.1) be an element 
of g2(C). Comparing with (1.4.21) we see that this implies 

0 

-a03 

- v'2a20 (2.12) 

-a21 
a l -a2 

(2.13 ) 

however, G2(C) does not act transitively on 0(7,C)1 
OPT(5,C). Indeed, in this case we have 

dim G 21Pa2 = 14 - 9 = 5, 

dim 0(7,C)/OPT(5,C) = 21 - 14 = 7. 
(2.14 ) 

Our first task is to provide a model of the space G21Pa2 as a 
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subspace ofO(7,e)/OPT(S,e) and to introduce an appro­
priate coordinate patch. 

To do this we use a decomposition of the Lie algebra 
g2( C) in the form 

(2.1S) 

where N is a nilpotent algebra represented by matrices M of 
the form (2.1) satisfying 

M~[~ 
BT 

-~,], 0 

0 

B T = (a2o - V2a03 - a 13) , 
a21 v2a20 a03 

(2.16 ) 

C= [-;23 a~J 
[see (1.4.21)]. We parametrize elements of the group 
G2 (e) as 

g=eNgp, gp EPa2' 

We have 

[ -a2 - aJO ] A-
-al +a2 ' -aol 

(2.17) 

B T = [a2o -va03 
v2a20 a21 

(2.18) 

We act with the general element ofG2 (e) in the form (2.17) 
on the origin (X f,x f,x f> = (0,0,12) of the Grassmannian 
and use the fact that gp leaves the origin invariant. The ac­
tion of eN then provides the required coordinates on the 
Grassmannian G2(e)IPa2 (e). Explicitly, in affine coordi­
nates, we obtain 

Z _ [~v + !(xy - uz) 
1- 2 -x -uy 

_xz_y2 ] 

-!v + !(xy - uz) , 
(2.19) 

The J-antisymmetric part of ZI is 

v] o . (2.20) 

Substituting Z2 and R into Eqs. (2.8) and writing the ele­
ments of the matrix M of (2.1) in the form agreeing with 
(1.4.21), i.e., 

- a13] , 
a03 

C= [-;23 a~J ' 
[ am a" 1 [",-2a, V2aJO 

o 1 
(2.21 ) 

H= [-;32 a~J . D= -v2a30 v2a02 , E= v2aOI 0 - V2aJO , 
-a31 a30 0 - V 2aOI -al +2a2 

We obtain the G2(e)IPa2 (e) equations as 

x =!{ - a32 (x 2y + 2y2u + xzu) + 2aozX 2 + 2a31 y2 + Sa30XY + 2a lzXu 

+ a3zXv - 4a02 Yu + a30Zu - 2(al - a2)x + 4aol Y - 2aJOu - a30v - 2a20}, 

y = !{a32 (xy2 + 2x 2Z + yzu) - 2aJ2X 2 + 2a30 y2 + SaozXY - 4a3oXZ 

- 2a31 yz + a32 yv + aozZu + 4a l oX - 2a2y - 2aolz + a02v - 2a03 }, 

Z = !{ - a32 (2y3 - Z2U + 3xyz) - 6ao2y2 - 2a31z2 + 3aJ2xy + 6a30 yz 

- alzZu + a3zZv - 6aJOY + 2(a l - 3a2)z - aJ2v + 2a13 }, 

U = ~{a32(2x3 - zu2 + 3xyu) - 6a3oX 2 + 2aJ2u2 - 3a 31xy + 6aozXu 

+ a31zu + a32uv - 6aOlx - 2(2a l - 3a2)u - a31 v - 2a21 }, 

iJ =!{ - a32(4x3z + 4y3u + 3x 2y2 - Z2U2 + 6xyzu) + a J2 (2x3 - zu2 + 3xyu) 

- 3a02 (x 2y + 2y2u + xzu) + a31 (2y3 - Z2U + 3xyz) + 3a30 (2x 2Z + xy2 + yzu) 

+ a32v2 + 3aozXv + 3a30 yv - a31zv + aJ2uv - 6a03x + 6a20 y - 2a2JZ - 2a 13u - 2alv - 4a23}. 

considered to be real functions of t. 

(2.22) 

Thus, we obtain a system of five coupled nonlinear ODE's 
with polynomial nonlinearities of degree 4. All the coeffi­
cients aik are arbitrary functions of t. Notice that in agree­
ment with the general theory,6 the cubic and quartic terms 
have coefficients that already occur in linear or quadratic 
terms. 

The G~c(R)IPa2 (R) equations coincide with (2.22), 
but all coefficients aik as well as the variables x, ... ,v must be 

Let us mention that the inyariance of the completely 
antisymmetric tensor T of (1.2.11) under the group G2 was 
not explicitly used in the section. It was however used impli­
citly. It is the invariance of T that imposes two constraints on 
the seven coordinates ofO(7,e)/OPT(S,e). A possible so­
lution ofthese constraints would lead to the five coordinates 
x,y,z,u,v of (2.19). 
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III. EQUATIONS RELATED TO MAXIMAL SIMPLE 
SUBGROUPS LEAVING ONE-DIMENSIONAL 
SUBSPACES INVARIANT 

We have seen in Ref. 1 that the maximal subgroups of 
the G 2 groups, leaving one-dimensional nonisotropic sub­
spaces in a seven-dimensional space invariant, are all com­
plex or real forms of SL(3,C). Four different cases occur, 
namely G2 (C) ::>SL(3,C), G~(R) ::>SU(3), G~c(R) 
::>SL(3,R), and G~c(R) ::>SU(2,l). We shall treat all these 
cases in a unified manner. To construct the corresponding 
homogeneous space we first construct a Grassmann mani­
fold of one-planes SL( 7,F) I Aff( 6,F), with F = Cor F = R, 
respectively. We then restrict SL(7,F) to O(7,C), 0(7), or 
O( 4,3), respectively, and introduce the corresponding met­
ric on the Grassmannian. Finally we restrict to the corre­
sponding G2 subgroup. Since G2 acts transitively on the ap­
propriate Grassmannian of nonisotropic one-planes, no 
further constraints on the coordinates of the Grassmannian 
pertain and we obtain, in all four cases, special cases of pro­
jective Riccati equations.4 

In order to preserve the unity of presentation, we al­
ways, in this section, make use of the diagonal metric. 

A. The G2(C)/SL(3,C) equation 

We first construct the SL(7,C)/Aff(6,C) Grassman­
nian by introducing homogeneous coordinates in C7 as 

(;), x,yee', ZEC. (3.1 ) 

We choose the origin to be the point x = y 0, z = 1 and 
remove the redundancy of the homogeneous coordinates by 
identifying any two points with coordinates satisfying 

(3.2) 

Notice that the isotropy group of the origin (0,0,0,1,0,0,0) T 

is indeed the affine group Aff( 6,C) realized by the matrices 

We restrict to O(7,C) by requiring that the SL(7,C) 
matrices G satisfy G TG = 17 (the seven-dimensional identi­
ty matrix). Acting on the origin of the Grassmannian con­
structed above, the 0(7,C) matrices sweep out a submani­
fold of nonisotropic one-planes with homogeneous coordi­
nates satisfying 

(3.3 ) 

The isotropy group for the origin reduces to O( 6,C). 
Further restricting to G 2 (C) (in the 17 realization, see 

Ref. 1) we notice that the isotropy group of the origin re-
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duces to SL(3,C) [indeed SL(3,C) was obtained in I as the­
maximal subgroup of G 2 (C) leaving a nonisotropic one-di­
mensional vector space invariant]. Moreover G2 (C) acts 
transitively on 0(7,C)/0(6,C). Comparing dimensions, we 
have 

dim SL(7,C)1 Aff(6,C) = 48 - 42 = 6, 

dim 0(7,C)/0(6,C) 21 - 15 = 6, (3.4) 

dim G 2 (C)/SL(3,C) 12 - 8 = 6. 

We can now write down the nonlinear equations with 
superposition formulas in the usual manner.3,4.7 

In homogeneous coordinates we have the SL(7,C)1 
Aff( 6,C) equations 

pEC, P = - (Tr R + Tr U). (3.5) 

Removing the redundancy (3.2) by introducing affine co­
ordinates 

~ = x/z, 'I y/z, (3.6) 

we obtain the projective Riccati equations 

t = m + (R p)~ + VTJ - ~(a,~) + (n,TJ»), 
(3.7) 

1a = b + W~ + (U - p)TJ - TJ(a,~) + (D,TJ»)' 

The 0(7,C)/0(6,C) equations are obtained by requiring 
that the matrix MEC7X7 in (3.5) should satisfy 

M+MT=O. (3.8) 

Equations (3.7) simplify to 

t = m + R ~ + VTJ + S«m,~) - (n,TJ»), 

1a = - D - VT~ + UTJ + TJ(m,~) - (D,''l»). 
(3.9) 

Finally, we obtain the G 2 (C)/SL(3,C) equations by re­
stricting the matrix Min (3.8) to the Lie algebra g2(C), 
Following I we see that this is achieved by putting 

( _RmT 

m 

~). M ° _ V T -D 

with m~(:J n~G:)' (3.10) 

~ [ -a,O-m, 
a3 +m3 a, - m'l 

R ° al~ml , 
a2+ m2 -al-ml 

+[ -a,O+m, 
a3 -m3 a, +m'l U ° al-m\ , 

a2 -m2 -a\+m\ ° 
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VI3 - n2] 
V23 + n 1 , 

- V l1 - V22 

(3.11) 

B. The G~(R)/SU(3) equations 

This case is completely analogous to the G2(C)1 
SL(3,C) case treated above. We again start from a Grass­
mannian, this time SL(7,R)/Aff(6,R) and use homogen­
eous coordinates, as in (3.1) and (3.2), but with all entries 
real. The restriction to 0 (7) 10 (6) again leads to the condi­
tion (3.3) defining a sphere S6ER7' Finally the G~(R)I 
SU(3) equations coincide with the equations (3.9)-(3.11) 
with mj>n;,Qj>v;kER in (3.10) and ;,1)ER3

• 

C. The G~C(R)/SL(3,R) equations 

We use the metric 14,3 = diag(1, 1, 1, 1, - 1, - 1, - 1). 
The o( 4,3) matrices satisfy 

14,3M + M T14,3 = ° 
and g~c(R) Co(4,3) is represented by the matrices (I) 

m 

° (3.12) 

o 

with n, m, R, U, and Vas in (3.11), but with real entries. 
We introduce homogeneous and affine coordinates on 

the Grassmannian SL (7,R) I Aff( 6,R) as in Secs. III A and 
III B. Restricting to O( 4,3) we see that the orbit of the origin 
(0,0,0,1,0,0,0) T under this group is the hyperboloid 

x2+z2 _y2=1, (3.13) 

diffeomorphic to 0(4,3)/0(3,3). 
The O( 4,3 )/0(3,3) equations in affine coordinates are 

~ = m + R; + V1) + ;((m,;) - (0,1)), 

~ = 0 + VT; + U1) + 1)((m,;) - (n,1)). 
(3.14) 

The G~c(R)/SL(3,R) equations are obtained by taking the 
values of R, V, U, m, and n as in (3.11) (and real). 

D. The G~C(R)/SU(2, 1) equations 

The diffeomorphism that we are using in this case is 
0(4,3)/0(4,2) -G~c(R)/SU(2,1). In order to be able to 
use the same realization of G~c (R) as above and as in Ref. 1, 
we must choose the origin in SL(7,R)1 Aff(6,R) differently 
than in the previous sections. A convenient choice is the 
point (0,0,0,0,0,0,1) T in homogeneous coordinates. The 
group SOC 4,3), realized by matrices satisfying G T14,3 G 
= 14,3 sweeps out the space 

525 

(;). u~ Hl Hi +"~ -"l-"l-z'~ -I. 
(3.15 ) 
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We introduce affine coordinates 

; = u/z, 1) = viz, 

and write an element of the 0 (4,3) algebra as 

M~(_:',BT 
B 

~). E 
pT qT112 

I" ~ (1 -1 J. A +AT=O, 

The 0 ( 4,3) 10 ( 4,2) Riccati equations have the form 

~ = p +A ;+B1) - ;((p,;) + (q,!121)), 

~ = q + 11~ T; + E1) -1)((p,;) + (q,!121)). 
(3.17) 

The G~c (R) ISU (2,1) equations are obtained by making 
(3.16) and (3.17) compatible with (3.12) and (3.11), i.e., 
putting 

(3.18) 

C' 
Vl1 V" + n,) 

B= ~ 2m2 V12 - n3 V22 , 

2m3 VI3 + n2 V23 - n 1 

E~ ~ (2~' 
2nl 2n, ) 
° Q3 ~ m3 . 

2n2 -Q3 + m3 

IV. EQUATIONS RELATED TO MAXIMAL SEMISIMPLE 
SUBGROUPS LEAVING THREE-DIMENSIONAL 
NONDEGENERATE SUBSPACES INVARIANT 

It was shown in Ref. 1 that the invariance of a nondegen­
erate three-dimensional subspace leads to semisimple sub­
groups of G2. More specifically the corresponding sub­
groups are SL(2,C) ® SL(2,C) CG2(C), SU(2) ® SU(2) 
CG~(R), SU(2) ®SU(2)CG~c(R), and SU(1,I) 
® SU ( 1,1 ) C G~c (R). The construction of the correspond­
ing homogeneous spaces and systems of nonlinear ODE's 
with superposition formulas is of considerable interest, since 
the invariance of the alternating tensor T [see (1.2.12)] 
plays a crucial role here. 

Let us consider the four cases separately. 
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A. The G2(q/[SL(2,QeSL(2,Q] equations 

It was shown in Ref. 1 that the subgroup 
SL(2,C) ® SL(2,C) c G2 (C) can be realized as the intersec­
tion [0(4,C) ® 0(3,C)) nG2 (C). We make use of this fact 
to imbed the homogeneous space G 2 (C)/[SL(2,C) 
® SL(2,C)] into 0(7,C)/[0( 4,C) ® 0(3,C)]. Moreover, it 
was shown earlier6 that this last space can be realized in 
terms of the Grassmannian of nondegenerate three-planes 
G3(C7)~SL(7,C)/Aff(4,3,C), where Aff(4,3,C) is real­
ized by the matrices 

~J, 

det Gll det G22 = 1. (4.1) 

Introducing the diagonal 0(7,C) metric 17 , and restricting 
from SL(7,C) to 0(7,C), we see that Aff( 4,3,C) restricts to 
0(4,C) ®0(3,C). The dimensions of the corresponding 
spaces satisfy 

dim SL(7,C)/Aff(4,3,C) = 48 - 36 = 12, (4.2) 

dim 0(7,C)/[0(4,C) XO(3,C)] = 21 - 9 = 12. 

Having in mind that we shall below wish to restrict to 
the G 2 (C) group, we define homogeneous coordinates on 
the Grassmannian of non degenerate three-planes as the ma­
trix elements of the matrices 

'" ~ (f). X,YeC''', zTeC'''. (4.3) 

We choose the origin to be (0,0,13 ) T; the fact thatAff( 4,3,C) 
and 0 ( 4, C) ® 0 ( 3, C) are the isotropy groups of the origin 
within SL(7,C) and O(7,C), respectively, is then manifest. 

The corresponding 0(7,C) equations can be written in 
homogeneous coordinates as 

(i}(=R;: 
m 0(f), ° -n 

R,U,VEC3X3
, m,nEC3XI

, 

R T +R =0, U T + u=o. (4.4 ) 

The homogeneous coordinates satisfy the 0(7,C) condition 

XTX +ZZT + yTY=I. 

Introducing affine coordinates in the usual manner 

WI=Xy-l, Wf=ZTy-l, detYi=O, 

(4.5) 

(4.6) 

we obtain a system of 12 nonlinear ODE's associated to the 
action ofO(7,C) on 0(7,C)/[0(4,C) XO(3,C)]: 
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WI = V + R WI - WI U + mWf + WI VTWI + WlnWf, 

Wf = nT - mTWI - WIU + WIvTWI + WInWf. (4.7) 

Notice that (4.5) does not imply any restrictions on the ma­
trices of affine coordinates WI and W2• Notice also that 
(4.7) could have been written in the form of one rectangular 
matrix Riccati equation6 for the matrix WEC4X3

, W T 

= (Wf,W2 ), however, (4.7) is more convenient in the G2 

context. 
Consider now the homogeneous space G 2 (C)1 

[SL(2,C) ®SL(2,C)]. We have 

dimG2 (C)/[SL(2,C)®SL(2,C)] = 14-6=8. (4.8) 

Thus, four supplementary conditions must be imposed on 
the components of WI and W2 in (4.6). These must be conse­
quences of the specific properties of the group G2 (C), i.e., 
the invariance of the tensor Tof (1.2.12). To see this, let us 
apply an element G = {gij}EG2 (C) to the origin. We have 

gl5 gl6 gl7 

g25 g26 g27 

[f]~Gm~ 
g35 g36 g37 -------
g45 g46 g47 (4.9) 

'i5-;-g-;6--g,;; 

g65 g66 g67 

g75 g76 g77 

We are using the 0(7,C) metric given by the identity 
matric 17 , hence the nonzero components of the tensor Tare 
given by (1.2.12). The invariance conditions (1.2.11) relate 
the first column of ( 4. 9) to the other two: 

(4.10) 

The 0(7,C) conditions (4.5) can be rewritten as 

(4.11 ) 

Thus, only 21 - 7 - 3 = 11 of the 21 homogeneous coordi­
nates are independent. To reduce further, namely to eight 
truly independent quantities, we must, as usual, go over to 
affine coordinates. In doing so, we automatically account for 
the equivalence (X T,Z, Y T) ~ (G [X T,G [Z,G [y T), where 
in the considered case we have Go = 0 (3,C). This will effec­
tively remove three redundant coordinates, or provide three 
needed constraints on the 11 quantities that we have so far 
reduced to. 

Using (4.6), we express 

X= WIY, ZT= WIY, (4.12) 
WI={W ik }, WI={V I,V2,V3}, i,k = 1,2,3. 

Using (4.9), we express X, Z T, and Y in terms of the ele­
ments gab of a G 2 (C) group element. We then eliminate 
ga5 (a = 1, ... ,7) using (4.10). Defining the minors S55' S65' 
andS75 as 

(4.13 ) 

we see that (4.9), (4.10), and (4.12) provide a system of 

Beckers, Hussin, and Winternitz 526 



                                                                                                                                    

four linear homogeneous equations for S55' S65' and S75' 

Since this system must have a nonzero solution, the rank of 
the matrix of the system must be 2. This in tum requires that 
the determinants of four 3 X 3 matrices vanish. The matrix 
elements of these matrices are themselves third-order poly­
nomials in the components Wik and Vi of W, and W2• Thus we 
obtain four nonlinear constraints 

A" (Wik,V j ) = 0, Il = 1, ... ,4, (4.14) 

on the 12 components of the matrices W, and W2, reducing 
the number of independent components to precisely 8, as 
required. We give the determinants A" in the Appendix. 

The G 2 (C)/[SL(2,C) ® SL(2,C)] ODE's with super­
position formulas are thus the matrix Riccati equations 
( 4.7), subject to the following conditions. 

(i) The coefficients R, V, U, m, and n are such that the 
matrixM of (3.10) is an element ofg2(C) for all times t [i.e., 
they satisfy (3.10) and (3.11)]. 

(ii) The matrix elements of W, and W2 satisfy the con­
straints (4.14). These can be imposed at the initial time 
t = to and they will then be satisfied for all times t [as a 
consequence of the above condition (i)]. 

We have not attempted to solve the constraints explicit­
ly: this would involve solving cubic equations and would 
lead to very complicated explicit formulas. The nonlineari­
ties would, in general be irrational, involving square and cu­
bic roots of the dependent variables. 

B. The G~(R)/[SU(2)eSU(2)] and G~C(R)/[SU(2)eSU(2)] 
equations 

The nonlinear ODE's in these two cases are intimately 
related to those obtained in Sec. IV A. 

Consider first the compact case G~(R)/ 
[SU (2) ® SU (2) ]. The metric is again given by the identity 
matrix 17 (see Table III ofI) and the tensor Tis exactly the 
same as in the complex case. The nonlinear ODE's associat­
ed to the action ofG~(R) on G~(R)/[SU(2) ® SU(2)] are 
hence the same equations (4.7) with the same g2 constraints 
on the coefficients R, V, U, m, and n, as above, and the some 
nonlinear constraints (4.14) on the matrices W, (t) and 
W2 (t). The only difference is that both the coefficients in the 
equations, and the matrices of dependent variables are re­
stricted to be real. 

The noncompact case Gfc(R)/[SU(2) ® SU(2)] is 
only slightly different. The appropriate metric is given by the 
matrix 14•3 (see Table IV ofI). We have 

i~J . (4.15 ) 

For the elements of Lie group G2(C), Lie algebra g2(C) and 
the tensor T, we then have 

g' =H-'gH, M' =H-'MH, ( 4.16) 

( 4.17) 
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The conditions (4.10) are not affected by this change, hence 
the constraints (4.14) remain the same as in the complex 
and compact cases. 

The equations themselves are modified in that the ma­
trix M of (4.4) is replaced by (3.12), i.e., 

. T T T 
W, = V+RW,- W,U+mW2 - W,V W,- W,nW2 , 

WJ = nT 
- mW, - WJU - WJVTW, - WJnWJ, (4.18) 

where all entries are real. 

c. The G~C(R)/[SU(1,1)eSU(1,1)] equations 

We shall again make use of the metric given by the ma­
trix 14•3 , The subgroup SU ( 1,1) ® SU ( 1,1) was identified in 
Ref. 1 as the maximal subgroup of Gfc (R) leaving a nonde­
generate three-dimensional subspace with signature 
( + + - ) invariant. In keeping with this fact, and in anal­
ogy with our procedure in the complex case, we choose the 
homogeneous coordinates of the origin in Gfc ( R) / 
[SU(1,l) ® SU(1,I)] to be 

0 0 0 

0 0 0 

1 0 0 

Uo = 0 1 0 ( 4.19) 

0 0 0 

0 0 0 

0 0 

Correspondingly, the homogeneous coordinates of an arbi­
trary point in this space are 

13 g'4 
g24 

g34 

g44 
U'=GUo = = 

g54 

g64 

(4.20) 

The invariance of the tensor T' under the action of Gfc (R) 
allows us to express the first column in terms of the other 
two: 

(4.21) 

in analogy to ( 4.1 0). In order to reduce to the required num­
ber of real coordinates, namely eight, we again introduce 
affine coordinates 
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WI=XIY-I, W2 =X2Y-t, Y=(;r) , detYi=0 

(4.22) 

(notice that in this formalism we have WI' W2ER2X3
). 

Proceeding as in the complex case we can again obtain, 
from (4.20)-(4.22), four nonlinear constraints on 12 com­
ponents of WI and W2• In view of their length we do not 
reproduce them here (they are available from the authors 
upon request). 

The G~(R)/[SU( 1,1) ® SUe 1,1)] equations in homo­
geneous coordinates are 

C 

E 

F ~)GJ (4.23) 

where, in agreement with (3.12), we have 

U\2 + n3), E = (U\2 + n2)/2 
U22 n l 

(4.24) 

Rewriting (4.23) in the affine coordinates (4.22) we obtain 

(4.25) 

Thus (4.25), together with four constraints of the type (4.14) provide the nonlinear ODE's corresponding to the action of 
G~c(R) on the space G~c(R)/[SU (1,1) ® SU (1,1)]. 

V. CONCLUSIONS 

We have shown that nonlinear ordinary differential 
equations with superposition formulas can be associated 
with the exceptional Lie group G2 in a manner quite similar 
to that used for the classical Lie groups. Since G2 is simple 
and since we have only used homogeneous spaces G2IH, 
where H is a maximal subgroup of G 2' the obtained systems 
of equations are all indecomposable.6 

In all cases we have made use of the imbedding of a 
seven-dimensional representation of G2 (C), G~(R), or 
G~C(R) into 0(7,(;),0(7), or 0(4,3), respectively. The 
ODE's for some subgroups H turned out to be special cases 
of 0(7,(;), 0(7), or O( 4,3) equations. For other subgroups 
new features appeared, due to the existence of an invariant 
antisymmetric tensor T. 

A mathematical by-product of our analysis is the con­
struction of quite a few models and coordinate systems for 
various homogeneous spaces for the complex and real forms 
of G 2' These can also be used for other purposes than those of 
the present article. 

The emphasis in this article has been on deriving the 
ODE's themselves. In a forthcoming article we shall present 
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the superposition formulas. This is of interest for both equa­
tions specific to the G2 group, and for those that are restric­
tions of 0 (7) type equations. In the latter case the superposi­
tion formulas for the G2 equations are more efficient than for 
the 0 (7) ones, in that they make use of a smaller number of 
particular solutions to express the general one. 
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APPENDIX: THE CONSTRAINTS FOR THE 
Gz(C)/ [SL(2,c)eSL(2,Q], Gi(R)/[SU(2)e SU(2)], AND 
G~c / [SU(2) e SU(2)] EQUATIONS 

The explicit form of the constraints (4.14) imposed on 
the affine coordinates WI = {Wik }, Wf = {U I,U2,U3} are ob­
tained by requiring that the determinants of all four 3 X 3 
submatrices of the following 4 X 3 matrix should vanish: 
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W II + W22 + W33 + W II (W23W32 - W22W,,) 

+ W'2(W12W" - W"W32) 

+ W"(W,,W22 - W12W23) 

+ (WII WI2 + WI2W22 + W"W32)V3 

- (WIIW" + W 12W23 + W"W,,)V2 

W2' - W12 + V3 + W2' (W23W32 - W22W,,) 

+ W22(W12W" - W"W32 ) 

+ W23 (W"W22 - W12W23 ) 

+ (W2,W12 + 111,2 + W23W32)V3 

- (W2I W" + W22W23 + W23W,,)V2 

W" - W" - V2 + W" (W23W32 - W22W33) 

+ W32(WI2W33 - W"W32 ) 

+ W33 (W13W22 - W12W23 ) 

+ (W"W12 + W 32W22 + W33W32)V3 

- (W"W" + W32W23 + ~3 )V2 

v, - W23 + W 32 + (W23W32 - W22W,,)V, 

+ (W 12W" - W"W32 )V2 

+ (W"W22 - W'2W 23)V3 

+ (V,W12 + V2W22 + V3W32 )V3 

- (V,W" + V2W 23 + V3W,,)V2 

WI2 - W2, - V3 + WII (W2IW" - W23W,,) 

+ W'2(W"W3I - WIIW33 ) 

+ W,,(W IIW23 - W 13W2,) 

+ (WIIW" + W'2W23 + W"W,,)V, 

- (~, + W12W2, + W"W,,)V3 

W II + W22 + w" + W2'(W2,W" - W23W3I ) 

+ W22 (W"W" - WIIW33 ) 

+ W23 (W II W23 - W"W2,) 

+ (W2,W" + W22W23 + W23W,,)V, 

- (W2,WII + W22W2' + W23W 3I)V3 

W32 - W 23 + V, + W3I (W2'W" - W23W,,) 

+ W32 (W"W" - W II W 33 ) 

+ W33(WIIW23 - W"W2,) 

+ (W"W" + W32W23 + ~3 )V, 

- (W3I WII + W32W2' + W"W,,)V3 

V2 + WI3 - W" + (W2,W33 - W3IW23)V, 

+ (W'3W3I - W II W33 )V2 

+ (W IIW 23 - WI3W2,)V3 

+ (V,W" + V2W23 + V3W33)V, 

- (V,W II + V2W 2' + V3W,,)V3 

(1986). 

WI3 - w" + v2 + W II (W22W3I - W 2,W32) 

+ WI2(WIIW32 - W12W3I ) 

+ W,,(W'2W2' - W II W22 ) 

+ (~, + W'2W2' + WI3W,,)V2 

- (wII WI2 + W'2W22 + w"w32 )v, 

W23 - W32 - V, + W2,(W22W3I - W2'W32 ) 

+ W22(WIIW32 - w12w,,) 

+ W23(W'2W2' - W II W22) 

+ (W2,W II + W22W2' + W23W3I )V2 

- (W2,W'2 + 111,2 + W23W 32 )V, 

W II + W22 + W33 + W3I (W22W3I - W2'W32 ) 

+ W32(W II W32 - W'2W3I) 
+ W33 (W12W2, - W IIW22) 

+ (w"w lI + W32W2' + W33W 3I )V2 

- (W3IW'2 + W 32W22 + W33W32 )V, 

V3 + W2' - W12 + (W22W3I - W2,W32 )V, 

+ (W II W32 - w12w,,)v2 

+ (W'2W2I - W II W22)V3 

+ (v,wlI + V2W2' + V3W,,)V2 

- (V,W'2 + V2W22 + V3W32 )V, 
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A system of nonlinear ordinary differential equations allowing a superposition formula can be 
associated with every Lie group-subgroup pair G:>Go. We consider the case when 
G = SL(n + k,C) and Go = P(k) is a maximal parabolic subgroup of G, leaving a k­
dimensional vector space invariant (l<;h;;n). The nonlinear ordinary differential equations 
(ODE's) in this case are rectangular matrix Riccati equations for a matrix W(t)ECnxk

• The 
special case n = rk (n,r,kEN) is considered and a superposition formula is obtained, expressing 
the general solution in terms of r + 3 particular solutions for r>2, k>2. For r = 1 (square 
matrix Riccati equations) five solutions are needed. for r = n (projective Riccati equations) 
the required number is n + 2. 

I. INTRODUCTION 

Superposition formulas for ordinary differential equa­
tions (ODE's) are based on the following theorem, due to 
Lie and Scheffers. 1 

The general solution x (t) of the system of equations 

dxl' -'1' -jl'() - 1 -=x - x,t, f.i - , .... n, 
dt 

(1.1 ) 

can be expressed as a function of m particular solutions and n 
significant constants 

x(t) = S (Xl (t), .... Xm (t),cl, .... c,,) (1.2) 

if and only if the right-hand side of ( 1.1) has the form 
r 

jl'(x,t) = I Zj (t)sj(X). ( 1.3) 
j=1 

and the differential operators 

Aj= ± sj(X)~, j= 1 .... ,r 
I' = I axl' 

(1.4) 

generate a Lie algebra of finite dimensions r under commuta­
tion. 

We shall call expression (1.2) a "superposition formu­
la" and the solutions Xl (I)""'Xm (I) a "fundamental set of 
solutions." Their number m and the independence condi­
tions which they must satisfy have to be established in each 
specific case. 

Given an arbitrary Lie group G and a Lie subgroup 
Go C G, we can always, at least in principle, construct the 
homogeneous space M - G / Go. The infinitesimal action of G 
on M (in some coordinates) will give us the vector fields Xj 
of (1.4) and from these we can read off the ODE's (1.1). It 
has recently been shown2 that if the Lie algebras Land Lo, 
corresponding to the Lie groups G and Go, respectively, form 
a transitive primitive Lie algebra3

•
4 then the corresponding 

system of ODE's with a superposition formula will he inde­
composable. We recall here that "indecomposable" in this 
context means that it is not possible to decouple a proper 
subsystem of equations from (1.1) that will have its own 
superposition formula. 

.) On leave of absence from Departamento de Flsica Te6rica, Facultad de 
Ciencias, Universidad de Valladolid, Valladolid, Spain. 

b) Present address: Departamento de Metodos Matematicos de la Fisica, 
Facultad de Fisicas, Universidad Complutense, Madrid, Spain. 

Restricting ourselves to the indecomposable case, when 
(L,Lo) do form a transitive primitive Lie algebra, we note 
that the following possibilities occur2. 

( 1) L is not semisimple. The ODE's in this case are 
linear (in general inhomogeneous). 

(2) L is semisimple, but not simple. The equations are, a 
priori, linear, but the dependent variables are subject to non­
linear constraints. 

(3) L is simple and Lo is a maximal reductive subalge­
bra. Examples of such ODE's have recently been studied,S 
corresponding to the pairs sl(n,C) ::Jo(n,C) and sl(2n,C) 
::J sp(2n,C). The equations have rational but nonpolynomial 
nonlinearities. 

( 4) L is simple and Lo is a maximal parabolic subalge­
bra.6-9 The equations in this case have polynomial nonlin­
earities. 

This paper is devoted to the last of the above cases. In 
particular, the Lie algebraL of Lie's theorem is chosen to be 
sl(N,C) and the subalgebra Lo of vector fields vanishing at 
the origin is a maximal parabolic subalgebra p(k) of 
sl(N,C). The corresponding maximal parabolic subgroup 
P(k) CSL(N,C) leaves a k-dimensional vector space invar­
iant (1<;k<;[N /2]). 

It has already been shown that this case leads to interest­
ing ODE's, namely rectangular matrix Riccati equations 
(MRE's) for a nXk-dimensional real or complex matrix 
W(t). 

MRE's occur in many applications; e.g., as Backlund 
transformations in the study of integrable systems, as special 
cases of Volterra-Lotke equations in population dynamics, 
in optimal control theory and elsewhere. 10 

Explicit superposition formulas have so far been ob­
tained in two special cases only. The first is the case 
k = 1, when the matrix reduces to a single column. The equa­
tions were called projective Riccati equations6

•
7 and the su­

perposition formula involves n + 2 particular solutions. The 
other case is k = n, i.e., square MRE's. The superposition 
formula requires just five particular solutions (for any 
n>2).8 

It is convenient to relate the dimensions nand k of Wby 
the formula 

n = rk + I, O<;I<;k - 1, n,r,k,IEN. ( 1.5) 
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In this paper we concentrate on the simplest case, when I = 0 
in (1.5), i.e., n = rk. We take r>2, k>2 since r = 1 corre­
sponds to square MRE's and k = 1 to projective Riccati 
equations, both of which have already been treated.6-8 The 
case I =1= 0 is more complicated and has so far not been treat­
ed. 

The general form of the MRE and of its solution is pre­
sented in Sec. II. The properties of a fundamental set of solu­
tions are established in Sec. III, where we also present a 
"standard" form of the initial conditions. In Sec. IV we ob­
tain the superposition formula and also show how r particu­
lar solutions can be used to linearize the MRE and to partly 
decouple it. 

II. THE RECTANGULAR MATRIX RICCATI EQUATIONS 

By definition, a maximal parabolic subalgebra p of a 
complex simple Lie algebra L is a subalgebra peL that is 
maximally contained in L and contains the Borel subalge­
bra. II A maximal parabolic subalgebra p (k) of sl (n + k,C) 
can be characterized by the fact that it is the largest subalge­
bra that leaves a k-dimensional subspace of CN invariant 
(N = n + k, l<k<N - 1).12 

We have 

(2.1) 

whereGk (cn + k) is the Grassmannian13 ofk planes in cn + k. 

Homogeneous coordinates on this space are given by the 
matrix elements of the matrix 

(~), XECnx
\ YECk X\ rank(~) = k. (2.2) 

Two matrices of the form (2.2) describe the same point if 
they satisfy 

(2.3) 

for some nonsingular matrix G. In these (redundant) co­
ordinates the action of SL(n + k,C) is linear and the asso­
ciated ODE's are 

(2.4 ) 

For points satisfying det Y =1=0 we can introduce affine co­
ordinates on Gk(Cn + k), thus removing the redundancy 
(2.3), 

(2.5) 

The action ofSL(n + k,C) in affine coordinates is a matrix 
fractional linear one; the vector fields representing the infini­
tesimal action are 

A a 
A!'v =--, 

aw!'v 

A k a 
C!'!'. = L W!',v -a-- , 

v= I W!'V 

A n k a 
Dv!, = L L WavWp.{J -a- , 

a=lp=1 WaP 

1 <J-l,J1:<n, 1 <v,v'<k, 

where w!'v are the matrix elements of W. 
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(2.6) 

The corresponding system of ODE's are the rectangular 
MRE's mentioned in the Introduction8: 

W=A + WB+ CW+ WDW, (2.7) 

where A,oo.,D are given matrix functions oftime t. 
The right-hand side of (2.7) represents a curve in the 

Lie algebra sl(n + k,C). The general solution of (2.7) is giv­
en by the corresponding action ofSL(n + k,C), 

W(t) = [G l1 (t) U + GI2 (t)] [G21 (t) U + G22 (1» -I, 
(2.8) 

where UECnxk is a constant matrix, specifying the initial 
conditions for W(t) and 

(2.9) 

is a curve in SL(n + k,C), to be determined in terms of a 
sufficient number of particular solutions Wj (t) of (2.7). 

With no loss of generality we can assume n>k, since the 
case n < k can be reduced to the considered one by transpos­
ing the MRE. It is convenient to put n = rk + I as in (1.5). 
Here we restrict ourselves to I = O. Moreover, r = 1 corre­
sponds to the square MRE, k = 1 to the projective Riccati 
equations. Both have been treated earlier. 6-8 

III. A FUNDAMENTAL SET OF SOLUTIONS 

Let us assume that m solutions of the MRE (2.7) are 
known. They provide m' n' k equations for the matrix ele­
ments ofG(t), when substituted into (2.8). This provides a 
lower limit on m, namely, 

mnk>(n + k)2 - 1, (3.1) 

since (n + k) 2 - 1 is the number of independent matrix ele­
ments in G(t)ESL(n + k,C). According to the general the­
ory,7.8 a set of solutions WI (t),oo., Wm (1) of the considered 
MRE will suffice, at least locally, to determine G(t) if any 
subgroupofSL(n + k,C) leaving them initial values Wj (to) 
on the product of m copies of the Grassmannian Gk (Cn + k) 

invariant is contained in the center ofSL(n + k,C). We shall 
construct such a fundamental set of solutions explicitly and 
then show that a generically chosen set of m solutions can be 
transformed into this "standard set." 

Let us now restrict to the case (1.5) with I = 0, i.e., put 

n = rk, r>2, k>2. (3.2) 

A point on Gk (C + k) can be given as 

(3.3 ) 

i= 1,oo.,r, 

in homogeneous or affine coordinates, respectively. Corre­
spondingly, we shall write the elements of GESL(n + k,C) 
of (2.9) as 
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(3.4) 

Mij,N;.Pj,QeCk xk, i,j = 1, ... ,r. 

Theorem 1: The following standard set of r + 3 initial 
conditions for solutions of the MRE (2.7), given in homo­
geneous coordinates, has only the center ofSL(n + k,C) as 
its isotropy group: 

Ik 0 0 

0 0 

{sf,···,S;+3} = , ... , 
0 0 

0 0 0 

0 Ik Al 

0 Ik A2 

(3.5) 

0 Ik Ar 

Ik Ik Ik 

The blocks AjeCk xk are such that one of them, say AI, satis­
fies Al = diag(A I.A2, ... .Ak)' with AjeC, Aj #Aj for i#j and 

I 

(iii) det(~1 (3.9) 

(iv) the matrices 

T j =SjRj(Sr+IRr+I)-leCkXk, i= 1,2, (3.10) 

have no common nontrivial irreducible eigenspaces and one 
ofthem, say T I , has k distinct eigenvalues, where Sj and R j 

are defined by 

(
UI 

U== Ik (3.11 ) 

\ -I == U-I(U~:2). : I == U-{U~:3). 
( 

(S )-1 ) (R ) 
(Sr+ I) Rr+ I 

(3.12) 

Then, there exists a transformation GeSL(n + k,C) trans­
forming the set 

{sJ={(i)}, i=I, ... ,r+3, (3.13) 

into the standard set 5 f of (3.5). 
Proof: Put 
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another one, say A2, has no irreducible invariant subspaces 
in common with A I. 

Proof: A simple calculation shows that the conditions 
Gsf-sf for i = 1, ... ,r + 1, imply Mij = 0 for i#j, N j = 0, 
Pj = 0 in (3.4). Further, imposing GS;+2 -S~+2 we ob­
tain 

Mll =M22 = ... =Mrr = Q, det Q #0. 

The last condition Gs; + 3 - 5; + 3 implies 

QAjQ -I = A;. i = 1, ... ,r, 
and in view of the conditions on Al and A2 we find Q = AI, 
A n + k = 1. Q.E.D. 

Notice that for n = rk relation (3.1) yields 

m>r+ 3 - [1- (l/r)(l-l/k2)], 

so that the relation 

m=r+3 (3.6) 

actually saturates (3.1). 
Theorem 2: Given a set of r + 3 initial conditions for 

solutions of the MRE (2.7) in affine coordinates 
{ U} If'rkXk ·f· h d·· U I ,.·., r + 3 C,,-, satls ymg t e con ItlOns 

(3.7) 

(3.8) 

where U -, exists in view of (3.7). By construction, we have 

GSj = rsf-sf, i= 1, ... ,r+ 1. 

Moreover 

where r j = rr+2Sj. The existence of SjeGL(k,C) and 
rr+2eGL(k,C) follows from (3.8). Finally we have 

with 

Aj = rr+2 [SjRjR r~\S r-+\ ] rr-+12 

= rr+ 2 Tjrr~12' i = 1, ... ,r + 1. 

The condition detRr+ I #0 is assured by (3.9). Condition 
(iv) finally assures that Al and A2 have the properties re­
quired in Theorem 1. Q.E.D. 

Notice that sets of r + 3 initial conditions not satisfying 
conditions (i)-(iv) form a set of measure zero in all (r + 3) 
tuplets of matrices in cr(k+ l)Xk. 
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IV. THE SUPERPOSITION FORMULA AND 
LINEARIZATION OF THE MRE 

A. Reconstruction of the group element 

Let us now tum formula (2.8) into a superposition for­
mula by reconstructing the group element G(t) in (2.9) in 
terms of r + 3 particular solutions. In view of Theorem 2 we 
can restrict ourselves to the case when the initial conditions 
for our solutions are given, in homogeneous coordinates, by 
the standard set 5 f of (3.5). 

We parametrize the group element G (t) as in (2.9) and 
(3.4). Writing (2.8) for the first r+ 1 standard solutions 
Wj (t) we obtain 

Mij = ~jPj' N j = Wr+I,jQ, i,j= 1, ... ,r, (4.1) 

where we put 

(~I (t») 
~(t) = : , j= 1, ... ,r+ 3. 

~r(t) 

(4.2) 

Using Wr + 2 (t) we obtain a system of inhomogeneous linear 
equations for P j in terms of the known solutions ~ (t) 

(j = 1, ... ,r + 2) and the still unknown matrix Q(t)ECk 
Xk: 

w(D~ (W,+, - W,+,)Q, 

__ (Wr+2'1 - Wl1,.:.,Wr+ 2,1 - )l'rl) 
W- : . 

Wr+ 2,r - Wlr ,· .. , Wr+ 2,r - Wrr 

The solution exists and is unique as long as 

det W#O. 

where 

'" (Wr+ 3,1 - Wl1 

W= : 
Wr+ 3,r - Wlr 

and 

(1:) 
is defined in Theorem 1. 

a 

o 

o 

Wr+ 3
'\ - Wrl) . , 

Wr+ 3•r - Wrr 
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(4.3) 

(4.4) 

Using (4.5) and 

G} jV-'(W,+, - W,+,), 

we can write the following equations: 

QAjQ-I = (Fj)-IHj, i= 1, ... ,r, (4.6) 

which determine Q. Note that the matricesFj-IHj are con­
jugated to constant matrices. The existence of W -I is as­
sured by the conditions imposed in Theorem 2. For the same 
reasons F j- I exists, i = 1, ... ,r [Theorem 2, (ii)]. 

B. linearization of the matrix Riccati equation 

An alternative approach to the solution ofMRE (2.7) is 
that of using r + 2 particular solutions (belonging to a fun­
damental set of solutions) to transform this equation into a 
decoupled system of r identical linear homogeneous matrix 
equations, expressed in the form of commutators. The 
(r + 3 )rd solution can then be used to express the general 
solution of this decoupled linear system explicitly. 

To obtain this system we perform a series of invertible 
transformations of the dependent variables. Most of our deli­
berations will make use of homogeneous coordinates. Thus 
the MRE (2.7) will, at least temporarily, be replaced by the 
associated linear equations (2.4), which we rewrite as 

~: ). 
-Dr -B 

(4.7) 

Each block in <I> belongs to Ck 
Xk. 

We first use a particular solution W(i) of the MRE 
(2.7) to define an invertible transformation 

(4.8) 

with 

9'~(i 
0 0 

-7m
} 

0 0 
. det ()I = ( - 1 )'k . . . 
0 I - W(1)r 

(4.9) 

The transformed variables satisfy a simpler equation, name­
ly, 

(~ I) = <I>(I)(X I) 
yl yl' (4.10) 

with 

<1>(1) = [()I<I> + Od() I-I. (4.11 ) 

More explicitly, we have 

(4.12) 
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In affine coordinates we denote 

Wi = 8
1
(W) =XI(yl)-1 

= ( WI _1 W(1)1 )( W _ W )-1 (4.13) 
: r (1)r , 

Wr _ 1 - W(1)r-1 

and the transformation exists for all W such that det 
(Wr - W(1)r );fO. The transformed quantity W I satisfies a 
MRE ofthe form (2.7) with coefficients determined by the 
entries in $(1). To simplify further we use a second solution, 
say W(2l' transform it into W~2) = 8 I (W(2» as in (4.13) 
and define 

r 
cp~~ I,r+ I + L cp(l) Wi r+la (2)a 0 • 

a=2 

$(2) = 
0 CP: I • 
0 0 • 

o o • 

(the stars denote quantities that are, in general, nonvanish­
ing). 

In a similar manner we use the first r + 1 particular 
solutions to construct the transformation 

( 4.16) 

with 

o ~(~ 
0 0 

I ) 0 0 j-I 
- W(j)1 

J : . , ... 
0 1 Wj-I - (j)r 

j= 1, ... ,r+ 1, ( 4.17) 

and $(r+ I) diagonal 

O W r+1 [wr+1 ]-1 (r+ 2)1 (r+ 2)2 
o 

• 

• 
• 

• 

(~:) = 82(~:)' 

o'~(f 
0 0 -f~"J 0 0 

1 - W(2)r 

The transformed quantity 

W 2 =82(W I
) = 82 [8I (W)] 

(4.14 ) 

will satisfy a MRE with coefficients determined by the ma­
trix 

(4.15) 

(
CP~~ I r+ I ) cp(r) 

$(r+ I) = 11 (4.18) 

• cp~;> . 

If Wsatisfies the MRE (2.7) then the transformed quantity 
W r + I satisfies the linear decoupled system 

W· r+1 wr+IB-+C- wr+1 . 1 
j = i ii j , 1= , ... ,7. ( 4.19) 

So far, each component W~+ I satisfies a different equation. 
To simplify further we use one more solution, W(r + 2) , and 
construct a different transformation, namely, 

( 4.20) 

with 

o 

o o W r+1 [wr+1 ]-1 
(r+2)1 (r+2)3 

o 
1 

o 
o 

o 
o 

The transformed quantities W ~ + 2 = X r + 2 ( Y r + 2) - I satis­
fy 

W· r+2 [-C wr+2] . - 1 ; = , i ,1- , ... ,7, (4.22) 

i.e., each component satisfies the same equation (4.22) (the 
known matrix C does not depend on the label i) and the 
right-hand side has the form of a commutator. Given one 
more solution, W( r + 3) , we use all the previous ones to trans­
form it into W~;\\l' satisfying (4.22). The general solution 
of ( 4.22) can be written as 
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W r+1 [wr+1 ]-1 
(r+2)1 (r+2)r 

o 
o 

o 

o 
(4.21 ) 

(4.23) 

where UjEC} xk is a constant matrix. Choosing the initial 
conditions for W(r+ 3) such that we have 
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where Al and A2 have no common nontrivial irreducible 
eigenspaces and Al is diagonalizable with all eigenvalues dif­
ferent, we can completely reconstruct G(t). 

Without proof we state that if the r + 3 solutions used 
above satisfy the conditions of Theorem 2, then all the trans­
formations (}i (i = 1, ... ,r + 2) exist and are invertible. For a 
general r the explicit formulas are quite complicated and it is 
best to follow the described procedure as a recursive algo­
rithm. 

v. CONCLUSIONS 

The problem posed in the Introduction, namely that of 
obtaining the general solution of a rectangular MRE for a 
matrix WeCnxk with n = rk (r;;;.2, k;;;.2) in terms of r + 3 
particular solutions has been solved. If r + 3 particular solu­
tions, satisfying the conditions discussed in Sec. III, are 
known analytically, then the superposition formula of Sec. 
IV amounts to a general analytical solution. If the required 
particular solutions are not available, then the superposition 
formula, or the linearization technique, can be viewed as a 
numerical method. Thus, a fundamental set of r + 3 particu­
lar solutions can be obtained numerically, starting from well 
chosen initial conditions, such that the solutions have no 
singularities in the considered region of t. Further solutions, 
corresponding to other initial conditions, can then be ob­
tained via the superposition formula. 

Such a procedure has so far been implemented for 
square MRE's only.14.15 It is particularly efficient when 
large matrices are involved, when we are interested in solu­
tions that have singularities for real values of t, or when a 
large number of solutions, corresponding to different initial 
values is required. 

Let us mention that the results of Sec. IV provide insight 
into the properties of the solution set of rectangular MRE. In 
particular they imply that the MRE (2.7) has the Painleve 
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property: the only moving singularities that can develop in 
the solutions are poles. 

The reason why we restricted ourselves to the case 
n = rk in this paper is that this allowed us to present all 
formulas and arguments in terms of the matrices W; (t) of 
(3.3). More generally, for n = rk + I, 1<I<r - 1, we have 
found it necessary to proceed differently and to argue in 
terms of the matrix elements of Wet) directly. 
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A mechanism of smoothing due to evaporation condensation of the roughly perturbed surface 
of solid is formulated by Mullins [W. W. Mullins, J. Appl. Phys. 28, 333 (1957); 30, 77 
( 1959)] as a certain Cauchy problem for a nonlinear parabolic equation which describes the 
evolution of the profile of the surface. In the preceding paper [A. Kitada, J. Math. Phys. 27, 
1391 (1986)], through the careful investigations of the Cauchy problem, it was demonstrated 
that each peak in the initial surface did not increase in height with time. In the present paper, 
by slightly limiting the set of functions to which the classical solutions of the Cauchy problem 
belong, it is demonstrated that each peak height decreases with time in the strict sense. 

I. INTRODUCTION 

In the preceding paper,1 we proposed the relation 

U(X,t) 0;;; a (xo), (X,t)EC - {(xo,O)}, (1) 

which estimates the variation with time, due to evaporation 
condensation, in height of a peak in a roughly perturbed 
surface of solid. Here, U (x,t) is a classical solution2 of the 
Cauchy problem (P) (Mullins' model3

) in the real line R\ 
Ut = ux."Jl + Ux 2, (x,t)ERI X (0,00), 

U(X,O) = a(x), xER\ 
(P) 

describing the evolution of the profile of the surface of solid; 
and the subset C of the real plane R2, which is a graph of a 
differentiable function g(t) defined on some closed interval 
[O,t, ] in R\ forms a part of a trajectory in the x,t plane 
drawn by the migration with time of a peak top initially 
located at the point (xo'O). That is, the curve C is character­
ized by 

C={(x,t); x=g(t) (xo=g(O»), tE[O,t, n, (2a) 

ux(x,t) =0, uxx(x,t) <0, (X,t)EC. (2b) 

In the present paper, by slightly limiting the set offunc-
tion to which the classical solutions of the Cauchy problem 
(P) belong, we show that the relation ( 1) holds without sign 
of equality, that is, the peak height decreases with time in the 
strict sense. It is what the Mullins model has desired for the 
estimate without sign of equality to hold. 

II. AN ESTIMATE DESCRIBING THE STRICTLY 
MONOTONE DECREASE OF THE PEAK HEIGHT 

By demonstrating the more general estimate 

U(X2,t2) <U(XI,t l ), (Xot;)EC (i= 1,2), tl <t2' (3) 

we will show the validities of the relation ( 1) without sign of 
equality. 

The following theorem guarantees this strictly mono­
tone decrease with time of the peak height. 

Theorem: Consider a Cauchy problem (P*) 

Ut =F(ux'uxx )' (x,t)ER1X(0,00), 

u(x,O) = a(x), XERI. 

Let the conditions 

FEC 2(R2) (Ref. 4), 

Fq (p,q) > ° (Ref. 5), 

F(O,O) = ° 

(P*) 

(C) 

hold for the right-hand side F(p,q) of the nonlinear equation 
in (P*). Suppose, for such a classical solution U (x,t) of (P*) 
that UEC 3(R 1 X (0,00 »), there exists a set C characterized by 
(2a) and (2b). Then the relation (3) holds for such a solu­
tion of (P*). 

First of all, from our discussions in the preceding pa­
per,1 it is evident6 that at least the relation (3'), i.e., the 
relation (3) with sign of equality, 

U(X2,t2)o;;;U(XI,tl ) (Xot;)EC (i= 1,2), tl <t2' (3') 

must hold even for the ordinary classical solution of (P*). 
In order to demonstrate the above theorem, we prepare 

a well-known lemma due to Nirenberg 7 for a linear parabolic 
equation. 

Lemma: Let D be a bounded connected open set in 
RIX (0,00) and let the coefficients a(x,t) and b(x,t) of a 
linear equation 

a(x,t)uxx + b(x,t)ux - Ut = 0, (x,t)ERI X (0,00) (4) 

obey the conditions (5) in D 

la(x,t),b(x,t) I < 00, a(x,t»fL, (5) 

where fL is some positive constant. If there exists a constant 
Msuch that 

u(x,t)o;;;M, (x,t)ED, 

and there exists a point sED such that 

u(s) <M, 

then the relation 
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u(y) <M 

holds. Here, y is a horizontal line segment (line segment 
which is parallel to the x axis) containing the point S as an 
internal point and is itself contained in D. 

Proolol Theorem: As is pointed out in our preceding 
paper, I the solution of (P*) satisfies the following homogen­
ous linear equation under the conditions (C): 

u"" f Fq(hu", (x,t) ,hu",,,, (x,t) jdh 

+ u'" f Fp(hu", (x,t),huxx (x,t»)dh - U t = 0. (6) 

If the coefficients in (6) are continuous in R I X (0,00 ), the 
first condition in (5) is well satisfied in any bounded open 
connected set D whose closure is contained in the set 
RI X (0,00) because of the compactness of the closure of D. 
Then the second condition in (5) is also satisfied in any com­
pact setinRI X (0,00) because the functionFq is everywhere 
positive as is indicated in (C). As the solution u (x,t) is as­
sumed to belong to the set of function e 3(R I X (0, 00 »), the 
difference between the value of the function a(x,t) at the 
point (x*,t *) and the value at any point (x,t) which is close 
enough to the point (x*,t *) is estimated as follows with some 
positive constant L, under the first condition in (C): 

la(x,t) -a(x*,t*)1 

<f IFq(hu", (x,t),hu"" (x,t») 

- Fq(hu", (x*,t *),huxx (x*,t *»)Idh 

= f h IFqp (r(h),1](h)j{u",,,, (O,;)(x - x*) 

+ U"'t (0,;) (t - t *)} 

+ F qq (r(h),1](h»){u",,,,, (0 ',; ')(x - x*) 

+ Uxxt (0 ',;')(t - t *)}Idh 

<L(lx-x*1 + It-t*I), 

wherer(h) is some value betweenhu", (x,t) andhu", (x*,t *), 

1](h) between hu"" (x,t) and hu"" (x*,t *),0,0' between x 
and x*, and;, ; , between t and t *. As the same is true for the 
coefficient b(x,t), all the coefficients in (6) are continuous 
at any point in consideration. Since all the requirements for 
the coefficients of linear equation are satisfied, we can apply 
the Lemma to the solution of the linear equation (6), that is, 
to the solution in e 3(R I X (0,00 ») of the problem (P*). 

Let (Xl,t l ) and (xz,tz) (tl < tz) be two arbitrary points 
in the set e - ({(xo,D)}U{(g(tf ),tf I}). Since u'" (x,t) and 
u"'''' (x,t) are continuous and the relations u'" (xz,tz) = ° and 
u"'''' (xz,tz) < ° hold, we can define a continuous implicit 
function I (t) such that u'" (j (t),t ) = ° on some interval in 
the t axis which contains the point t z as an internal point. It is 
clear from the elementary proof of the implicit function 
theorem that there exists an open rectangle 11 
= (x',x") X (t',t") such thatu", (x,t) >Oatanypointofthe 

set 
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{(x,t); x' <x < l(t), te(t ',t")} 

and u'" (x,t) <0 at any point of the set 

{(x,t); I (t) <x <x", te(t ',t" )}. 

Here, we may take t' and t " as t I < t ' < tz < t ". Then, in the 
open set 11, the estimate 

U(x,t)< sup u(j(t),t) 
(t',t") 

holds. Now, since the implicit function is uniquely deter­
mined in 11 as is well known in the elementary differential 
calculus, the function I (t) must be equal to the function 
g(t) given in (2a) on the open interval (t ',t" ).8 Thus taking 
the estimate (3') into account, we obtain 

U(X,t)< sup u(g(t),t)<U(XI,tl ), (x,t)e11. 
(t ',t") 

Ifwe take the open set 11 as the setD and the value U(XI,tl ) as 
the constant M in the Lemma, we obtain the fact that the 
function u(x,t) cannot have the value U(XI,tl ) at the point 
(xz,tz). Therefore we get the following relation: 

u(xz,tz) <u(Xl!t l ), 

(x;,t; )ee - ({(xo,O)}U{(g(tf),tf )}) 

(i = 1,2), tl < tz. 

The relation (3') guarantees that u(xo,O) is not less than the 
value of u (x,t) at any point in e - {(xo,O)} and the relation 
u(g(tf ),tf )<u(x,t) must be valid at any point (x,t) in 
e - {(g(tf ),tf )}. Therefore we can concludingly obtain the 
desired estimate (3) on the whole trajectory e. D 

Since the right-hand sideF(p,q) = q/l + pZ of the non­
linear mass transport equation satisfies all the conditions 
required in (C), the relation (3), that is, the relation (1) 
without sign of equality, holds for the classical solution 
u(x,t) in e 3(RIX (0,00») of the problem (P). 

·A. Kitada, J. Math. Phys. 27, 1391 (1986). 
20. A. Ladyzenskaja, V. A. Solonikov, and N. N. Ural'ceva, Linear and 
Quasilinear Equations of Parabolic Type (Am. Math. Soc., Providence, RI, 
1968), p. 12. 

3W. W. Mullins, J. App\. Phys. 28, 333 (1957); 30, 77 (1959). 
"The symbol cm({l} denotes the set of all functions defined on {l whose 
partial derivatives of order <;m are a\I continuous. 

sThe partial derivative aF / aq is abbreviated as F •. In the same manner, for 

example, we write a /ap(F.} as Fop' 
6Por the point (x.,t.}eC - {(g(tf },tf I}, the estimate (5}in the preceding 
paper,· can be easily generalized to 

U(x*,t*}<;max{ sup [j(x,t}expA(t* - t}/A], 
C' - {(x"t,)} 

u(x.,t.}expA(t* - t. )}, 

where C' = {(x,t}eC; t.<;t<;tf } and (x*,t*}eC' - {(x.,t.}}. 

7L. Nirenberg, Commun. Pure App\. Math. 6,167 (1956). 
B-fherefore no crossing of the two different trajectories takes place. 
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The evolution equation u, = Uxxx + 3(uxx u2 + 3u;u) + 3uxu4, U = u(x,t), is integrable; it can 
be (exactly) linearized by an appropriate change of (dependent) variable. Hence several 
explicit solutions of this partial differential equation can be exhibited; some of them display a 
remarkable solitronic phenomenology. 

I. INTRODUCTION 

This paper is devoted to a study of the evolution partial 
differential equation (PDE) 

u, = Uxxx + 3(uxx u2 + 3u;u) + 3uxu4. (1.1) 

Here, and throughout this paper, u=u(x,t). This equation 
can be linearized by an appropriate change of dependent 
variable; hence it is integrable, and indeed several of its solu­
tions can be explicitly exhibited. 

Many other nonlinear PDE's that can also be linearized 
by appropriate changes of variables are known. A classic 
example is Burger's equation, I 

u, = Uxx + uxu, 

together with a few of its variants, for instance, 

u, = uxx u2 + 1, 

u, = uxx u2 + u2
, 

U, = uxx u2 + u;. 

( 1.2) 

( 1.2') 

( 1.2" ) 

( 1.3'") 

These are all second-order PDE's of parabolic type (with 
one dependent, and two independent, variables, as are all the 
PDE's mentioned in this paper). 

Another integrable PDE of second order and of para­
bolic type reads 

u, = (uxxlu;)/I(u) +uxJ;(u) +/3(U). (1.3) 

Here, as in all the equations of this section, the functionslm 

are arbitrary (they could generally depend on I, in addition 
to the argument shown explicitly, without spoiling the inte­
grability). A detailed analysis of this equation, and of some 
of those listed above and below, shall perhaps be published 
elsewhere. 

A second-order PDE of hyperbolic type that is also inte­
grable by quadratures reads2 

ux,=uxxu+/(ux )' (1.4) 

It is a special case of the following equation of third order, 
which is also integrable: 

ux, = (uxxxlu~ )/1 (ux ) + Uxx J;(ux)u 

( 1.5) 

Many other evolution equations that are also integrable 
by quadratures can be manufactured, such as the following 
ones: 

a) For the academic years 1983-1984, 1984-1985 and 1985-1986. 
b) Permanent address. 

u, = (uxxxlu!x)/I(Ux ) + (lIuxx )J;(ux ) 

+ h(ux)u + 14(Ux )' (1.6) 

u, = [(uxxxlu!) - 3 (u;Ju! ) VI (u) 

+ (uxxlu; )J;(u) + 13(U), (1.7) 

u, = [(uxxxlu!) -£(u~/u!)]/I(u) 

+ !(uxxlu; )/; (u) + 12(U), (1.8) 

u, = uxxx u3 + cuxx uxu2, C = 3 orc =~. (1.9) 

Note that, for c = 3, the last equation can be recast, via the 
change of variable u = - (2)1/3V-I, into the form 

( 1.9') 

while for c = 0 the PDE (1.9), which in this case cannot, of 
course, be integrated by quadratures, can be transformed, 
via the change of variable v = - (2) 1/3U-2, into the Harry 
Dym equation, 

v, = (v- 1I2 )xxx' (1.9") 

As is well known (see, for instance, Ref. 3, p. 29Off), this 
PDE can be reduced, by a nontrivial change of dependent 
and independent variables, to the Korteweg-de Vries equa­
tion. 

The motivation to focus in this paper on the evolution 
equation (1.1) rests on its resemblance to the Korteweg-de 
Vries and modified Korteweg-de Vries equations, on the 
simplicity of the linearizing transformation (see Sec. III), 
and on the remarkable solitronic (rather than solitonic; for 
this terminology see Ref. 3, p. 132ft") phenomenology dis­
played by some of its solutions (see Sec. V); indeed (1.1) 
supports kinklike solitrons of three different kinds, as well as 
a periodic traveling wave solution and semi-infinite traveling 
wave solutions; and explicit solutions can be exhibited that 
display inelastic collisions of these objects. 

II. PRELIMINARIES 

The nonlinear evolution equation (1.1) is clearly invar­
iant under translations of the time variable t and the space 
variable x; moreover, a term cUx could be added in the rhs by 
the (Galileian) change of variable x-x' = x + ct. Under 
the rescaling transformation 

u(x,t)=au'(x',I'), x'=bx, t'=CI, 

the PDE (1.1) goes into 

(2.1 ) 
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u' = Au' + 3B(u' U,2 + 3U,2U') 
t' X'X'X' x'x' x' 

+ 3B2U' U,4 A = b 3/c B = a2/b· (2.2) x' , , , 

in particular it is invariant under the transformation 

u(x,t)=au'(x',t'), x'=a2x, t'=a6
/. (2.3) 

Two special cases of this transformation are worth noticing: 

u(x,t) = - u'(x,t) (a = - 1), (2.3') 

u(X,t) = iu'( - x, - t) (a = i). (2.3") 

In this paper, however, attention will be generally confined 
to real (and nonsingular) solutions; note that, in such a con­
text, ( 1.1) is not invariant under time and/or space reversal. 

Other avatars of the PDE (Ll) may be obtained by 
changes of variables (see also Sec. III). For instance 

w(x,t) = u2(x,t), (2.4a) 

wt = (Wo: - ~w;/w + 3wxw + w3 )x, (2.4b) 

and 

Ux (x,t) = w(x,t) = u2(x,t), (2.5a) 

Ut = Uxxx - ~U~/Ux + 3Uxx Ux + U!. (2.5b) 

Clearly the PDE (Ll) possesses traveling wave solu-
tions 

u(X,t) =g(x - Vt), 

- Vg' =g'" + 3(g"g + 3g,2g ) + 3g'g4. 

(2.6a) 

(2.6b) 

This ordinary differential equation (ODE) can be easily in­
tegrated once, after mUltiplication by g. The fact that it can 
be explicitly integrated two more times is less obvious (see 
Appendix A). The solutions of type (2.6) of (1.1) that rep­
resent kinklike solitrons or periodic traveling waves are dis­
cussed below (see Sec. V and Appendix A). 

The nonlinear PDE ( 1.1) also possesses similarity solu­
tions of the following type: 

u(x,t) = a(t)f[b(t)x], 

a(t) = [(t- to)/e]-1/6, 

(2.7a) 

(2.7b) 

b(t) = a2(t) = [(t - to)/e] -1/3, (2.7c) 

2y/, + f + 6c[/''' + 3(1" f2 + 3/,2 f) + 3/, f4] = o. 
(2.7d) 

Again, it is clear that the ODE (2.7d) can be integrated 
once; less trivial is the possibility to integrate it two more 
times (see Appendix B). 

III. SOLUTION BY LINEARIZATION 

Let v(x,t) satisfy the linear PDE 

Vt (X,f) = Vxxx (x,t), 

and set 

u(x,t) = v(x,t)/[2V(x,t)] 1/2 

with 
Vx(x,t) = [V(X,t)]2 

and 

Vt (x,t) = 2vxx (x,t)v(x,t) - [vx (x,f)] 2. 

(3.1 ) 

(3.2) 

(3.3a) 

(3.3b) 

It is then easily seen that u(x,t) satisfies the nonlinear PDE 
(1.1). Note the consistency of (3.3a) and (3.3b) with (3.1). 
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Note that (3.3a) and (3.3b) imply that V(x,t) satisfies 
the nonlinear PDE 

Vt = V xxx - ~V~/Vx' 
while (3.2) and (3.3a) yield 

u(x,t) = [Vx (x,t)/2V(x,t)] 1/2. 

(3.4 ) 

(3.5) 

Hence the nonlinear PDE (3.4) can be seen as another ava­
tar of (Ll), obtained by the "change of variable" (3.5); 
indeed, the linear PDE (3.1) could itselfbe interpreted as an 
avatar of ( 1.1 ), generated by the nonlinear transformation 
(3.2) with (3.3). 

Consider the class of real solutions of (3.1) such that 
v(x,t) vanishes asx-+ - 00 faster than (_x)-1/2 and is 
regular for real x. It is then convenient to write 

V(x,t) = dx'[v(X',t)]2 + _ C 2, fx 1 

- "" 2 
so that (3.2) yields 

u(x,t) = _____ v(~x:.:..,t...:.) ___ _ 

{C 2 + 2SX_ ""dx'[v(x',t) fp/2 

(3.6) 

(3.7a) 

This equation can be inverted, via (3.2), (3.3a), and (3.5), 
and one finds 

v(x,t) =cu(X,t)exp{J~"" dX'[U(X',t)]2}. (3.7b) 

These two formulas, (3.7a) and (3.7b) (with, say, 
C = 1), provide the basis for solving the Cauchy problem for 
(1.1): given u(x,O) one computes v(x,O) from (3.7b), then 
v(x,t) following the linear evolution (3.1), and finally one 
obtains u(x,t) from v(x,t) via (3.7a). Note that this tech­
nique of solution implies that, if u(x,O) belongs to the class 
of real functions that vanish faster than (- x) -1/2 as 
X-+ - 00 and are regular for real x, then u(x,t) belongs to 
the same class for all values oft. If moreover u(x,O) is Four­
ier expandable [for which it is required that it vanish at both 
ends, u( ± 00 ,0) = 0], then u(x,t) is also Fourier expanda­
ble; as well of course as v(x,t), 

f + "" 
v(x,t) = (21T) -I _ "" dk exp(ikx)D(k,t) , (3.8a) 

f + "" 
D(k,t) = _ "" dx exp( - ikx)v(x,t). (3.8b) 

And of course in this "localized" case the time evolution of 
the Fourier transform D(k,t) ofv(x,t) is quite trivial, 

D(k,t) = D(k,O)exp( - ik 3t); (3.9) 

and this fact, together with the direct and inverse Fourier 
transform formulas (3.Sb) and (3.8a), yield in the standard 
manner the solution of the Cauchy problem for the linear 
evolution equation (3.1). 

It is moreover plain how to obtain, via (3.7a) and 
(3. 7b), from the linear superposition formula [according to 
which, if VI (x,f) and V2(X,t) are solutions of (3.1), their 
linear superposition, 

(3.10) 

also satisfies (3.1)], the following nonlinear superposition 
formula according to which, ifuI(x,t) and u2(x,f) are two 
solutions of the nonlinear PDE (1.1), then 
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+ 4C1C2 f~ '" dx' U 1(X',t)u2(x',t)exp[ UI(x',t) + U2 (x',t) 1} -1/2 (3.11) 

is a third solution of (3.1). Here C I' C2, and C3 = C 2 

- C i - C ~ are three arbitrary constants and we have used 
the convenient notation [see (2.5a) 1 

~(x,t) = f~"" dx'[uj (X',t)]2, j= 1,2. (3.12) 

IV. CONSERVED QUANTITIES 

The possibility to linearize the nonlinear PDE (1.1) 
(see preceding section) implies that an infinity of conserva­
tion laws can be associated with this evolution equation. To 
present these results in the simplest setting, let us limit our 
consideration, in this section, to localized solutions, namely 
regular solutions that vanish asymptotically (x ..... ± (0) suf­
ficiently fast to guarantee the convergence of all the integrals 
written below. We moreover restrict our treatment to the 
exhibition of space integrals of U (x,t) that remain constant. 
or evolve simply with time, as u(x.t) evolves according to 
( 1.1 ). The formulation of these results in terms oflocal con­
servation laws is an easy task that is left for the diligent read­
er; of course such a formulation has a broader validity than 
the results reported below, since it is applicable also to solu­
tions which do not vanish asymptotically or are not regular 
for some real value ofthe space variable x. 

All these results obtain easily. via (3.7b), from the anal­
ogous results for the solutions v(x,t) ofthe linear evolution 
equation (3.1). Let us therefore begin with a terse review of 
these elementary results, whose proof is, for the sake of com­
pleteness, outlined in Appendix C. 

Of course, if v(x,t) is Fourier expandable, see (3.Sa) 
and (3.Sb), then, for all values of the Fourier parameter k, 
the modulus of the Fourier component u(k,t) is time inde­
pendent, 

lu(k,!) I = lD(k,O) I (4.1 ) 

[see (3.9) 1. But it is more convenient to focus attention on 
the following infinite but denumerable set of conserved (Le., 
time-independent) quantities: 

Cm = f_+",,"" dx[v(m) (x,t) F, m 0,1,2".... (4.2) 

Here and below we use the shorthand notation 

a mV(X,t) 
(4.3) 

8xm 

Indeed, it is also ofinterest to introduce the more general set 

Xn,m(t) = (n!)-l f_+",'" dx xn[v(m)(x,t) F, 

n 0,1,2, ... , m = 0.1,2,.... (4.4) 

and to note that X".m (t) evolves in time as a polynomial of 
degree n, 
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~------------------------------

X",m (t) = i [x ~~!.. .:;.] . 
.=0 s. 

(4.5) 

The constant coefficients X ~~!.. satisfy the recursion relations 

X ~~,;; I) = 3X ~s~ I,m + 1 - X ~s~ 3,m' S = 0,1 , ... ,n - 1 . 
(4.6) 

Here we use the convention 

X ~~!.. = 0, if n < 0 or s> n, 

while of course 

X~~~ =XO,m = Cm 
[see (4.4) and (4.2)]. Hence 

XI,m (t) = XI,m (0) + 3Cm + It, 

X 2,m (t) =X2 ,m (0) + 3XI,m+ I (O)t + ~Cm+2t2, 
X 3,m (t) =X3,m (0) + 3X2,m+ 1(0) - Cmt 

+ ~I,m + 2 (O)t 2 + ~Cm + 3t3, 

and so on. 

(4.7) 

(4.S) 

(4.9a) 

(4.9b) 

(4.9c) 

Another interesting set of moments is given by the defi­
nition 

f + "" 
Yn(t)=(-)"Cn!)-l _"" dxxnv(x,t), n=0,1,2, ... , 

(4.10) 

for it is easily shown (see Appendix C) that Yn (t) evolves 
in time as a polynomial of degree ( n/3 ») [here and below 
(n/3») indicates the integral part of n/3]: 

(,,/3») [ (sJ 
Y" (t) = 2: Y~S) - . 

S 0 s! 
(4.11 ) 

Moreover the constant coefficients Y ~S) satisfy the recursion 
relation 

Y~'+ I) = Y~S) 3 , 

where we assume of course that 

Y~S) =0, if n<O or s>(n/3»). 

Hence 

Yn (t) = Y" (0) Y", n = 0,1,2, 

Yn (I) = Yn (0) + Yn _ 3t, n = 3,4,5, 

YnCt) = Y,,(O) + Yn_3(0)t+~Yn 6t2, 

and so on. 

(4.12) 

(4.13 ) 

(4.14a) 

C4.14b) 

n = 6,7,S, 
(4.14c) 

Let us note that these results imply that there exist, in 
addition to the set (4.2), many other constants of the mo­
tion, such as the first three elements of the set (4.10) [see 
(4. 14a) ], or appropriate combinations of the quantitites de­
fined above, for instance YOY4 - YI Y3 [see (4.14a) and 
C 4.14b) 1 or the set Yo XI,m - 3Cm + I Y3 [see (4.9a), 
(4.14a), and C4.14b)]; and of course many more. 

It is now easy to obtain analogous results for the nonlin-
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ear evolution Eq. (1.1), since they are obtained directly by 
replacing in the preceding fonnulas the field v(x,t) by its 
expression in tenns of the solution U (x,t) of ( 1.1), 

V(X,t) = u(x,t)exp[ U(x,t)] (4.15a) 

[see (3. 7b)]. Here and below we use the convenient nota­
tion 

U(x,t) = f: 00 dx'[u(X',t)]2 (4.15b) 

[see (2.5a) and (3.12)]. Let us emphasize that, by redefin­
ing in this manner [via (4.15)] the quantities Cm ,xn.m (t), 
and Yn (t) in terms of the solution u(x,t) of (1.1), rather 
than the solution v(x,t) of (3.1), one does not modify their 
(simple) time evolution, which has been detailed above. 

For instance the first three conserved quantities Cm , see 
( 4.2), may be written in tenns of U (x,t) as follows: 

Co = !{exp[2U( oo,t) - I]}, (4.16a) 

f
+a> 

C1 = _a> dx[u x (X,t)]2 exp [2U(x,t)], (4.16b) 

J
+a> 

C2 = _ a> dx{ [ Uxx (x,t) ] 2 - 8 [ Ux (x,t) ] 3U (x,t) 

- 2 [u x (x,t) ] 2 [u (X,t) ]4} exp[2U(x,t)]. (4.16c) 

Note that the first of these fonnulas implies that the quantity 

C = f_+: dx[U(X,t)]2 = U( oo,t) = U( 00,0) (4.17) 

is a constant of the motion for the nonlinear evolution (1.1) 
[a finding that can also be read directly from (2.4b)]; while 
to obtain the last two fonnulas we have integrated by parts, 
to simplify the expression of the integrand. 

We end this section displaying a convenient expression 
of the moments Xn,o (t), see (4.4). It reads 

Xn+ 1,0 (t) 

= (n!)-I [La> dxxn{exp[U(oo,t)] -exp[U(x,t)]} 

+ [a> dx xn{I - exp[ U(X,t)]}]. n = 0,1,2, ... , 

(4.18 ) 

and it follows, after one integration by parts, from (4.4) via 
(4.15). 

v. EXPLICIT SOLUTIONS 

In this section we exhibit and discuss some explicit solu­
tions ofthe nonlinear evolution equation (1.1). 

The standard technique to obtain such solutions is to 
start from some simple solution v(x,t) of the linear equation 
(3.1) and to evaluate the corresponding solution U (x,t) of 
(1.1), as given by (3.2) with (3.3) or by (3.7a). 

Hereafter we focus on solutions U (x,t) that are real and 
regular for all real x. This generally requires that the func­
tion V(x,t), see (3.2) and (3.3), be positive definite for all 
real (finite) values ofx. Hence solutions V(X,I) of (3.1) that 
are polynomials in x [of which the simpler one is 
v(x,t) = Ao + A IX + AzX2 withAo, A I' andA2 arbitrary con­
stants] are excluded from consideration, since the corre-
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sponding V(x,t) cannot be positive definite, being a polyno­
mial inx of odd degree [see (3.3a)]. 

A. Solltron of the first kind 

Let 

v(x,t)=Aexp[p(x+p2t)], P>O, A=A*. (5.1) 

Then (3.7a) yields 

u(x,t) =sgn(A)p 1/2h[2p(x-xo - Vt)], (5.2) 

hey) = [1 +2exp( _y)]-1/2, (5.3) 

Xo = (2p) -I In [pC 2/(2A 2)], (5.4) 

V = - p2. (5.5) 

Note that this kinklike solution depends [apart from the 
trivial parameter xo, whose arbitrariness reflects the transla­
tion invariance of ( 1.1 ) ] on the single (positive) parameter 
p, that characterizes both its shape and the (negative) speed 
with which it travels [see (5.5), and Appendix A]. For fu­
ture reference, it is convenient to introQuce the notation 

Ux (x,t) = sgn(A)SI(x - xo,t;p) 

= sgn(A )p3/2S[p(x - Xo + p 2t)], (5.6) 

so that 

S(y) =2[exp(~y) +2exp( _jy)]-3/2, (5.7) 

and to refer to this function as representing a "solitron of the 
first kind"; it is preferable in this context to focus on Ux 

rather than u, since the fact that Ux is localized while U is 
kinklike will prove advantageous to discuss solutions with 
several solitrons present, see below. A graph of the function 
S(y) is given in Fig. 1. 

B. Solitrons of the second and third kind 

Let 

v(x,t) =AI exp[PI(x + pft)] + A2 exp[P2(X + p~t)], 

PZ>PI>O, AI=At¥=O, A2=At¥=0. (5.8) 

Then (3.7a) with C = ° yields 

u(x,t) = sgn(A2)pi12H s [(P2 - PI)(X - x - Vt);P l lp2]' 

(5.9) 

FIG. 1. Graph of the function S(y), see (5.7), representing a solitron of first 
kind. Note that the profile is not symmetrical. 
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where (see Appendix A), 

Hs(y;a) = [s+exp(y)]I[a- l +4(1 +a)-lsexp(y) 

+ exp(2y)] 112, (S.lO) 

x = (P2 - Pl)-llniAl/A2i, 

s = sgn(A l/A 2), 

V= - (pi +p~ +PIP2)' 

(S.l1 ) 

(S.12) 

(S.13 ) 

Note that each of these kinklike solutions depends on two 
positive parameters, PI and P2 (or, equivalently, on P = P2 
and a = Pl/PZ)' in addition to the trivial constant x that ac­
counts for the translation invariance of (1.1). For future 
reference, it is expedient to introduce the notation 

u" (x,t) = sgn(A2)Ss (x - X,t;Pl,P2)' (S.14) 

so that (see Appendix A) 

Ss (y,t;Pl' P2) = (PIPZ) 1/2[ (pz - PI )2/(pZ + PI)] 

X [sPIZ I/Z + pz/Z I/Z] [PIZ 

+ pz/Z + 4SPIPzl(PI + pz)] -3/Z 

( S.ISa) 

with 

(S.lSb) 

We will refer to S + (y,t;Pl,P2) as representing a "solitron of 
second kind" and to S_(y,t;Pl,P2) as representing a "soli­
tron of third kind"; we display these functions in Figs. 2 and 
3, having set for this purpose 

Ss (y,t;Pl'PZ) = p~/2Fs (x,a), 

with 

x=Pz[Y+ (p~ +pi +PIPZ)t], 

(5.16a) 

(S.16b) 

a =Pl/PZ' O<a< 1, (5.16c) 

Fs(x,a) =a l
/
2[(1-a)2/(1 +a)](s+aZ) 

X{Z-Z/3+ aZ4/3 

+ [4sa/(1 + a)]Z 1/3}-3I2, 

Z = exp[ (1 - a)x]. 

(5.16d) 

(S.16e) 

For an analytic analysis of the behavior of the function 
Fs (x,a), see (A24c) and the discussion preceding it. 

Note that the treatment of Appendix A implies that 
there are no other solitrons beside the three types obtained so 
far (and of course the three corresponding "antisolitrons," 
that obtain by changing the overall sign of each solution). 
This conclusion is of course based on the convention to re­
serve the term "solitron" (or "antisolitron") for solutions of 
(1.1) that are real and regular for all (real) values of x, 
whose time evolution consists of a mere translation with con­
stant speed [that turns always out to be negative; see (5.S) 
and (S.13)], and that are "localized" at least in the sense 
that u" (x,t) vanishes asymptotically (x .... ± (0). 

Note finally that the relation (3.7b) is not applicable to 
the solution (S.9); indeed u( - oo,t) does not vanish [see 
(A23a) ]. This is of course a feature of all solutions of ( 1.1 ) 
obtained from solutions of (3.1) via (3.7a) with C = 0 (see 
below). 
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FIG. 2. Graphs of the function F + (x,a), see (5.16d), representing a soli­
tron of the second kind. 

C. Periodic traveling wave 

Let 
vex) =Al exp[PI(x + pit)] +Az exp[pz(x + p~t)] 

with 

PI =r+iq, P2=r-iq, r>O, q>O, 

Al = A exp(ib), A2 = A exp( - ib), 

b=b*, A=A*=r60. 

Then (3.7a) with C = 0 yields 
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FIG. 3. Graphs of the function F_ (x,a), see (5.16d), representing a soli­
tron of the third kind. 

U(X,t) = sgn(A)(2r) 1/2 cos(y) 

X [1 + sin(a)sin(2y + a)] -1/2, 

y=b+q(x- Vt), 

V=q2_ 3r, 
tan(a) = r/q. 

(5.18 ) 

( 5.19) 

(5.20) 

(5.21 ) 

Note that this periodic traveling wave depends on two pa­
rameters, rand q [in addition to b, that accounts trivially for 
the translation invariance of ( 1.1 ) ]; and that in this case the 
speed with which it translates may be positive or negative, or 
it may vanish [see (5.20)]. 

For future reference, let us introduce the notation 
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T(x,t;r,q;b) = (2r) 1/2 cos(y)/[ I + sin(a)sin(2y + a) p/2, 

(5.22) 

withy and a defined by (5.19)-(5.21), as the function repre­
senting a periodic traveling wave. Note that here, in contrast 
to the case of the solitrons treated in the preceding two sub­
sections (V A and VB), the notation refers directly to the 
solution u(x,t) of the evolution PDE (1.1), rather than its X 

derivative. To display its shape, we also introduce the func­
tionF(x,a), 

F(x,a) =cos(x)/[1 +sin(a)sin(2x+a)]1/2, (5.23) 

and exhibit some graphs of it in Fig. 4. Note that, for all 
values of the parameter a (in the rangeO<a < 1T/2) , the peri­
odic function F(x,a) oscillates between the values - 1 and 
+ 1 (see the end of Appendix A) . 

The results described so far have merely reproduced the 
findings reported in Appendix A; note that the treatment 
given there implies that no other real and regular solution 
exists, besides those described above, whose time evolution 
reduces merely to a translation with constant speed (without 
change of shape). 

Or-----r-----+-----7-----~ 

(b) 
-1~------~~L---------~ o 2~ 

tg(a)=1/3 

Or-----~----~------+_----~ 

(c) 
-1~----------~------------~ o n 2rr 

FIG. 4. Graphs of the functionF(x,a) see (5.23); (a) tan (a) = I, (q = r, 
V= -2r<0); see (5.20); (b) tan (a) =3- 1

/
2 (i=3r, V=O); (c) 

tan (a) = ~ (q = 3r, V = 6r > 0). 
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Let us now consider some other solutions, that are more 
complex but are nevertheless susceptible of explicit display. 
We exhibit and discuss firstly some simpler cases, and we 
consider subsequently more general instances. 

D. Semi-Infinite traveling wave 

Let v(x,t) be again given by (S.17a) with (S.17b) and 
(S.17c) and use (3.7a), but now with C 2>0. We obtain 

u(x,t) = sgn(A) (2r) 1/2 cos(y) 

X [I + sin(a)sin(2y + a) + exp( - 2z)] -1/2, 

(S.24) 

with [see (S.19 - S.21)] 

y=b+q(x- Vt), (S.2S) 

V=q2-3r, (S.26) 

tan(a) = rlq, (S.27) 

and 

z=r(x-x- Wt), (S.28) 

W=3q2_ r , (S.29) 

x = (2r)-lln (rC 2IA 2). ( S.30) 

Clearly u(x,t) is exponentially small for x<x + Wt and it 
reduces to a periodic traveling wave (see Sec. V C) for 
x >x + Wt. Note that the two speeds Vand W can have any 
sign (or one of them could vanish); on the other hand the 
difference W - V is positive, 

W- V=2(q2+r»0. (S.31) 

E. Inelastic collision of a solitron of the first kind with 
one of the second or third kind 

Let v(x,t) be again given by (S.8) and use (3.7a), but 
now with C 2 > O. We obtain 

u(x,t) = sgn(A2)py2[s + exp(Y2)] 

X {a-I + 4(1 + a)-Is exp(Y2) + exp(2Y2) 

+ exp[ - 2(YI -'vd ]}-1/2, (S.32) 

Y2 = (P2 -pd(x -x - Wt), (S.33) 

x = (P2 - PI)-llnIA/A21, (S.34) 

W= - (pi +p~ +PIP2)' (S.3S) 

YI =PI(X - Vt), (S.36) 

v= -pi, (S.37) 

'vI = ~ In(P2C2IA i), (S.38) 

s = sgn(A IIA2). (S.39) 

To interpret this solution of ( 1.1) it is expedient to in­
vestigate the behavior of Ux (x,t), 

Ux (x,t) = sgn(A2) (PI P2) 1/2 
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X{[ (PI - P2)2/(PI + P2)] (sPIZ y2 + P2Z 2- 1/2) 

+ ZI(PzZ y2 +splZ 2-
1I2

)} 

X [PIZ2 + P2/Z2 + 4sPVJ2/(PI + P2) + ZJ -3/2, 

(S.40a) 
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Z2= IA2I A dexp{(P2-PI)[X+ (pi +p~ +PIP2)t]}, 

(S.40b) 

ZI =PIP2(C 2/IA IA21)exp{ - (Pt +P2) 

x[x+ (pi +p~ -PIP2)tJ), (S.40c) 

in the remote past (t -+ - (0) and future (t -+ + (0). To do 
this we set, in (S.40a),x = x' + V't, we consider the limits as 
t -+ - 00 and as t -+ + 00 with x' and V' fixed, and we write 
the non vanishing contributions that obtain for all (appropri­
ately chosen) V'. In this manner we find, as t-+ - 00, 

Ux (x,t) :::::sgn(A1)SI (x - XI;PI) + sgn(A2)Ss (x - X;PI,P2) 

(S.41a) 

with 

XI = (2pI) -lIn [P IC
2/(2A i)], 

x = (P2 - PI)-I InIAIIA21, 

while for t -+ + 00 we find 

Ux (x,t) :::::sgn(A2)SI (x - X2;P2) 

with 

X2= (2p2)-lln[p2C2/(2Ai>]. 

(S.41b) 

(S.41c) 

(S.42a) 

(S.42b) 

In these formulas the two functions S I and Ss are defined of 
course by (S.6) with (S.7) and by (S.lSa) with (S.lSb). 

The interpretation of these findings is clear. The solu­
tion (S.32) describes in the remote past a solitron (if Al > 0) 
or an antisolitron (if A I < 0) of the first kind and parameter 
PI> localized at x:::::xl-pit, and a solitron (if A2>0) or 
antisolitron (if A2 < 0) ofthe second kind (if All A2 > 0) or 
the third kind (ifAJIA2 <0) and parametersPI andp2 (with 
P2 >PI)' localized at x:::::x - (pi + p~ + PIP2)t. Both ob­
jects move of course towards the left; the solitron or antisoli­
tron of the second or third kind moves faster (indeed, more 
than three times faster) and is therefore, in the remote past, 
farther to the right. As time goes by, the faster solitron or 
antisolitron of the second or third kind approaches the 
slower solitron or antisolitron of the first kind, and eventual­
ly the two coalesce into a single solitron or antisolitron of 
first kind and parameter P2' that emerges alone in the remote 
future, moving with its characteristic speed that is interme­
diate between those of the two initial objects, since clearly 

pi <p~ <p~ + p~ + PI P2' 
Note that (5.41b), (S.4lc), and (5.42b) imply the fol-

lowing relation between the parameters x I' X and X 2 that 
characterize the asymptotic location of these objects [see 
(S.4Ia) and (5.42a)]: 

(5.43 ) 

Let us also point out that the solution discussed in this 
subsection does not describe the most general collision 
between a solitron (or an antisolitron) of the first kind and 
one of the second or third kind, but only one between a (gen­
eric) solitron (or antisolitron) of the first kind with param­
eterp and a solitron (or antisolitron) of the second or third 
kind characterized by parameters PI and P2' with P2 > PI and 
PI=P, 
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F. Inelastic collision of two solitrons of the second or 
third kind 

Let 
3 

v(x,t) = L [An exp(Yn)]' (S.44) 
n=1 

with the three constants An real (and nonvanishing), the 
three parameters Pn positive and different, say 

o <PI <P2 <P3' (S.4S) 

and 

Yn =Pn(x+p~t). (S.46) 

Then use (3.7a) with C = O. We obtain 

3 [An exp(yn)] 
U(X,t) = L [( )]1/2 ' (S.47a) 

n= I g x,t 

g(X,t) = 2 ± ± { AnAm exp(Yn + Ym)}. (S.47b) 
n = 1m = I (Pn + Pm) 

To analyze the significance of this solution of the evolu­
tion POE ( 1.1 ), it is again convenient to focus on the deriva­
tive Ux (x,t) and to look at its behavior in the remote past and 
future. One finds, for t - - 00, 

Ux (x,t) :::::sgn(A2 )Ss, (x - x l ,t;PI,P2) 

+ sgn(A 3 )Ss, (x - x 2,t;P2,P3)' 

sn=sgn(AnIAn+I)' n=I,2, 

xn = (Pn+1 -Pn)-llnIAnIAn+ll, n= 1,2, 

and for t- + 00 

Ux (x,t) :::::sgn(A3)Ss (x - X,t;PI,P3) , 

with 

S = sgn(A IIA3), 

x = (P3 -PI)-lln IA IIA31· 

(S.48a) 

(S.48b) 

(S.48c) 

(S.49a) 

(S.49b) 

(S.49c) 

Here of course the functionSs (y,t;p,p') is defined by (S.IS). 
The interpretation of these findings is clear. The solu­

tion (S.44) describes in the remote past two solitrons or anti­
solitrons [as the case may be; see (S.48a)] of the second or 
third kind [as the case may be; see (S.48b)], and in the 
remote future a single solitron or antisolitron of the second 
or third kind [as the case may be; the diligent reader may 
figure out the "selection rules" implied by (S.48a), (S.48b), 
and (S.49a)]. Note that (S.4S) implies that the speed, 
V3 = - (p~ + pi + PIP3), of the final object is intermedi­
ate between the speeds, VI = - (p~ + pi + P2PI) and V2 
= - (p~ + p~ + P2 P3)' of the two initial ones; while the 

parameters that characterize their asymptotic positions are 
related by the formula 

(P3 - PI)X = (P3 - P2)X2 + (P2 - PI)X I, (S.SO) 

Let us, however, again emphasize that the solution 
(S.44) does not describe the most general collision between 
two solitrons or antisolitrons of second or third kind, but 
only a collision among two such solitrons or antisolitrons 
characterized by two pairs of parameters, say PI,P2 (with 
h>PI) andp;,P2 (withp2 >P;), such that, saY,P2 =p;. 
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G. Inelastic collision of N solitrons of the second and 
third kind 

Let 
N 

v(x,t) = L [An exp(Yn)] (S.SI ) 
n=O 

with the N + 1 parameters An real and nonvanishing, the 
N + 1 parameters Pn positive and different, say 

o <Po <PI < ... <PN 

and 

Yn =Pn(xn +p~t). 

Then use (3.7a) with C = O. We obtain 

N An exp(Yn) 
U (x,t) = L -[-(--) ]"7"1/:7"2 ' 

n=O g x,t 

g(X,t) = 2 ± ± J_AnAm exp(Yn + Ym)} . 
n=om=olPn +Pm 

(S.S2) 

(S.S3 ) 

(S.S4a) 

(S.S4b) 

The significance of this solution of the evolution equa­
tion (1.1) is apparent from the following findings (proved in 
Appendix 0): as t- - 00, 

N 

ux(x,t)::::: L [sgn(A n )Ss)x-xn,t;Pn_l>Pn)]' (S.SSa) 
n=l 

with 

xn = (Pn - Pn-I) -llnIAn_IIAn I, 

Sn = sgn(An_IIA n); 

ast- + 00, 

Ux (x,t) :::::sgn(AN )Ss (x - x,t;PO,PN)' 

with 
x = (PN -Po)-llnIAo/ANI, 

S = sgn(Ao/AN ). 

Note that (S.SSb) and (S.S6b) yield 
N 

(PN - Po)x = L [(Pn - Pn - I )xn ]. 
n=1 

(S.SSb) 

(S.5Sc) 

(S.S6a) 

(S.S6b) 

(S.S6c) 

( S.S7) 

These findings include of course those of the preceding 
subsection, to which we also refer for their interpretation; 
that should be sufficiently obvious not to warrant any addi­
tional comment here. 

H. Inelastic collision of one solltron of the first kind and 
N solltrons of the second or third kind 

Let v(x,t) be again given by (S.S1) with (S.S2) and 
(S.S3), but now use (3.7a) with C 2 > O. We obtain 

(S.S8) 

withg(x,t) defined by (S.S4b). 
The significance of this solution of the evolution equa­

tion (1.1) is apparent from the following results (proved in 
Appendix 0): as t- - 00, 

Ux (x,t) :::::sgn(Ao)SI (x - xo,t;po) 

N 

+ L [sgn(An )Ssn (x - xn ,t;Pn - I ,Pn ) ], 
n=l 

(S.S9a) 
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with X" ands" defined by (S.SSb) and (S.SSc) and 

Xo = (2po) -I In [PoC
2/(2A ~»; (S.59b) 

ast- + 00, 

Ux (x,t) ~Sgn(AN )SI (x - XN,t;PN)' 

with 

XN = (2PN) -I In [PNC 2/(2A ~)]. 

Note that these results imply the relation 

(S.60a) 

(S.60b) 

PNXN=POXO+ f [(p" -Pn_I)Xn] + 211n(PN). 
n=1 Po 

(S.61 ) 

These findings include those of Sec. V E, to which we 
also refer for their interpretation, which should be sufficient­
ly obvious not to warrant any additional comment here. 

I. Traveling wave and kink 

Let v(x,t) be given again by (S.44) with (S.46), but 
assume now 

PI = P > 0, P2 = r + iq, P3 = r - iq, 

r>O, q>O, 

AI=At=A#O, A2=Bexp(ib), 

A3=Bexp( -ib), B=B*#O, b=b*. 

(S.62) 

(S.63) 

Then use (3.7a) with C = 0. We obtain 

u(x,t) = sgn(A )pI/2[ 1 + sZ cos(y)]I[ f(x,t)] 1/2, 

(S.64a) 

f(x,t) = 1 + 4s(pIQ)Z sin(y + a') 

+ !(plr)Z2[ 1 + sin(a)sin(2y + a)], 

(S.64b) 

Z = 21B IA lexp[ (r - p)(x - Wt)] 

= exp[ (r - p)(x - Xo - Wt)], 

Xo = (p - r) -lln l2B IA I, 
W= - [p2+ r + pr +3rq2/(p-r)], 

y = q(x - Vt) + b, 

V=q2 - 3r, 

tan(a') = (p + r)lq, 

tan(a) = r/q, 

Q = [(p + r)2 + q2] 112, 

S = sgn(B /A). 

(S.6S) 

(S.66) 

(S.67) 

(S.68) 

(S.69) 

(S.70) 

(S.71 ) 

(S.72) 

(S.73) 

If P > r, clearly for x >xo + Wt the solution U (x,t) is 
constant, 

u(x,t) ~sgn(A)pJ/2, (5.74) 

while for x <xo + Wt it approximates the periodic traveling 
wave of Sec. V C, 

U (x,t) ~sgn(B) T(x - xo,t;r,q;b) (5.75) 

[see (5.22)]. Note that in this case the speed W, with which 
moves the boundary layer between the two zones, is negative 
[see (5.67)]. 
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Ifp < r, the situation is reversed, namely for x <xo + Wt 
the solution u(x,t) is constant, see (5.74), while for 
x >xo + Wt it approximates the periodic traveling wave, see 
(5.75). Note that in this case, in contrast to the preceding 
one, the speed W, with which moves the boundary between 
the two zones, may have either sign, or it may vanish [see 
(5.67)]. 

Finally, in the marginal case P = r, U (x,t) is a periodic 
function of x (with period 21Tlq), since in this special case 
the quantity Z, see (5.65) and (5.67), becomes independent 
ofx 

Z = 21B /A lexp( - 3pq2t ). (5.76) 

Hence this case provides another instance of periodic solu­
tion of the evolution POE ( 1.1 ); but it has a more complicat­
ed time dependence than the periodic traveling wave of Sec. 
V C. Note, however, that, as t- - 00, this solution goes in­
deed over into the traveling wave solution of Sec. V C [see 
(5.64) and (5.76)], 

U(X,t) ~sgn(B)T(x - xo,t;r,q;b) , 

while as t -+ + 00 it becomes constant, 

u(x,t) ~sgn(A)pI/2. 

(5.77) 

(5.78) 

J. Traveling wave that becomes a solltron of the first 
kind 

Let v(x,t) be again given by (5.44) with (5.46), (5.62), 
and (5.63), and use (3.7a), but now with C 2 >0, to evaluate 
u(x,t). We obtain 

u(x,t) =sgn(A)p l
/
2[1 +sZcos(y)]/[f(x,t) +Zi]1/2, 

(S.79) 

with 

ZI = exp[ - p(x - XI - Vlt)], 

X J = (2p) -I In(pC 2IA 2), 

VI = _p2, 

(5.80) 

(5.81) 

(5.82) 

and the remaining notation as in the preceding subsection, 
see (5.64b)-(5.73). 

To analyze the shape, at any given (fixed) time, of this 
solution of the evolution POE (1.1), let us consider first the 
case 

p>r>O. 

It is then easily seen that 

u( - oo,t) = 0, 

U ( + 00 ,t) = sgn(A )pI/2, 

implying 

ux ( ± oo,t) =0. 

(5.83) 

(5.84a) 

(5.84b) 

(5.84c) 

It is also clear that Ux (x,t) vanishes proportionally to 
exp (rx) (times an oscillatory factor) as x -+ - 00 and pro­
portionally to exp [ (r - p)x] (times another oscillatory fac­
tor) as x -+ + 00). Hence this solution is "localized," in the 
sense used above. 

If instead 

(5.85 ) 

the solution u(x,t), while still vanishing as X-+ - 00, see 
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(S.84a), approximates the solution discussed in Sec. V I 
as X-+ + 00; and in particular, if r>p, as X-+ + 00 it ap­
proximates the periodic traveling wave of Sec. V C, 

u(x,t) :::::; sgn (B) T(x - xo,t;r,q;b). (S.8S') 

Let us now discuss the behavior over time of the solution 
(S.79). The analysis here is limited to the "localized" case 
characterized by the inequality (S.83); the treatment of the 
case (5.8S) is left as an exercise for the diligent reader. 

Clearly the behavior ofu(x,t) depends on whether the 
(positive) quantities Z and ZI' see (S.6S) and (S.80), are 
much larger or much smaller than unity and, moreover, if 
they are much larger than unity, on their relative magnitude. 
Thus three speeds play an important role, namely W [see 
(S.67) 1, VI [see (S.82) 1, and 

(S.86) 

Note that, as a consequence of (S.83), the inequality 

W < VI < V2 (S.87) 

holds, since both differences, 

V2 - VI = 3q2 + p2 - ~ (S.88a) 

and 

VI - W= ~ +pr+ 3rq2/(p - r), (S.88b) 

are clearly positive. Note moreover that Wand VI are nega­
tive, while V2 may have any sign, or it might even vanish. 

It is then easily seen that, as t -+ - 00, 

U(X,t):::::;O, X~XI(t), 

u(x,t) :::::;sgn(B)T(x - xo,t;r,q;b) , 

XI(t) ~X~X2(t), 

u(x,t) :::::;sgn(A)pI/2, X 2 (t) ~x, 
where 

XI (t) = Xo + (p/r)(x i - xo) + V2t, 

X 2 (t) =xo+ Wt, 

(S.89a) 

(S.89b) 

(S.89c) 

(S.90a) 

(S.90b) 

and of course Xo and XI are defined by (S.67) and (S.81). 
Note that these "boundary layers," XI(t) andX2(t), move 
with constant speed, and that, as t-+ - 00, X 2 (t) -+ + 00 

andX2 (t) -XI(t)-+ + 00. Thus,ast-+ - oo,theregionoc­
cupied by the periodic traveling wave [see (S.89b) and 
(S.22) 1 becomes infinitely extended. Note however that, as 
t-+ - 00, XI (t) may diverge to positive or to negative infin­
ity, or remain constant, depending on the value of V2• 
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The behavior of the solution U (X,t) , or rather itsx deriv­
ative, as t-+ + 00 [in the case (S.83) to which our attention 
is confined] is instead very simple: 

Ux (x,t) :::::;sgn(A)SI (x - xI,tiP), (S.91) 

with SI defined by (S.6) with (S.7), and XI defined by 
(S.81). 

These findings justify the title of this subsection. 

K. Inelastic collision of several solitrons and wave 
trains 

Let us finally consider a solution u(x,t) of the evolution 
equation (1.1) that includes all those considered above (in 
this section). It obtains via (3.7a) from the following solu­
tionv(x,t) of(3.1}: 

N 

v(x,t) = L [An exp(Pnx + p!t)] 
n=O 

M 

+ L {Bm exp[ibm + (rm + iqm)x 
m=1 

+ (r m + iqm )3t ] + c.c.} (S.92a) 

or equivalently 
N 

v(x,t) = L [An exp (yn)] 
n=O 

M 

+2 L [Bm exp(zm)cos(wm)], (S.92b) 
m=1 

with 

Yn =Pn(x+p~t), 

Zm =rm[x+ (,;, -3q~)t], 

Wm = bm + qm [X + (3';' - in. )t ]. 

(S.93 ) 

(S.94) 

(S.9S) 

We assume of course that the quantities An are real and non­
vanishing, that the quantities bm are non-negative, and that 
the quantitiesBm ,Pn' rm , andqm are positive. We moreover 
assume, without loss of generality, that the inequalities 

O<PO<PI < ... <PN' 

O<r l <r2'" <rm 

hold. 
The corresponding expression of U (x,t) reads 

(S.96a) 

(S.96b) 

u(x,t) = V(X,t)/[g(x,t)] 1/2, (S.97) 

(S.98) 
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Qnm = [(Pn +rm)2+ q!.]1/2. 

tan(am ) = rm1qm. 

tan(a~,m) = (Pn + rm )/qm' 

tan(am,m') = (rm + r m, )/(qm + qm')' 

(S.99) 

(S.I00) 

(S.101) 

(5.102) 

Let us discuss first of all the shape of this solution, name­
ly its x profile for fixed (finite) t. In particular let us note that 
the two conditions 

PN>rN• 
(S.103) 

'f C 0 (S.104) po<rl 1 =. 
are necessary and sufficient in order that u(x.t) be "local­

ized." namely 

ux ( ± oo.t) = o. (S.lOS) 

Indeed (S.103) implies 

u( + 00 ,t) = Sgn(AN )pJ:2, (S.106) 

while clearly. if C 2 > O. 

u( oo.t) = O. (S.107a) 

and ifC o but (S.I04) holds. 

u( oo,t) = sgn(A 1)pJ/2
• (S.107b) 

Let us then discuss tersely the behavior of u(x,t) over 
time. limiting our consideration to the "localized" case char­
acterized by the conditions (S.103) and (S.I04) [together of 
course with (S.106) ]. Here we only outline the results since 
their detailed derivation and analysis would take too much 
space, and it is in any case somewhat analogous to the discus­
sion in Appendix D. 

In the remote future (1 .... + 00 ). the solution (S.97) be­
comes quite simple: if C 2> 0, it describes a kink of the first 
type, 

Ux (x.t) :::::sgn(AN )SI (x - XN,t;PN)' 

XN (2PN)-lln [PNC 2/(2A ir>]; 

(S.108) 

(S.109) 

if C = 0, it describes a kink of the second or third type. 

Ux (x,t) :::::sgn(AN )Ss (x - x.t;PO,PN) , (S.110) 

x = (PN - Po) -llnIAoIANI, (S.111) 

s = sgn(AoIAN)' (S.112) 

In the remote past (t -. - 00), the situation may be con­
siderably more complicated; to describe it. let us consider 
separately the two cases, C = O. and C 2 > O. 

Let us deal first with the C = 0 case. It is expedient, 
given the values of the 1 + N + 2M parameters 
Pn' rm, and qm' to draw as a function of V theN + 1 straight 
lines p~ + VPn (in black) and the M straight lines 
r", - 3r m q!. + Vr m (in red). Then focus attention on the 
segmented continuous line that obtains by following the bot­
tom segments for each value of V. This line may have some 
black and some red segments; the leftmost and rightmost 
semi-infinite components are black, due to (5.103) and 
( S.1 04 ) . Now move along this line from left to right and 
denote with WI' W2, etc. the values (if any) of Vat which 
there is a change of slope from a black segment to another 
black segment; it is easily seen (as in Appendix D) that a 
necessary condition for this to happen is that the parameters. 
say P ,andpn' that characterize the two contiguous black 

nj j 
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segments. be themselves contiguous [see (S.96a)], namely 
nj = nj - 1. implying 

JJj= -(p~J+P~j-1 +PnjPnrl)' j=I.2, .... (5.113) 

Note that the number of JJj 's may vary between 0 and N. and 
of course by definition JJj < JJj + I < O. Denote moreover 
with W l >, W ~ - ), etc. the values (if any) of Vat which 
there occurs a change from a black to a red segment, so that 

(S.114a) 

where P ( ) is the parameter that characterizes the black 
"j 

segment on the left and r ( ), q (_) are the parameters that 
mj I'fIj 

characterize the red segment on the right; and denote with 
W\ +). wi + >, etc. the values (if any) of Vat which there 
occurs a change from a red to a black segment, so that 

W<+) - [2 +r j - - PnJ+) mJ+) 

(S.114b) 
where P (+) is now the parameter that characterizes the 

n} 

black segment on the right and r (+ h q (+) are the param-
mj mj 

eters that characterize the red segment on the left. Note that 
there are as many WJ + ),s as WJ - )'s (possibly none), and 
that the inequalities 

WJ -) < WJ+ 1 < WJ+ l < WJtl, j= 1,2, ... , 
(S.114c) 

hold. Finally let us also denote, for completeness, with WI' 
W2 , etc. the values of V (ifany) at which there is a change of 
slope from a red segment to another red segment. Note that 
we are, for simplicity, assuming that there occurs no "multi­
ple point" at which more than two of the original straight 
lines cross simultaneously. 

The behavior of U (X,f) in the remote past may then be 
characterized as follows. Let 

xj(t) =xj + JJjt, j= 1.2, ... , (5.11S) 

with 
Xj=(Pnj-PnJ-I)-IInIAnrIIAnjl, j 1,2, ... , 

(S.116) 
where P n I and P n characterize the two black segments to 

) ) 

the left and right of V = JJj [see (S.113)]. Let moreover 

xJ±)(t) =xJ±)(O) + WJ±)f, j= 1,2, ... , (5.117) 

where 
XJ±l(O) = [2(p (±)-r ( ,)]-1 

"j mj 

j= 1,2 .... , 
(5.118) 

again with the parameters P (:t) and r (±) (as well as A (±) 
"j mj Nj 

and B (±» associated, respectively, to the black and red 
mJ 

segments that join at WJ ±) [see (S.114a) and (S.1l4b)]. 
Then for the values of x that are well inside the intervals from 
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XJ - )(t) to XJ + )(t), 

XJ-)(t)~X~XJ+)(t), j= 1,2, ... , (S.119) 

U (x,t) is an oscillating wave train [possibly fairly complicat­
ed, especially if the interval (WJ - >, WJ +» contains some 
Wk , or several equal values of r m with different q m 's], while 
for the values of x that are well outside the intervals (S.119), 
u(x,t) is constant [and therefore Ux (x,t) vanishes], except 
in the neighborhood ofthepointsxj (t), see (S.llS), where it 
behaves as a kink of second or third kind, namely, away from 
the intervals (S .119) , 

ux(x,t) = L[sgn(An)Ssj(x-xj,t;Pnj-I,Pn)]' 

j (S.120) 

where of course 

Sj = sgn(Anr IIAnj ). (S.121) 

It is thus seen that, in the remote past, u(x,t) [see 
(S.97)] with C = 0 describes a collection ofsolitrons of the 
second or third kind (whose number may vary between 0 
and N) and of separate finite wave trains (whose number 
may vary between 0 and M; of course there must be at least 
one solitron or one wave train); while, as we have seen above, 
in this case with C = 0 in the remote future it yields a single 
solitron of the second or third kind, see (S.llO). 

Let us finally discuss, quite tersely, the behavior of 
u(x,t), see (S.97), with C 2>0, in the remote past 
(t -+ - 00). The treatment given above remains applicable, 
with the addition of one more straight line to be drawn (in 
blue) along the V axis. Then the curve obtained from the 
union of the bottom lines has the rightmost semi-infinite 
component that is blue (and shields away part of the curve of 
the previous case). The previous analysis remains applicable 
to the part ofthe curve that has not been shielded away, and 
it may account for a number of solitrons of the second and 
third kind (possibly none) and of finite wave trains (possi­
bly none). There remains to consider the contribution corre­
sponding to the last part of the curve. There are two possibi­
lities, depending whether the last finite segment, contiguous 
to the rightmost semi-infinite blue component, is red or 
black. 

It is easily seen that, if 

- p~ > 3q!, - r!" m = 1,2, ... ,M, (S.122) 

that segment is black. In this case, in addition to the contri­
butions predicted by the preceding analysis, there is in the 
re~ote past a solitron of the first kind, namely for 
X:::::Xo _p2t, 

Ux (x,t) :::::sgn(Ao)SI (x - xo,t;po) , 

with 

x = (2Po)-lln [PoC 2/(2A 2)]. 

If instead 

-p~ < Max (3q!, -r!,)=W(+), 
m=I.M 

(S.123) 

(S.124) 

(S.12S) 

then the rightmost (finite) segment is red; and (in contrast 
to the previous case) the largest of the W J - ) does not now 
have a corresponding WJ +). Let us indicate this largest 
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WJ -) (defined according to the procedure described 
above) as W} -). It is then easily seen that 

W}-)<W(+) (S.126) 

and that, in addition to the contributions predicted by the 
previous analysis (ignoring W) - ) ), there is in this case an 
additional wave train in the interval from X} - Jet) to 
x( + ) (t), with X} - ) (t) defined according to (S.117) and 

X(+)(t) =x(+)(O) + W(+)t, 

x( +) (0) = (2r) -I In[rC 2/(2B 2)]. 

(S.127) 

(S.128) 

The value of r appearing in the last formula coincides with 
the rm which realizes the maximum in the rhs of (S.12S). 

It is thus seen that, in the remote past, u(x,t) [see 
(S.97) with C 2 > 0] describes a collection ofsolitrons of sec­
ond and third kind and of separate finite wave trains, and in 
addition, provided the inequality (S.122) holds, a single soli­
tron of first kind; while, as we have seen above, in this case 
with C 2 > 0 in the remote future it yields a single solitron of 
first kind, see (S .108) . 

Let us end by noting that these findings suggest the fol­
lowing general result, applicable to any real and regular solu­
tion of the evolution PDE (1.1). Let u(x,O) have finite limits 
as x -+ ± 00, with the value at the right larger in modulus 
than that at the left; then, as t -+ + 00, U (x,t) approximates a 
single kink. More precisely, if u( - 00,0) =SIP:12, 

u( + 00,0) =s2PY2 withp2>PI>Oandsl = + orsl = -
(likewise for S2)' then, as t -+ + 00, 

Ux (x,t) :::::S2Ss (x - x, t;PI,P2)' (S.129) 

with S = S IS2 and x some appropriate value; if u ( - 00 ,0) 
=0 and u( + 00,0) =Spl12, with p>O and s= + or 

S = -, then, as t -+ + 00, 

Ux (x,t) :::::SSI (x - xo,t;p) , 

for some appropriate value of Xo. 

VI. FINAL COMMENTS 

(S.130) 

The results of the preceding section have displayed a 
remarkably explicit and complex phenomenology; of course 
the inelastic nature of the collisions among solitrons and 
antisolitrons motivates the use ofthis terminology (instead 
of "solitons" and "antisolitons"; see Ref. 3, p. 132ff). 

Other explicit solutions of the evolution PDE (1.1) 
could be exhibited; but their display and analysis is left as an 
exercis~ for the diligent reader. 

On the other hand, it should be emphasized that the 
solutions given above do not include the description of such 
elementary phenomena as the collision of two solitrons (or 
antisolitrons) of the first kind, or of one solitron (or antisoli­
tron) of the first kind with a generic solitron (or antisoli­
tron) of the second or third kind, or of two generic solitrons 
(or antisolitrons) of the second or third kind. The results 
given above suggest that such solutions do not exist. Let us 
note in this connection that, while the evolution character of 
the nonlinear PDE ( 1.1 ) implies the possibility to determine 
a solution u(x,t) by assigning arbitrarily (within appropri­
ate functional classes; see Sec. III) its "initial" value u (x,to) 
at any chosen finite time to, this freedom of choice need not 
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apply without limitations in the asymptotic limit as to tends, 
say, to negative infinity. A more detailed analysis of this 
problem, as well as the study of singular solutions of ( 1.1 ), 
will perhaps be presented in a subsequent paper. 

It is well known that a large class of nonlinear evolution 
equations yield, after an appropriate multiscale asymptotic 
expansion (see, for instance, Ref. 4), the nonlinear Schro­
dinger equation. It is amusing to apply this procedure4 to the 
nonlinear evolution equation (1.1). What one finds is that 
the method is indeed applicable, and one seems to get the 
nonlinear Schrodinger equation; but with a vanishing nu­
merical coefficient in front of the nonlinear term! This is of 
course consistent with the need to use a more sophisticated 
method than just a change of variables (namely, the spectral 
transform technique) in order to solve the nonlinear Schro­
dinger equation. 

Addendum 

(i) The exceptional nature of the PDE (1.1) was pre­
viously discovered by Ibragimov and Shabat,5 who pointed 
out that it belongs to the class of equations possessing an 
infinite Lie-Backlund algebra. Subsequently Kaptsov6 not­
ed that this equation possesses only one local conservation 
law. The linearizing transformation (3.7b) was moreover 
given by Sokolov and Shabat.7 

These results have come to my attention after my paper 
was submitted for publication. I am not aware of any pre­
vious analysis of the detailed behavior of the solutions of the 
PDE (1.1). 

(ii) Wiktor Eckhaus has noted that the remark at the 
end of Sec. VI implies the possibility of applying the limiting 
procedure one step further, obtaining thereby a novel non­
linear evolution equation in place of the Schrodinger equa­
tion. This remark has opened a line of research whose results 
serve to explain what had hitherto appeared a puzzling mira­
cle, namely the fact that certain evolution equations turn up 
in many applicative contexts and are integrable. These find­
ings shall be reported elsewhere. 8 
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APPENDIX A 

In this appendix we obtain and discuss the general solu­
tion of the ODE 

- Vg' =gm + 3 (g"g2 + 3g'2g ) + 3g'g\ (Al) 

where V is a given constant. 
A trivial solution ofthis equation is 

g(y) = arbitrary constant. (A2) 

Hereafter this trivial solution will be ignored, as well as the 
trivial possibility to consider, in addition to any solution g, 
the solution - g. 

The ODE (AI) can be directly integrated once, after 
multiplication by g. We obtain 

- Vg2 = 2g"g g,2 + 6g'g3 + g6 + 2B, (A3) 

550 J. Math. Phys., Vol. 28, No.3, March 1987 

where B is an arbitrary (integration) constant. 
Now set 

g(y) = f(y)/[2F(y)] 1/2 

with 

F'(y) =j2(y). 

We obtain 

- Vf2 = 2fNf - 1'2 + 2BF, 

(A4) 

(A5) 

(A6) 

and after differentiation [using (A5)] this yields the linear 
ODE 

1''' + VI' +Bf=O. (A7) 

The general solution of this equation reads 
3 

fey) = L [Aj exp(pjY)], (A8) 
j~1 

where the three parameters Pj are the three roots of the cubic 
equation 

p3 + Vp + B = 0, (A9) 

so that they satisfy the following relations: 

PI +P2 +P3 =0, 

PIP2 + P2P3 + P3PI V, 

PIP2P3 = -B. 

From (AS) and (A8) we moreover obtain 

(AlOa) 

(AlOb) 

(AlOe) 

F(y) =A~ + L L j k exp[(pj +Pk)y] , 3 3 { AA } 

j ~ I k = I Pj + P k 

(Alla) 

F(y) =A~ - 2 ± [Aj+)Aj+2 exp( -PjY)] 
j= I Pj 

I 3 [A2 ] +- L -j exp(2pjY) . 
2 j= I Pj 

(Allb) 

To write (Allb), we have used (AlOa) and the cyclic con­
vention Aj + 3 =Aj • We are moreover assuming that none of 
the quantities Pj vanishes [a necessary and sufficient condi­
tion for this is that B # 0; see (A 1 Oe ) ]. If one or more of 
these quantities do vanish, the corresponding formula can be 
obtained by an appropriate limiting process (see below). 

Insertion of this expression of F(y), and of the corre­
sponding expression (A8) of fey), in (A6), yields, using 
(A9), the condition 

BA~ =0. (AI2) 

There are therefore two distinct classes of solutions of (AI), 
those characterized by B 0 and Ao an arbitrary non vanish­
ing constant, and those characterized by Ao 0 and B an 
arbitrary constant. 

In the first case (B 0, Ao#O) one of the p/s vanishes 
and the other two are easily computed, say 

P3 =0, PI = -P2 =P, 

P= (- V)1I2. 

Hence the solution of (AI) reads 

(A13a) 

(A13b) 

g(y) = [BI exp(py) + B2 exp( - py) + B3 ]1[2F1 (y)] 1/2 

(AI4a) 
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with 

FI(y) = 1 + (B~ + 2BIB2)y 

+ (2p)-I{Bi exp(2py) -B~ exp( -2py) 

+ 4B3[BI exp(py) - B2 exp( - py) n. (A14b) 

Note that this solution depends on the three arbitrary con­
stants Bj' 

Bj = A/A 0' j= 1,2,3, (Al4c) 

and on the parameter p related to Vby (A13b). 
In the second case (Ao = 0) it is preferable not to solve 

explicitly the cubic equation (A9), and to write the solution 
of (AI) in the form 

3 

g(y) = L [Aj exp(pjY)] 
j= I 

exp[ (Pj + Pk )y] } -112. 

(A1S) 

Here of course the three parameters Pj are the three roots of 
the cubic equation (A9). Note that also this solution de­
pends, for any given V, on three arbitrary constants, namely 
B [see (A9)] and the two ratios of any two of the three A j'S 
to the third one. 

Let us now identify and analyze, for given real V, the 
solutions g(y) of (Al) that are real and regular for all real 
values ofy. 

Consider first solutions of the first type, given by 
(A14a) with (A14b) and (A13b). 

For V = 0, g(y) reduces to the trivial solution (A2). 
For positive V, P is imaginary [see (A13b)]; it is then 

clear that a necessary condition in order that g(y) be real for 
all y is that B3 be real and B I = B r. It is moreover necessary 
that FI (y) be positive for all y, and this requires 
B; = - 2BIB2 [see (A14b)], namely B~ = - 21B112, 
which is inconsistent with the reality of B3 [unless all the 
constants Bj vanish, in which case g(y) becomes the ultratri­
vial solution g(y) = 0] . Hence for positive V, there is no real 
solution of (AI) in the first class. 

For negative V, p is real [see (A 13b) ], and without loss 
of generality we assume it is positive, 

p = ( - V)1/2>0. (A16) 

It is then clear that a necessary condition in order that g(y), 
see (A 14a) with (A 14b), be real, is that the three constants 
Bj be all real. It is moreover necessary that FI (y) be positive, 
and in order that this be true for large negative y, it is re­
quired thatB2 and B3 both vanish [see (A14b)]. Hence the 
only real and regular solution of (AI) belonging to the first 
type reads 

g(y) = pl/2h [2p(y _ y)] 

with 

h(z) = [1 + 2exp( _z)]-1/2. 

Herep is related to Vby (A16), andy, 

y = - (2p) -lln(B i/p), 

is an arbitrary real constant. 
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(A17a) 

(A17b) 

(A17c) 

The following features of the function h(z) and of its 
derivative are worth noting [see (5.7) and Fig. 1]: 

0= h( - (0) <h(z) <he + (0) = 1, (A18a) 

h'(z) = [exp(¥) +2exp( _jz)]-3/2=-!S(z/2) >0, 

h'( ± (0) = 0, 

Max [h ' (z)] = h ' (0) = 3 -3/2. 
- <Xl <z< + 00 

(A18b) 

(A18c) 

(A18d) 

Let us now proceed to identify and study all the solu­
tions of the second type, see (A 15 ), that are real and regular 
for all real values ofy (for real V). 

It is first of all plain that a necessary condition, in order 
thatg(y) be real, is that the arbitrary constant B, see (A9), 
also be real, so that the three parameters Pj are either all 
three real or one real and two complex conjugates. 

Consider first the case of three real p/s. Is is then clear 
that, in order that g(y), see (A1S), be real, all three con­
stantsAj must also be real (up to a common arbitrary factor, 
that may be chosen real without loss of generality). More­
over, if Pj is not positive, the corresponding Aj must vanish, 
in order that g(y) remain real when y becomes large and 
negative. But (AlOa) implies that at least one ofthep/s is 
not positive; and if two of the three constants A j vanish, g(y) 
reduces to the trivial solution (A2). Hence the only case to 
be considered obtains when two ofthepj 's are positive [and 
different; otherwise g(y) reduces to the trivial solution 
(A2)], say 

(A19a) 

and 

(A19b) 

Note that (A19a) implies, via (AlOa) and (AlOb), that Vis 
negative, 

V= - (pi +p~ +PIP2) <0. 

The corresponding solution reads 

g(y) =pI/2Hs [(1-a)p(y-y);a], 

where we have set (for definiteness) 

P2 =P,PI = ap, O<a < 1, 

so that 

V = - p2 (1 + a + a2) 

and 
Hs (z;a) = [1 + s exp(z)] 

X [a- I + 4(1 + a)-Is exp(z) 

+ exp(2z)] -1/2, 

y= [(1-a)p]-lln IA/A21, 

s = sgn(A I IA 2 ). 

(A19c) 

(A20) 

(A21a) 

(A21b) 

(A22a) 

(A22b) 

(A22c) 

Note that this solution depends, for a given (negative) V, on 
two parameters, namely y and either p or a [see (A21 b) ] ; it 
depends moreover on the sign s. 

The following properties of g (y) are plain: 

(A23a) 
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g( + 00) = SpI/2 = Spy2, (A23b) 

g(Y) = 2pI/2[a( 1 + a)/( 1 + 6a + a2)] 1/2, if s = +, 
(A23c) 

g(y) = 0, if s = -. (A23d) 

It is also ofinterest to analyze the behavior of the deriva­
tive of g(y), 

g'(y) =p3/2[(1_a)2/(1 +a)]Z(a- 1 +Z) 

X[a- I +4(1+a)-IZ+Z2]-3I2. (A24a) 

Here we have set for convenience 

Z=sexp[(1-a)p(y-y)] . (A24b) 

Note that, for s = +, Z varies from 0 to + 00 as y ranges 
from - 00 to + 00, while for s = -, Z ranges from 0 to 
- 00 as y ranges from - 00 to + 00. Accordingly, the be­

havior of g'(y) is rather different depending on s, s = ±. 
Let us discuss separately the two cases. 

Fors = + ,g'(y) vanishesasy ..... ± 00, itispositivefor 
all values ofy, and it has a single local (and absolute) maxi­
mumaty =Y3' 

Y3=y+ [(1-a)p]-lln (z3)' (A25) 

wherez3 is the (only) positive solution of the cubic equation 

a2(1 + a)z3 + 2az2 - 2a2z - (1 + a) = O. (A26) 

Forinstance, fora = j, Z3 = i(33 1/2 - 3)::::: 1.37, andg'(Y3) 
= (2/27)p3/2. 

For s = -, g' (y) vanishes as y ..... ± 00, and it also van­
ishes at 

y=Yo=y+ [(1-a)p]-lln (1la). (A27) 

In the interval - 00 <y <Yo, g' (y) is negative, and it has a 
single local (and absolute) minimum at y = Y2' 

h=Y+ [(1-a)p]-lln( -Z2)' (A28a) 

where Z2 is the middle solution of the cubic equation (A26) 
(it is easily seen that - a -I < Z2 < 0). In the interval 
Yo<y< + oo,g'(y) ispositive,andithasasinglelocal (and 
absolute) maximum at y = YI' 

YI =y+ [(1-a)p]-lln ( -ZI)' (A28b) 

where Z I is the smallest solution of the cubic equation 
(A26) (it is easily seen that Z I < - a -I). For instance, for 
a=j, Z2=-~' and g'(Y2)=_(~)1/2p3/2, while Z3 
= - !(33 1/2 + 3)::::: - 4.37 andg'(Y3) = (2/27)p3l2. 

These analytic results may be compared with the graphs 
displayed in Figs. 2 and 3, via the relation 

g'(y) = p3/2Fs [p(y - y),a] . (A28c) 

Let us finally consider a solution of the second type, see 
(AI5), with one real and two complex conjugatep/s, say 

PI = r + iq, P2 = r - iq, P3 = - 2r, (A29a) 

with rand q real; note that we have already used (AlOa), 
while (AlOb) yields 

V = q2 - 3r. (A29b) 

It is then easy to ascertain that, in order that the solution 
g (y ), see (A 15 ), be real and regular for all real values of y 
[and not reduce to the trivial solution (A2) ], it is necessary 
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and sufficient that rbe positive,A I andA2 be complex conju­
gate (up to a common factor), and A3 vanish: 

r>O, Al =A exp(ib) , A 2=Aexp(-ib), 

A3 =0, b =b*. 

Then (AI5) yields the periodic solution 

g(y) = (2r)1/2 cos(qy + b) 

(A30) 

X{1 + sin(a)sin[2(qy + b) + an- 1/2 

(A31a) 

with 

tan(a) = rlq. (A31b) 

Note that in this case V may have either sign, or it may 
vanish; and that this solution contains, for given V, two arbi­
trary real constants, namely b and either r or q [see (A29b) 
and (A31 b) ] . 

Let us end this appendix reporting some properties of 
the periodic function 

F(x,a) = cos(x)/[ 1 + sin(a)sin(2x + a)] 1/2 (A32) 

[see (A31a)]. They read 

Fx (x,a) = - cos(a)sin(x + a) 

X [1 + sin(a)sin(2x + a)] -3/2, (A33) 

Max [F(x,a)] = 1, (A34a) 
O"X<21T 

Min [F(x,a)) = - 1. (A34b) 
O<;X<21T 

Graphs of this function are displayed in Fig. 4. 

APPENDIXB 

In this appendix we indicate how the ODE 

2yf' + f + 6c[f"' + 3(f"f2 + 3f'2f) + 3rr] = 0, 

f=f(y) , (Bl) 

can be integrated. 
A first integration, after multiplication by J, can be per­

formed directly, yielding 

yf2 + 3c(2f" -1'2 + 6f'P + p) = B, (B2) 

where B is an integration constant. 
Now set 

f(y) = g(y)/[2G(y)] 1/2 

with 

G'(y) =g2(y). 

We obtain 

yg2 + 3c(2g"g _ g'2) = BG, 

(B3) 

(B4) 

(B5) 

and after differentiation [using (B4)] this yields the linear 
ODE 

6cg"' + 2yg' + (1 - B)g = O. (B6) 

This equation can be solved by introducing the Fourier 
or Laplace transform of g (y ). The general solution shall de­
pend on three integration constants, in addition to B; but one 
of these is a multiplicative constant, and therefore may be 
factored away when computingf(y), see (B3) and (B4). 
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On the other hand the evaluation of G(y) from g(y), see 
(B4), yields an additional integration constant. Hence 1(Y ) , 
when computed from (B3), (B4), and (B6), contains four 
integration constants (including B). But a relation among 
these four constants is implied by the requirement that/(Y) 
satisfy (B2) (see the analogous treatment in Appendix A). 

Note that, in the special case B = 1, 

g'(y) = h [ - (3cI2) -1/3y ] , (B7) 

with h (z) an Airy function satisfying the second-order linear 
ODE 

h "(z) =zh(z). (B8) 

In the special case B = ° it is convenient to solve directly 
(B5), setting 

g(y) = {h [ - (6c)-1/3y ]p (B9) 

and getting again for h(z) the Airy equation (B8). 

APPENDIXC 

In this appendix we outline the derivation of the results 
reported in Sec. IV. 

Let v (x,t) satisfy the linear evolution equation (3.1), 
namely 

v, (x,t) = Vxxx (x,t), (Cl) 

and assume that v(x,t) is regular for real x and vanishes 
asymptotically (x-+ ± (0) sufficiently fast to guarantee the 
existence of all the integrals written below. 

Now define 

Xn.m(t) = (n!)-I f_+: dxxn[v(m)(x,t)]2, 

where 

(m) ( ) _ a mv(x,t) 
v x,t . axm 

(C2) 

(C3) 

Time differentiation of (C2) yields, using (C 1) and in­
tegrating by parts, 

Xn,m (t) = 3Xn _ I,m + I (t) - Xn - 3,m (t) - Xn - 3,m (t). 
(C4) 

This formula holds for m = 0,1,2, ... and n = 0,1,2, ... [with 
the provision that, by definition, Xn,m (t) = 0 if n < 0]; and it 
is plain to verify its consistency with (4.5), and the fact that, 
via (4.5), it yields (4.6). Q.E.D. 

In an analogous manner it is easily seen that the mo­
ments 

Yn(t) = (- )n(n!)-I f_+ooco dxxnv(x,t) 

evolve according to the formula 

Yn (t) = Yn - 3 (t), 

and that this formula implies (4.11) and (4.12). 

APPENDIX 0 

(C5) 

(C6) 

Q.E.D. 

In this appendix we analyze the behavior in the remote 
past (t -+ - 00 ) and future (t -+ + 00) of the solution 

553 

I
N An exp(yn) 

u(x,t) = 
n = 0 [g(x,t) P/2 

J. Math. Phys., Vol. 28, No.3, March 1987 

(Ol) 

of the nonlinear evolution POE (1.1). Here 

( 2 ~ &AmAn } g x,t) = C + 2 £.. exp(Ym + Yn) , 
m,n=O m + Pn 

C02a) 

g(x,t) = C2 + f [A ~ eXP(2Yn )] 

n=O Pn 

~ LAmAn } 
+ 2 n.m =~n""m !Pm + Pn exp(Ym + Yn) , 

(02b) 

Yn =Pnx+P~t, n= 1,2, ... ,N. (03) 

Our attention is limited to the case when all the parameters 
Pn and An are real; without loss of generality one can then 
assume 

An =A :#0, n = O,l, ... ,N, 

Po <PI <P2 < ... <PN' 

(04) 

(05) 

It is moreover clear that, in order that u(x,t) be real and 
regular for all (real) values of x and t, it is necessary and 
sufficient that all the parameters Pn be positive, or equiv­
alently 

h>~ (D6) 

since clearly this condition is necessary and sufficient to 
guaranteee thatg(x,t), see (02b), be positive definite for all 
real values ofx and t (we are of course assuming that Cbe 
real, so that C 2 is a non-negative constant). 

In order to discuss the behavior in the remote past and 
future it is convenient to focus attention on the derivative of 
u(x,t) rather than on u(x,t) itself, 

Ux (x,t) =1 (x,t)/[g(x,t) F12, 

N 

I(x,t) = C 2 L [AmPm exp(Ym)] 
n=O 

+ f {AIAmAn(2PI-Pm -Pn) 

l.m.n=O Pm + Pn 

Xexp(YI + Ym + Yn)}. 

The analysis can now be performed setting 

X= Vt+x' 

(07) 

(08) 

(09) 

with x' a fixed parameter, and then investigating for which 
values of V the function Ux (x,t), see (07), (08), and (02), 
has a nonvanishing limit as t -+ - 00 or t -+ + 00. It is more­
over convenient to introduce the cubic polynomial 

c(p) =p3 + Vp, (010) 

and to note that (03) and (09) yield 

(OIl) 

Note that the term with I = m = n in the last sum in the rhs 
of (08) is missing (i.e., it is multiplied by a vanishing fac­
tor). 

Let us begin by discussing the remote future, t -+ + 00. 

For any non-negative V, all the coefficients c(Pn) are 
positive, and the largest of them is c (p N) [see (010)]. 
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FIG. 5. Graph of c(p) = p3 + Vp with V <0; see (D1O). 

Hence as t..... + 00 g grows proportionally to exp [ 2c (p N ) t ] 
[see (D2b) and (D11)], while f grows proportionally to 
exp{[ 2C(PN) + C(PN _ I )] t} [see (D8) and (D11)]. 
Hence Ux vanishes asymptotically [proportionally to 
exp{ [C(PN _ I ) - C(PN)] t}; see (D7)]. 

To analyze the situation for negative V it is useful to 
refer to the graph ofthe function C (p) [see (D 10) ], as dis­
played in Fig. 5. It is moreover expedient to consider sepa­
rately two alternative cases: (i) values of V such that the 
N + 1 quantities C (p n ) are all different; (ii) values of V such 
that (at least) two ofthe N + 1 quantities c(Pm) coincide, 
say C(PI) = c(Pm) for some specific values of 1 and m [note 
that we are discussing the behavior of Ux (x,t) for a given set 
of theN + 1 parametersPn' consistent with (D5) and (D6); 
as it is clear from Fig. 5, it is therefore excluded that three or 
more C (p n ) coincide]. 

To analyze the first alternative, let us focus attention on 
the value of the parameter C(PN) [see (D5)]. If this param­
eter is positive, c(p N ) > 0, it is clear, from the same argument 
given above for positive V, that ux ..... o as t ..... + 00 (indeed, 
again proportionally to exp {[ C(PN -I) - C(PN)] t}; note 
that, if C(PN) > 0, then also C(PN) > C(PN -I ), see Fig. 5). If 
instead the parameter C(PN) is negative, c(Pn) < 0, then nec­
essarily all the quantities c(Pn) are also negative, c(Pn) < 0, 
n = O,l, ... ,N (see Fig. 5). Hence in this case f vanishes as 
t ..... + 00 [see (D8) and (D11)] while,ifC#0,g--+C 2 [see 
(D2) and (D 11 )], and therefore u x again vanishes as 
t ..... + 00 [see (D7)]. This conclusion hinges on the condi­
tion C #0; but the same outcome obtains, by an argument 
analogous to that given above, if C = 0, since in such a case 
f vanishes, as t ..... + 00, proportionally to 
exp [(2c1 + c2 )t], wherec i is the least negative of theN + 1 
quantities c(Pn) and C2 is the second least negative of these 
N + 1 quantities, while g vanishes proportionally to 
exp(2c l t)· 

Let us finally assume that C(PN) vanishes, namely [see 
DlO) and (D5)] 

(D12) 

note that in such a case all the other N quantities c(Pn) are 
negative, see Fig. 5 and (D5), (D6). It is then again clear 
that, if C = 0, u x vanishes as t..... + 00, since in such a case, in 
this limit, g tends to a finite (nonvanishing) value while f 
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vanishes. On the other hand if C #0 both f and g tend to a 
finite limit as t ..... + 00, and indeed one finds, as t ..... + 00 

U x (x,t) ;:::: sgn (AN )SI (x - XN,t;PN)' (DB) 

xN=(2pN)-lln[pNC2/(2A~)]. (D14) 

Here the functionS I (y,t;p) is of course defined by (5.6) and 
(5.7). 

Let us now complete the analysis of the behavior of u x as 
t ..... + 00 by considering the other alternative, namely values 
of V such that two ofthe quantities c(Pn) coincide, say 

C(PI) = c(Pm) = c. (DIS) 

A glance at Fig. 5 shows that the value C is necessarily nega­
tive. On the other hand it is easily seen, by an analysis analo­
gous to those above, that in order that Ux remain finite as 
t..... + 00 it is necessary and sufficient that the terms with the 
two exponents (D 15) be the dominant ones as t..... + 00 both 
in f andg [see (D11), (D8), (D2), and (D7)]. For this to 
happen two conditions must hold: the constant C must van­
ish [see (D2)], and all the other c(Pn )'s [with n#l, n #m; 
see (D 15) ] must be less than the common value c, see (D 15) 

C = 0, (D16) 

C(Pn) <C, n#m, n#l. (D17) 

The last condition implies (see Fig. 5) that the two param­
eters PI and Pm be the extreme ones of the sequence Pn [see 
(D5)]; say, 

(D18) 

This condition, together with (D 15) and (D 10), deter­
mines the value of V, 

(D19) 

and it is then easily seen that Ux has, as t ..... + 00, the finite 
limit 

withSs(y,t;Po,PN) defined by (5.15) and 

x = (PN - po)-Iln lAo/ANI, 

s = sgn(Ao/AN ). 

(D20) 

(D21) 

(D22) 

We may therefore conclude that, as t ..... + 00, the behav­
ior of Ux (x,t) is given by (DB) with (D14) if C #0 and by 
(D20) with (D21) and (D22) ifC = O. 

Let us proceed next to consider the behavior of Ux (x,t) 
ast ..... - 00. 

First of all, it is easily seen that, if V is non-negative, 
ux(x,t) [see (D7)] vanishes as t ..... - oo,sinceallthecoeffi­
cients c(Pn) are positive [see (DlO), (D5), and (D6)], so 
that, if C # 0, in the limit f vanishes and g tends to the finite 
value C 2 [see (D11), (D8), and (D2)], while ifC = ° both 
f and g vanish in the limit, but so does u x [see (D7) ] . 

For negative V, it is again expedient to consider sepa­
rately two alternative possibilities: (i) values of V such that 
the N + 1 parameters c(Pn) [see (D10)] are all different; 
and (ii) values of V such that there exist (at least) one pair of 
c(Pn) that coincide [see (D15) l. 

In the first case, let us focus attention on the value of the 
parameter c(Po) [see (DIS), (D5), and (D6)]. If this pa­
rameter is positive, c(Po) > 0, then all the other c(Pn)'s are 
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also positive, C(p,,) >0, for n = 1,2, .. ,N (see Fig. 5). It is 
then clear that, as t - - 00, f vanishes [see (D8) and 
(011)]; as for g, ifC :/=0 it tends to the finite value C 2 [see 
(02) and (011)], while if C=O it also vanishes as 
t- - oo;butinanycase,ast- - oo,theratioux , see (07), 
vanishes. And it is easily seen that the same conclusion, 
Ux -Oas t-' - 00, obtains if the parameterc(po) is negative, 
c(po) < 0, as a consequence of the divergence of g and f (g 
proportionally to exp(2cM t), f proportionally to 
exp [ (2c M + c') t ] , where c M is the most negative one of the 
N + 1 quantities c(p" ) and c' is the nextto most negative one 
of these N + 1 quantities). On the other hand if the param­
eter c(Po) vanishes, namely for 

V= -pi, (023) 

then all the other c(p" )'s are positive [see Fig. 5 and recall 
(05) and (06)]; in this caseg has a finite limit as t- - 00 

[see (02) and (Dll)], and so does f [see (08) and 
(D 11)] provided C does not vanish, C :/= o. And it is easily 
seen that in such a case, as t - - 00, 

Ux (x,t) :::::sgn(Ao)SI (x - xo,t;po) 

with 

Xo = (2po) -I In [poC2/(2A ~)]. 

(024) 

(025) 

Here of course the function SI (y,t;p) is defined by (5.6) and 
(5.7). 

Let us finally consider the second alternative, see 
(015). It is then clear that a necessary and sufficient condi­
tion in order that Ux not vanish as t - - 00 is that, in this 
limit, the two terms corresponding to (015) provide the 
dominant (divergent) contributions both in the asymptotic 
behavior of f[see (08) ] andg [see (D2)]. In order for this 
to happen the following conditions must hold: 

C=C(PI) =c(Pm) <c(p,,), n¥=l, n¥=m. (026) 

A glance at Fig. 5 implies that, for this condition to hold, it is 
necessary and sufficient that the two parameters PI and Pm 
for which (015) holds be contiguous, say 

PI =Pm+ I' m = O,I, ... ,N - 1; (027) 

note that the corresponding values of V are 
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And in such a case it is easily seen that, as t ..... - 00, 

Ux (x,t):::::sgn(Am+ I )Ssm (x -xm,t;Pm,Pm+ I)' 

with Ss (y,t;Pm,Pm + I) defined by (5.15) and 

xm = (Pm + I -Pm)-Iln IAmIAm+ II, 

Sm = sgn(AmIAm+ I)' 

(028) 

(D29) 

(D30) 

(031) 

We may therefore conclude that, as t ..... - 00, the behav­
ior of Ux (x,t) is described by the formula 

Ux (x,t) :::::sgn(Ao)SI (x - xo,t;po) 

N-I 

+ 2: sgn(Am + I )Ss," (x - Xm ,t;Pm ,Pm + I)' 
m=O 

(032) 

withSI andS. defined by (5.6), (5.7), and (5.15) and with 
XI' Xm , and Sm defined by (025), (030), and (031); the 
first term in therhsof(031) is however present onlyifC :/=0 
[ this is automatically guaranteed, since if C vanishes, Xo di­
verges, see (025), hence that term disappears, see (5.6) and 
(5.7)]. 
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A simple approach employing properties of solutions of differential equations is adopted to 
derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are 
commonly in use are unified, whereby the general approximate solution to a second-order 
homogeneous linear differential equation is presented in a standard form (SF) that is valid for 
all orders. In comparison to other methods, the present one is shown to be leading in the order 
of iteration, and thus possibly has the ability of accelerating the convergence of the solution. 

I. INTRODUCTION 

The WKBJ method has wide application in quantum 
mechanics where it is used to find the asymptotic form of the 
solution of a Sturm-Liouville equation for a large value of 
the eigenvalue, e.g., in Kreiger et al. I It is also widely applied 
in the vast field of ionospheric radio propagation where a 
wide list of references may be found in Ratchiffe.2 A general 
survey of the WKBJ theory and some of its applications may 
be found in Bender and Orszag,3 Froman and Froman,4 
Heading,5,6 and Hecht and Mayer. 7 

The purpose of this work is to present a new formulation 
for the generalized version (SF) of the WKBJ approxima­
tion. In their pioneering work Hecht and Mayer? extended 
the WKBJ method using the Schwarzian derivative formal­
ism to obtain solutions to the time-independent SchrOdinger 
equation. They claim that under certain conditions, their 
method gives results to any degree of accuracy. Unfortunate­
ly, they use several transformations, which lead to an indi­
rect iteration scheme, besides the fact that the calculations 
quickly become unwieldy. Again Froman and Froman,4 us­
ing complex variable theory, obtained equations similar to 
the ones here (SF). They then embarked on a series of map­
pings and integrals in order to derive an exact formula for the 
general solution of the Schrodinger equation. 

The present treatment gives a simple derivation for the 
generalized WKBJ method (SF) employing basic properties 
of the theory of solutions of differential equations. Also the 
iteration scheme adopted is simple, explicit, and a refine­
ment of earlier ones. 

It often happens that the results provided by the first­
order theory are not sufficiently accurate. In such cases it 
becomes necessary to consider second- and higher-order 
corrections. For instance, Kesarwani and Varshni8

,9 used 
higher-order corrections to the WKBJ method to improve 
the results. They have shown that the inclusion of these cor­
rections improve the accuracy of the results. This is certainly 
in favor of the present method (SF); since when comparing 
it with the normal approximative methods used, one finds 
that its second-order approximation is equivalent to the 
fourth-order approximation of these methods. 

II. FUNDAMENTAL EQUATIONS 

The WKBJ method is a useful tool for obtaining a global 
approximation to the solution of a linear differential equa-

tion whose highest derivative is mUltiplied by a small param­
eter, say c. The present treatment is merely concerned with 
linear second-order homogeneous differential equations. 
Any such equation may be transformed to 

y" +/(x)y=O, xE(a,b), (2.1) 

which is a form most convenient for our discussion. The 
function/(x) is taken real, with continuous higher deriva­
tives, and does not vanish in (a,b). 

The essence of the WKBJ method is to obtain a general 
approximate solution to (2.1) subject to/ex) being a slowly 
varying function. If/(x) were a constant, say k 2, then one 
should immediately have solutions of the form 

y* = Aeikx + Be - ikx, (2.2) 

where A and B are arbitrary constants. 
In the case when/(x) is no longer constant, but instead a 

slowly varying function, it might be reasonable to assume 
that the solution would not be markedly different. Therefore 
the normal procedure adopted is to assume a solution to 
(2.1) of the form 

y = eiif)(X), 

thus transforming it into 

-4>,2+i4>" +/(x) =0, 

(2.3) 

(2.4) 

which is a Ricatti equation for 4>'. A standard approach to 
find approximate solutions to it is to use an iterative method. 
Let us write Eq. (2.4) in the form 

4>~2+ I =/ + i4>:, n = 0,1,2, ... , (2.5) 

where 4>: is assumed to be small in relation to the other 
quantities. The iterative process is started with the initial 
value 

4>f)(x) = 0. (2.6) 

It is profitable at this stage to compute the first four terms in 
this iteration. These lead to, after integration, 

¢>4(X) = ± T, + T2 ± T3 + T4, 

where 

TI f/1/2 dt, T2 = ~ In/. 

T3 LX{ :21'2/-512 - !flf
/-

3IZ}dt, 

(2.7) 

(2.8) 
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T = i{~f'2 - .J...-/ "1- 2}. 
4 64 16 

For future reference, let us denote this method by (AM). In 
the literature however, the (AM) method is seldom used to 
calculate terms beyond the first order. The tendency is to use 
the method of formal asymptotic series expansion (FE), for 
example. This might be attributed to the fact that it leads to 
explicit results (Bender and Orszag,3 p. 487), unlike the 
(AM) method where more care is required in the order of 
terms to be retained in the expansion involved, as well as in 
their signs. 

III. THE WKBJ APPROXIMATION 

In this section the standard form (SF) for the general­
ized WKBJ approximation is derived. If YI and Y2 are two 
linearly independent solutions to (2.1) then its general solu­
tion y* is known to be 

y*(x) =AYI + BY2' (3.1) 

where 

Y2(x) =YI(X) i\-2 dt . (3.2) 

On choosingYI to be of the form 

YI(X) =g(X)-1/2, g#O, 

Eqs. (3.1) and (3.2) lead to 

(3.3 ) 

y*(x) =Ag(X)-1/2 + Bg(X)- 1/2f g(t)dt, g#O. 

(3.4 ) 

Now aSYI is a solution to (2.1), Eqs. (2.1) and (3.3) lead to 

I(x) = !g"g-I - ig,2g -2, g#O. (3.5) 

This equation cannot be solved exactly for g(x), except for 
very special choices of/(x). On the other hand onceg(x) is 
prescribed, both/(x) and the general solution to (2.1) are 
completely determined. It is this latter case that is utilized as 
a basis for the subsequent part of this work. 

Let us takeg(x) to be of the form 

g(x) = ¢/e2i"', (3.6) 

where ¢(x) is an arbitrary function of x. This is a very con­
venient representation for g(x) as an integrand. Now substi­
tuting for it into Eq. (3.4) leads to 

y*(x) = ¢,-1/2[Ae- i", + Bei",] (3.7) 

as the general solution to Eq. (2.1). Another motive for the 
choice of the form (3.6) for g(x) is the fact that when 
¢ = lex, Eq. (3.7) reduces to (2.2) in which case it is an 
exact solution to (2.1), with j(x) = k 2 from (3.5) and 
(3.6). 

From Eqs. (3.5) and (3.6) one may write 

¢,2 _ I(x) = i¢"2¢'-2 _ !¢",¢,-I. (3.8) 

This equation may now be solved by the iterative process 
where ¢" and ¢", are assumed to be small in comparison to 
the other quantities, which they will be for a slowly varying 
¢'. Thus as initial values of the iteration one may take 

¢:; = ¢:;' = 0, ¢~ #0, (3.9) 
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so that, on retaining the positive sign only, Eq. (3.8) leads to 

¢'(x) =¢i =/1/2. (3.10) 

To pursue this iteration let us write Eq. (3.8) in the form 

¢~2+ I = I(x) + i¢:2¢~ - 2 
1.1.'" A.' - 1 - 0 1 2 - Tf"n 'Pn , n - , , , .... 

The second term in this iteration is then found to be 

¢; (x) =p/2[1 + flf':r- 3 - 1/"1-2], 

or on integration one gets 

¢2(X) = TI + T3 • 

Equations (3.7) and (3.13) lead to 

(3.11 ) 

(3.12) 

(3.13) 

y* (x) = ¢; - 112 [Ae - i"', + Bei"',] , (3.14) 

as the general solution to Eq. (2.1). This emphasizes the fact 
that (3.7) represents the general solution of (2.1) for all 
orders, apart from the order of approximation of ¢. It thus 
forms a standard form (SF) for the generalized WKBJ ap­
proximation of exact approximate solutions to Eq. (2.1). 

IV. COMPARISON OF THE RESULTS 

Let us compare the results of the previous section, the 
(SF) method, with those of the (AM) and (FE) methods. 
To do so it is beneficial to quote the results for the formal 
expansion (FE) method in Bender and Orszag3 (p. 486), 
rewriting them in a slightly modified form to suit the present 
notation. Thus the function¢(x) inEq. (2.3) is expressed in 
the form 

00 

¢(x) = L E"-ISn (x). (4.1 ) 
n=l 

The first four terms in this expansion are 

SI = ± T I , S2 = T2, S3 = ± T3, S4 = T4• (4.2) 

Now since € is a parameter, on taking it to be unity, one finds 
the expressions (2.7) and (4.1), for ¢, to be identical up to 
the fourth order. This shows full agreement between the re­
sults obtained by the (AM) and (FE) methods up to the 
order taken. 

Considering next Eqs. (2.3), (4.1), and (4.2) one may 
write 

Y*(x) =ei(T,+T')[Ae-i(T,+T,) +Bei(T,+T,)]. (4.3) 

Comparison of the terms in square brackets in Eqs. (3.14) 
and (4.3), after substituting from (3.13), shows that they 
are identical. It remains to consider the other terms. On ex­
panding the expresions below, appearing in ( 3.14) and 
(4.3), respectively, one finds 

¢;-1I2 = ei(T,+ T.) =1-1/4[ 1 + -h1"1- 2 - i4f'2] , (4.4) 

to the same order. Substituting from (4.4) into (3.14) and 
(4.3), one finds that the two results are equivalent. This 
proves the equivalence of the three methods, (AM), (FE), 
and (SF), the only difference being that the present method 
(SF) has the privilege of leading in the order of iteration in 
the sense that the second-order result of the (SF) method is 
the same as the fourth-order result of the (AM) and (FE) 
methods. 
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V. CONCLUDING REMARKS 

The WKBJ method, despite its evident utility, suffers 
from lack of completeness regarding the convergence of the 
series solution (Kesarwani and Varshni9

), and that these 
solutions fail at the turning points (Heading5

), but still in 
many cases where exact solutions are not possible they are 
very valuable. Here one hopes that the present method (SF) 
might close this gap by accelerating convergence, and thus 
reduce calculations necessary to obtain higher-order ap­
proximations. It is also expected that the iteration scheme 
will converge more rapidly since it is started with a more 
accurate representation of the exact solution. The method 
has also the merit of obtaining higher approximations in a 
simple and direct manner and leads to explicit, linearly inde­
pendent solutions unified in a single equation. It has also 
been demonstrated that the solutions it gives agree with 
those obtained by other established methods, except for the 
fact that it is leading in the order of iteration. 

It is necessary here to throw light on some of the draw­
backs of the present method. It is seen that in order to identi­
fy a more accurate representation of the solution, one must 
still work out the first few terms in the simpler (AM) iter­
ation scheme. Another drawback of the method is that, since 
the iteration proceeds twice as fast as in the simpler (AM) 
method, each stage requires more differentiability on/ than 
in the simple scheme. Despite these criticisms, the substitu­
tion (3.6) does provide a rather neat method. 
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Finally, one must be encouraged by the attempts that 
have been made more recently by TaylorlO to assess the de­
gree of accuracy of the WKBJ method for solutions of Eq. 
(2.1 ), where the function/(x) is real and twice continuously 
differentiable and does not vanish. 
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It is shown that the indefinite metric structures of degenerate systems as given by Strocchi and 
Wightman [F. Strocchi and A. S. Wightman, J. Math. Phys. 15,2198 (1974); 17, 1930 
( 1976)] arise in a natural fashion from the algebraic structure of such systems, where the 
latter has been developed in a C *-context by Grundling and Hurst [H. B. G. S Grundling and 
C. A. Hurst, Commun. Math. Phys. 98, 369 (1985)]. Auxiliary concepts like gauge 
equivalence are examined, and the preceding general theory is specialized to the situation of 
linear boson fields with linear Hermitian constraints. Two examples of this situation are 
given-a one-dimensional scalar boson in a periodic universe and Landau gauge 
electromagnetism. 

I. INTRODUCTION 

The central problem that we address is the following: 
indefinite metric space methods are only employed in the 
analysis of degenerate systems. Qualitatively this is because 
degenerate systems contain nonphysical objects, and this 
creates the freedom to define nonstandard structures on 
such objects, if convenience dictates. Now the general alge­
braic structure of degenerate systems has been developed in 
Ref. 1, and the indefinite metric space structures necessary 
for gauge theories has been developed in Refs. 2-4. The ques­
tion therefore arises what the connection is between these 
two, ifany. 

In early physical models it was found that nonpositive 
definite canonical commutation relations naturally lead to 
an indefinite inner product for the Fock representation. For 
electromagnetism, the Gupta-Bleuler approach, which is lo­
cal and covariant, uses an indefinite inner product space 
(lIP space), while other approaches, e.g., the Coulomb 
gauge, represented on a Hibert space, are nonlocal and non­
covariant. It would therefore appear that while the physical 
theory of electromagnetism can be represented on a Hilbert 
space, the physics is expressed in a more convenient form 
when represented on an lIP space.2

,5 

More recently, in the framework ofthe Wightman for­
mulation of field theory, Strocche showed that all theories 
with local gauge transformations of the second kind (e.g., 
Yang-Mills field) must be represented on an lIP space for 
those transformations to be non trivially represented. The 
fact that these gauge theories have such physical desirable 
properties such as confinement, infrared singularities, etc.,4 

leads one to regard the mathematical structures involved 
with lIP representations more seriously. 

The most important gauge theories-electromagne­
tism, Yang-Mills, gravitation-are all degenerate theories 
in the sense of Dirac, i.e., the Hessian of the Lagrangian 
vanishes, hence constraints or supplementary conditions ap­
pear in these theories.6 This means that there are nonphysi­
cal objects present in these theories, which is the situation in 
lIP representations. By a "degenerate theory," here we will 
mean simply a theory containing a degree of freedom that 
has no physical counterpart, so that in this situation the task 
of the physicist is to extract the physical subtheory. Such a 

physical subtheory should have the usual structure of a regu­
lar theory. There may be several different methods for ob­
taining the same physical subtheory, and our aim here is in 
showing the relation between two such methods, viz., the 
adaptation of the Strocchi-Wightman approach2 to C *-alge­
bras, and the method developed in Ref. 1. 

The structure of lIP theories has been extensively treat­
ed in the Wightman formalism by various authors,2-4,7 and 
the algebraic aspects of these theories-still in the Wight­
man formalism-were considered in Ref. 8. The path inte­
gral approach was developed for lIP theories in Ref. 9. A 
construction similar to the Fock-Cook construction was de­
veloped by Mintchev lO to obtain a Fock-type representation 
with lIP. Dadashyan and Khoruzhii ll developed the quasi­
local theory for lIP theories in the Wightman formalism. 
These authors also started a more general study of unbound­
ed operator algebras on lIP spaces, a subject further devel­
oped by Jakobczyk in Ref. 12. The theory of lIP spaces is 
well presented in the book by Bognar. 13 To the best of our 
knowledge, there is only one study of lIP representations 
from the purely algebraic field theoretic point of view, and 
that is a recent publication by Jakobczyk. 14 A pUblication by 
Araki 15 considers the specific problem of group representa­
tions on an lIP space with additional structure, such as is 
found in the situation of Gupta-Bleuler electromagnetism, 
and this theory would become applicable to algebraic field 
theory, once the latter has been fully developed in the lIP 
context. 

In practice, degenerate systems are always character­
ized by supplementary conditions that may be ad hoc, or be 
canonical constraints in the sense of Dirac, 6 or be the genera­
tors of nonphysical transformations. The imposition of the 
supplementary conditions is meant to select the physical the­
ory, and one may enquire into the abstract algebraic process 
that results from this requirement. 1 

Quantized systems consist of an algebra of operators 
acting on a Hilbert space (or rigged Hilbert space), hence 
there are two ways of imposing supplementary conditions, 
i.e., first via conditions on the operators, called algebraic 
conditions, and second via conditions on the state vectors, 
called state conditions. These are written as A = 0 and 
A I"') = 0, respectively. In order to avoid the complications 
associated with unbounded operators, we consider hence-
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forth instead the object U;..: = exp (iAA), and write the con­
ditions as U;.. = 1 and U;..\f/!) = \f/!), respectively. If A is 
Hermitian, U;.. is unitary, and hence it may be possible to 
define abstract elements in a C *-algebra corresponding to 
these, e.g., in Segal's method for the algebraic quantization 
of linear fields. 16 If A is non-Hermitian but A * satisfy the 
same conditions as A, the unitary groups can be defined in 
terms of the Hermitian combinations A + A * and 
i(A - A *). WhenA is non-Hermitian and A * does not satis­
fy the same conditions as A, the Hermitian product A * A can 
be used to generate the unitary group U;.., but in linear field 
theoriesl6 it may not be possible to define an element in the 
abstract algebra corresponding to exp (iAA * A), and so diffi­
culties may arise. In the sections to follow, we assume that 
the U;. has been defined as an element of the field algebra. 

II. BASIC STRUCTURE OF DEGENERATE SYSTEMS 

In this section we collect the basic algebraic structures 
associated with systems with state conditions, as developed 
in Refs. 1 and 17, which is where the interested reader can 
find the proofs of the statements below. As in Ref. 18 assume 
the following. 

Assumption 2.1: All physical information of a specified 
system is contained in the pair Y, €i, where the unital C *­
algebra Y is the field algebra, and €i is its set of states. 

Assumption 2.2: There are two specified families of one­
parameter groups {Uj (A) \AelR, iEl} and {Vj (A) \AelR, iE.!} 
in Y, called state and algebraic conditions, respectively, 
where the index sets I, J need not be finite. All physical 
information is contained in Y and the set of Dirac states 
defined by 

€iD : = {we€i\(w\Uj(A» = 1 Vi,A}. 

Then we€iD iff (W\AUj(A» = (w\A) = (w\Uj(AA) Vi, 
A, VAeY, or in terms of L; (A): = U; (A) - 1: we€iD 
iff{L; (A)}C Ker w iff Y{L; (A)}U{L; (A)}YC Kerw. 

Theorem 2.3: Let ~ (L) be the C *-algebra generated by 
{L; CA)}. Then we€iD iff ~(L) C Kerw iff[~(L)Y 
UY ~ (L)] C Ker w, where [.] denotes the closed linear 
space generated by its argument. 

Theorem 2.4: €iD #0iffU~(L) ifflE£[~(L)Y 
UY ~(L)], and in this case €iD contains pure states. 

So our non triviality assumption is the following. 
Assumption 2.5: Henceforth assume lEi~ (L). 
For any set ncY, define 

vii yen): = {FeY\FMen3MF VMen} , 

hence if 0. is a C * -algebra, then vii y (0.) is the largest C *­
algebra in Y for which 0. is a two-sided ideal. 

Theorem 2.6: Let ff: = [Y ~(L)], fiJ: =ffnff*, 
then fiJ is the largest C *-algebra annihilated by all the Dirac 
states, i.e., fiJ is the unique maximal C *-algebra in 
%: = n{Ker w\we€iD}. 

Theorem 2.7: &: = {FeY \ [F,H]efiJ VHefiJ} 
= vii y (fiJ ). Then UfiJ, and fiJ is a proper two-sided ideal 

for &. In Ref. 6, Dirac defines his observables as "first-class 
variables" in an analogous way to the way that & is here 
defined. The observables in quantum theories are tradition­
ally taken to be ~(L)'. 

560 J. Math. Phys., Vol. 28, No.3, March 1987 

Define Y to be the largest set such that ~ (L) Y 
C [Yd(L)]. Then le~(L)'cYnY*. 

Theorem 2.8: fiJ = Y*~(L)Y and & = YnY*. 
Hence ~ (L)' C & , and so we could choose tJ even as the set 
of observable quantities. tJ can be considered to be the lar­
gest C *-algebra on which we can impose the constraints. 
Define the maximal C *-algebra of physical observables as 

f7i: = tJ/fiJ . 

The factoring procedure is the actual step of imposing the 
constraints. Now it is possible that f7i may not be simple, and 
this would not be acceptable for a physical algebra. So, using 
physical arguments, one would in practice choose a C *-sub­
algebra tJ c ~ & containing ~ (L)' such that 

f7ic: = tJJ(fiJntJc)Cf7i 

is simple, and then f7i c is the right physical algebra. The 
distinction between & and tJ c was not made in Ref. 1. The 
procedure of obtaining the objects above is called the T pro­
cedure. 

Theorem 2.9: we€i D iff 1T w (fiJ ) nw = 0, where 1T wand 
nw are the Gel'fand-Naimark-Segal (GNS) representation 
of wand its cyclic vector, respectively. 

This corresponds to the heuristic X \ f/!) = 0 method for 
imposing constraints. Define 

Y: = {aeAut YlfiJ = a[fiJ J}, 

then since & = vii y (fiJ ) , a also preserves & and so defines 
canonically an automorphism a' on f7i. Define the group 
homomorphism T: Y -Aut f7i by T(a) = a', then we ex­
pect Ker T to consist of gauge transformations. 

Theorem 2.10: KerT={aeAutY\(w\[A]F) 
= (w\AF) VA, Fe® and Vwe€iD}CY. 

Theorem 2.11: aelnn Y n Y::::} a' elnn f7i. The physical 
admissible automorphisms of Y denoted by Y c are those 
which are definable on f7ic' i.e., a(tJc ) = dc, and 
a(fiJc)~fiJc:=fiJn&c' Clearly, ifaeY, it is sufficient 
that it satisfies a( tJ c) ~ tJ c for it to be physically admissi­
ble. Similarly to T, we define the group homomorphism Tc : 
Ycl--+Aut f7i c> and then in this context the gauge transfor­
mations will be Ker Tc. The proof of Theorem 2.10 which 
was given before l easily adapts to the new situation to give 
the statement: 

aeKer Tc::::}(w\a[A ]F) = (wIAF) 

VA ,Fe tJ c and Vwe€iD . 

This will be used later. 
The construction above has been shown to lead to re­

sults isomorphic to the usual Hilbert space method of impos­
ing supplementary conditions, and moreover that it can ful­
fill reasonable physical requirements. 17 Moreover, Dirac 
electromagnetism has been developed as an example of a 
model which possesses the structure of the general theory 
above. 1,17 

Next consider the algebraic conditions {V; (A)}. Define 
N; (A): = V; (A) - I. It is hard to find an abstract interpre­
tation of the heuristic condition N; (A) = O. We interpreted 
it previouslyl7 to mean either that by construction of Y the 
abstract object that would have corresponded to N; (A) is 
identically zero (cf. Ref. 19 for an example of this ap-
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proach). or to mean that there is some *-homomorphism r: 
9 c Y I---+f!It a onto, with {Ni (A.)} C Ker r. Clearly in this 
case f!It a = 9/Ker r. Now if r is not the T procedure 
above, there are ordering problems in systems where both 
types of constraints need to be imposed, and so the natural 
conclusion is that the two best options for dealing with alge­
braic conditions are (i) construct Y in such a way that the 
objects in it which correspond to the heuristic constraints are 
identically zero, or (ii) treat all constraints on the same foot­
ing, i.e., impose them according to the T procedure. 

III. SYSTEMS WITH INDEFINITE INNER PRODUCT 
REPRESENTATIONS 

In order to set up the problem of IIP theories, one needs 
to decide whether the problem is abstract algebraic or repre­
sentational or both. To this end, consider a typical situation 
in which the problem arises. In Manuceau's version20 ofSe­
gal's method of algebraic quantization,16 we start from a 
manifold which is usually a space of test functions, denoted 
M, and with a nondegenerate symplectic form B ( . , . ) on M. 
Then with the method given in Ref. 20 one constructs the 
C *-algebra of the canonical commutation relations 

(CCR's), 6.. (M,B) ,and this can be taken as the field alge­
bra for the theory. In some approaches, e.g., Ref. 21, B(',') 
is the right-hand side of the smeared CCR's, while in other 
approaches,16 it is more indirectly derived from this. Thus 
the non-positive-definiteness of the CCR's, which is the 
source of the IIP, in some cases may be reflected in the alge­
braic structure of the theory. However, in general, it is not 
clear that this should be the case, for the following reasons. 
In the process of constructing a Fock representation for the 
theory, the test function space M is given an inner product so 
that it becomes a Hilbert space $". The Fock-Cook con­
struction then creates the Fock-Hilbert space Y ($") from 
$" as the representation space. If M is given an IIP so that 
$" is just an IIP space, then by Mintchev's construction 10 

Y($") is also an IIP space. Conversely, given an inner 
product on $", B ( . , . ) is the imaginary part of it, and this is 
antisymmetric. The positive-definiteness of an inner product 
is a property pertaining purely to its real part. However, only 
its imaginary part B ( . , . ) enters the algebraic structure of the 
theory. There is a connection between B(',,) and the real 
part of the inner product ( . , . ) of $", given by the complex 
structure J defined by 

J is a real operator on M satisfying J2 = - 1 ; 

B(z,Jz) = 0 iff z = 0; 

B(Jz,Jz') = B(z,z') 't;/z, z'EM. 

Then J defines an inner product on M by (zlz') 
: = B(z,Jz') + iB(z,z'). For quadratic Hamiltonians, this 
complex structure was extensively examined by Broad­
bridge,22 who found that in the positive-definite case, there is 
a unique complex structure for each dynamic action C(t) on 
M which renders CU) unitarily implementable in the resul­
tant Hilbert space. He found, however, that if the complex 
structure induces an IIP, then its existence is highly nonuni­
que for each C(t). Hence for each B( . , . ) we can define with­
in physical acceptability a wide variety ofIIP's. (This again 
expresses the arbitrariness of structures that include non-
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physical objects.) Thus the connection between the algebra­

ic structure of 6..(M,B) and the positive-definiteness of the 
metric becomes quite vague. Moreover some important 
gauge theories, e.g., the Yang-Mills field, have not as yet 
been cast into a C *-algebra formulation due to the nonlinear­
ities involved. Therefore it does not seem wise to put too 
many restrictions on the form of the field algebra on the basis 
of analogy with present theories. For these reasons, while we 
are aware that IIP theories may have a slightly different 
structure in their field algebras, we intend to examine the 
problem of IIP theories as a purely representational prob­
lem, i.e., the problem of the representation of some specified 
field algebra on a IIP space. 

Algebraic field theory is based on the axiom that all 
physical information of a system is contained in a pair as in 
Assumption 2.1. If a theory contains nonphysical quantities, 
we need not necessarily start from such a pair {Y,@S}, as 
long as the final theory constructed from the degenerate the­
ory satisfies the axiom. The axiom is justified by Hilbert 
space quantum mechanics, as a C *-algebra is the abstract 
version of closed *-algebras of bounded operators on a Hil­
bert space, and the states can be thought of as expectation 
values of the observables of the algebra. So in facing an alge­
bra of operators on an IIP space, one may legitimately doubt 
whether this axiom will still be justified. If we reject the axi­
om for the total degenerate theory, but still adhere to it for 
the physical subtheory, the question will arise as to what 
abstract type of algebra one should take for the field algebra, 
and here one is faced with the fact that the theory of operator 
algebras on IIP space is still very rudimentary. 11.12 There are 
not many hints forthcoming from physics either, due to the 
presence of nonphysical entities in the theory. We leave the 
development of these algebras to the mathematicians of the 
future. In what follows we follow the easier alternative of 
accepting the structure of Sec. II and the axiom that all phys­
ical information is contained in it. 

Now having decided to approach the problem as repre­
sentational, i.e, some unital C *-algebra Y, taken as the field 
algebra, is represented on an IIP space12 $", there are two 
possible problems to consider. 

(i) Given a positive subspace $'" as the physical sub­
space (e.g., selected by imposition of a supplementary condi­
tion), what algebraic structure does this imply for Y? 

(ii) Given the algebraic structure of a degenerate sys­
tem in Y (as summarized in Sec. II), how do we obtain IIP 
representations possessing the structure set out in Ref. 2? 
(Cf. D~finitions 3.3 and 3.6 below.) 

In the following we will first consider (ii) in detail be­
fore returning to (i). 

Only ordinary Hilbert space representations can arise 
via GNS construction from the states me@S, so in order to 
obtain IIP representations we assume the following. 

Assumption 3.1: Given a C *-algebra Y as a field algebra 
with its set of states @S, all physical information is contained 
in {Y,@S}. There may also exist some nonpositive functional 
feY* which can contain the physical information with Y 
(and may more conveniently express it). There exists a set of 
constraints {Ui (A.)}, and for all physical states m we must 
have (mlUi (A.» = 1. 
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The last sentence expresses the fact that Y is a degener­
ate system, and from this assumption the theory presented in 
Sec. II will be applicable, i.e., there is the structure: 

{L i (A)}C.rf(L) c.@C&'cY, ~D' {~,~(~)}, 

~c :=&'c/'@c 

is simple. Henceforth such a structure will be called a C *­
degenerate system. A C *-degenerate system may be denoted 
simply by .@ C Y and & c • Henceforth we only use the ideal 
structure.@ c <1& c' and the simplicity of ~ c' and so omit the 
SUbscript c. 

Lemma 3.2: Given a linear space X with a degenerate non­
negative inner product (.,.) on it, any bounded operator A 
with adjoint A * maps Xo: = {xEX I (x,x) = O} into itself. 
Hence the definition of A modXo onX /Xo makes sense. 

This is easily seen via the equation 

I (Ax,Ax) 12 = I (x,A *Ax) 12..; (x,x)(Bx,Bx) = 0 

for xEXo, AE36' (X), B: = A *A . 

Now we adapt some of the structures developed by 
Strocchi and Wightman2

-4 in the Wightman formalism to 
C *-degenerate systems. In what follows we will not address 
the problem of the representation of C *-algebras as opera­
tors on lIP spaces directly; this has been done in detail in 
Ref. 12 for general *-algebras with norm. 

Definition 3.3: A pre-Strocchi-Wightman structure, de­
noted PSW structure, consists of an lIP space {K, ( . , . )}, a 
unital C * -algebra (the field algebra) Y K C 2" (K) within 
which is specified a C*-degenerate system .@ K<1& K 

C Y K such that there exists a positive semidefinite sub­

space K' C K and a cyclic vector <l>oEK', Y K <1>0 = K 
(closure only if a topology is specified on K) satisfying (i) 
& KK'CK', and (ii) .@KK'CK", where K" is the 
neutral space of K' with respect to ( . , . ). The physical Hil-

bert space is defined as K phys: = K' / K". Then by 
Lemma 3.2 the definition of (A IK')mod K" makes sense 
for all A E & K. Then the unique closure of this operator de­
fines an operator on K phys , and the physical algebra is de­

fined as ~ phys: = (& K IK')mod K". 
In order of decreasing generality, K can be chosen to be 

(i) a general lIP space; (ii) a Hilbert space with an inner prod­
uct (·1·), connected to (.,.) by a bounded linear Hermitian 
operator G, called a Gram operator, such that 
(A,B) = (A 1GB) VA, BEK [then (.,.) is jointly continuous 
in the Hilbert space topology and K is decomposable 13 ]; and 
(iii) a Krein space, i.e., G is completely invertible. Then 
G 2 = 1, and the components of K in any fundamental decom­
position are intrinsically complete. 

Other choices of K are possible, but we concentrate on 
these as the more interesting ones. In what follows, the pre­
fixes general, Hilbert, and Krein will be used to indicate the 
nature of K in the PSW structures. 

To keep the discussion as general as possible, consider 
some left Y module X as a way of realizing Y as operators 
on a space. In addition assume that X has some lIP (.,.) 
such that (A *x,y) = (x,Ay) VAEY, Vx,yEX, and 
3xoEX such that Y Xo = X. 

Theorem 3.4: The collection of objects (X,(·,), Y, 
{L i (A)} ) defines a general PSW structure for each xEX which 
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satisfies (i) XoE&X, (ii) (Ax,Ax»O VAE&, and (iii) 
(Dx,Dx) = OV DE.@. Conversely, given a PSW structure for 
Y, K is given as such a left Y module with cyclic element <1>0> 
and any 'l'EK' will satisfy (i)-(iii) above. Moreover, the 
~ phys derived from any PSW structure is isomorphic to ~ (cf. 
Sec. II), and this means that the PSW structure induces a rep­
resentation of ~. If the set ofxEX satisfying (i)-(iii) is denoted 
by f, we find that f ;6 {a} =>xoEf. The PSW structure asso­
ciated with xEf defines a cyclic representation of ~ phys on 

K phys • 

Proof From {Y, {Li (A)}} obtain the chain of objects 
{L i (A)}C.rf(L) C.@<1&'cY, ~ = & /.@ where~ must 
be simple. Make identifications K = X, <1>0 = x o, 
K' = &x, K" =xon&x. Then we find XoE&X is cyclic, 
&K'=K', .@K'=.@&xC.@xCK" by (iii), i.e., we 
have a PSW structure and hence K phys = &x/(Xon &'x). 
The converse part follows from 3.3. Now 

AE& -+ (A l&x)mod(Xon&x) 

defines a canonical *-homomorphism of & onto ~ phys. From 
.@ (& x) cxon & x we see that .@ is in the kernel of this homo­
morphism. As ~ is simple, .@ is maximal in &', hence the 
kernel is.@, and so ~ phys =~. The representation obtained 
for ~ is 

1T'(SA): = (1T(A) IK')modJr'" VAE&. 

This makes sense because 1T(.@)K'CK". Assume that 
f ;6 {O}. Thus 3x;60 such that XoE&X, i.e., 3BE&' such 
that Xo = Bx. Then 

(Axo,Axo) = (ABx,ABx»O 

and 
(Dxo,Dxo) = (DBx,DBx) = 0 VAE&, DE.@ , 

since ABE& VAE& and DBE.@ V DE.@. By definitions it is 
easy to see that for an xEf, the equivalence class of x is a cyclic 
element for ~ phys. • 

Remark: At no stage do we require that the lIP on K' 
be nondegenerate, because by the Cauchy-Schwartz in­
equality, the neutral part of K' is contained in its degenerate 
part, and hence K" = {O} if ( . , .) is to be nondegenerate, 
and this is not desirable. 

Corollary 3.5: Let X be a left Y module with cyclic ele­
mentxo, and Y be a C *-degenerate system. Moreover,letXbe 
a Hilbert space with inner product (·1·). Then every pair 
{G,x}, GE36' h (X), xEX satisfying 

(i) (A *yIGz) = (vIGAz) Vy,zEX, VAE!7; 
(ii) XoE&X; 
(iii) (xIGA *Ax»O VAE&; 
(iv) (xIGD *Dx) = 0 VDE.@; 

defines a Hilbert PSW structure, and if G 2 = 1, it is Krein PSW 
structure. 

Proof This follows from (A,B) = (A 1GB) and Theorem 
3A • 

Let [1 be the physical symmetry group of the field alge­
bra, i.e., there is an action a: [1~Aut Y K, a[§ CYc. [By 
aEAut Y K, we mean that a(1T(Y») = 1T{a(Y»), where 
aEAut Y, Y K = 1T( Y), and 1T is the lIP representation of 
Y on K.] Then inspired by Refs. 2-4, we define the follow­
ing. 

Definition 3.6: A strict Strocchi- Wightman structure 
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(henceforth denoted SW structure) is a PSW structure as in 
3.3, such that (i) there is a homomorphism U: Y~..?(JiY) 
for which Ue =1 and (~,A\II)~Ug~,ag(A)Ug\ll) 
'fIAG7 K,geY; \II,~and I(g): = (\II,Ug~) is a contin­
uous function f: Y~'fI~,\IIeJY; (ii) Ug7t"C7t" 
'fIgeY; and (iii) <1>0 is the only cyclic vector such that 
Ug ~o = ct>o 'fIgeY. 

A weak Strocchi-Wightman structure is defined below. 
These correspond to what is called a "gauge" in Ref. 3. In the 
specific case of the Gupta-Bleuler triplet, there are additional 
structures and results available. 15 We verify that Definition 3.6 
makes sense, i.e., that Ug preserves the PSW structure of 
{JiY,.7 K} and does not transfonn it into a different PSW 
structure. As Y is a group, U a homomorphism, 
Ug Ug-. = Ue = 1= Ug-. Ug, i.e., U g- I = Ug-" hence 
Ker Ug = {O} 'fIgeY. Thus UgJiY = JiY 'fig. Now Ug7t" 
c7t"=::} Ug-. (Ug7t") C Ug-.7t"=::}7t"C Ug-.JiY'. But geY 
is arbitrary, hence Ug-.7t"C7t", and so UgJiY' = 7t"'fIgeY. 
By (iii), Ugct>o = ~0eJY' = UgJiY', and this is still cyclic for 
.7 K' Now ag (tJ) = tJ, and so 

ag (tJ) Ug7t" = tJ 7t" c7t" , 

and by 

(Ugct>,Ug\ll) = (ct>,\II) [letA = 1 in (i)], 

we see that JiYo = (UgJiY)o' so 

JiY" =7t"nJiYo = Ug (7t") n (Ug JiY) 0 , 

i.e.,7t"" is unchanged under Ug, and so is 7t"phys' Then 

ag (!P K )Ug7t" =!P K7t"CJiY" . 

This verifies the consistency of Definition 3.6. The addi­
tional structure can be easily added to Theorem 3.4 and Cor­
ollary 3.5. 

Theorem 3.7: Given an SW structure as in 3.6, the auto­
morphisms ag and Ad Ug induce the same automorphism 
on !!Ii phys' and under the canonical isomorphism between 
!!Ii phys and !!Ii, these map into a;EAut!!li. 

Proof: (~,A\II) = (Ugct>,ag(A)Ug\ll) = (Ugct>,UgA\II) 
'fIAG7 K; geY; ~,\IIeJY. Thus (Ugct>,(ag (A) Ug 
- UgA )\11) = 0, butas~, \II are arbitrary, theycanberep1aced 

by ~U g- I~, \II~U g- 1\11, so 

(<I>,(ag(A) - ~AUg-I)\II) =0 'fI~,\IIeJY', 

and hence (ag(A) - UgAUg-I)\IIeJYO 'fI\IIeJY, AG7 K, 
geY. So 

(ag (A) - (Ad Ug )A )JY' CJiY" , 

i.e., 

(ag(A)I7t")modJiY" = (UgAUg- II7t")modJiY". 

It is easily seen that the procedure (ag (A) 17t") mod JiY" de­
fines an automorphism on !!Ii phys for ag EY, and so the first part 
of the theorem is proven. The canonical map 

(A 17t")modJiY"efYl phys --+{A +!P} = sAefYl 'fIAetJ 

takes (ag (A) 1JiY')mod Jf"" to 

{ag (A) +!P} = Sa. (A) = a; (SA) . • 
Remark: From the above proof, one sees that in order to 

get the statement of the theorem to hold, it is sufficient to 
require that 
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This will be the alteration to 3.6 which defines a weak Strocchi­
Wightman structure. We return to this concept after develop­
ing the theory for SW structures. The essential difference is that 
in SW structures, we have a quasicovariant representation of 
the full algebra .7 on JiY, but in weak Strocchi-Wightman 
structures we have only a quasicovariant representation of tJ 
on 7t". As before, the prefixes Krein, general, and Hilbert refer 
to the structure of the lIP space. 

Corollary 3.8: Let {X, ( ',' ), .7, {Li (A.)}} be as in 3.4, and 
U: Y~..? (X) be a homomorphism such that Ue = I, 
(z,Ay) = (UgZ, ag (A) Ugy) 'fI AG7, geY, zJlEX; (z, Ugy) is a 
continuous function in g for fixed z,y, and xo is the only cyclic 
U [§ -invariant element of X. Then for each xeX which satisfies 

(i) xoetlx, 
(ii) (Ax,Ax»O 'fIAetJ, 
(iii) (Dx,Dx) = 0 'fIDe!P, 
(iv) Ug(tJx)CtJx 'fIgeY, 

we have a general SW structure, and apart from !!Ii phys~!!Ii 
we find that Ad Ug maps to an a' €Aut !!Ii under this isomor­
phism. Conversely, given a SW structure for.7, any \IIeJY', 
wiIl satisfy (i)-(iv), and moreover, the representation of !!Ii 
obtained from the SW structure (cf. 3.4) is a covariant rep­
resentation, and it will be cyclic iff 3ct>eJY' such that 
1T( tJ ) <I> + JiY" = 7t". Henceforth we assume this to be the 
case. Note that we allow the possibility that <I>=I=~o. 

Proof: This is a straightforward application of the preced-
ing theorems and definitions. 0 

We also add the new structure to Corollary 3.5. 
Corollary 3.9: Let X, .7, xo, < '1') be as in 3.5. Let U: 

Y~~ (JiY) be a homomorphism such that Ue = l. Then ev­
ery pair {G,x}e~ h (X) xX satisfying 

(i) (A *zIGy) = (zIGAy) 'tIAe.7, 'fIz,yEX; 
(ii) (GzIAy) = (Gz/Ug-lag(A)Ugy) 'fIAe.7 

'fIz,yeX, geY; 
(iii) (zIGUgy) is continuous in g for the other quan-

tities fixed; 
(iv) xoetJx; 
(v) (zIGA *Ax) >0 'tIAetJ; 
(vi) (xIGD *Dx) = 0 'fIDe!P; 
( vii) xo is the only cyclic U [§ -invariant element of X, de­

fines a Hilbert SW structure, and if G 2 = I, it is a Krein SW 
structure. 

In what follows we wish to develop concrete examples of 
the left Y module X defined above. Amongst the class ofleft 
.7 modules there are two important ones-the left ideals of 
.7, and the set ofGNS spaces of.7. The second already has 
a Hilbert inner product, so that in this case one looks for a 
Gram operator. The left ideals of.7 are easily equipped with 
lIP's through the use ofHennitian functionals. By definition 
each principal left ideal of.7 is generated by some one ele­
ment xe.7 without a left inverse. This element will then be 
the required cyclic element for the left module, the principal 
ideal generated by it, as required. As the other left ideals of 
.7 do not have cyclic elements, we are not interested in non­
principal ideals. 

Theorem 3.10: Let there be given objects Y, {L i (A.)}, 
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a: ~I-+Aut Y as above. Let a P denote the elements of Y 
which are a invariant. Then there is a SW structure for each 
(J, xo, F) in Y: X a P X Y which satisfies the following con­
ditions: 

(i) f(x) =f(ag(x») 'dxe:Txo, 'dge~; 
(ii) xoEtJ Fxo; 
(iii) tJag(F)xoCtJFxo; 
(iv) f(x~F*tJ +Fxo) >0; 
(v) j(x~F*g+Fxo) =0; 
(vi) d'nY/xo= {xo} , 

where Y/: = {xe:Tlx/-!3}. 

Conversely, if there exists a SW structure on the C *-degener­
ate system above, then there is a Hermitian functional 0 on 
Y such thatO(x) = O(ag (x») 'dxEY, 'dgE~, O(tJ +»0, 
andO(g+) =0. 

Proof: Let (J,xo,F) satisfy (i)-(vi). Thenmaketheiden­
tificationsX = YXo' (A,B): = f(A *B) 'dA,Be:Txowiththe 
objects in 3.7, where Y acts by left multiplication on Y xO, 
(A,B) is a lIP since] IS Hermitian and Xo is the cyclic element of 
X. When Xo has no left inverse, X = Y Xo is a proper principal 
left ideal of Y. Let Ug: = aglYxo, since ag(Yxo) = YXo' 
Then Ue = lEY (X) , 

(z.Ay) =f(z*Ay) =f(ag (z*Ay») 

= flag (z)*ag (A )ag (Y») 

= (UgZ, a g (A) Ugy) 'd AEY , 

and 

is continuous in g because all the operations involved in its 
construction are continuous. Furthermore, from (vi), Xo is 
the only cyclic U-invariant element of Y xo' Then x = Fxo 
will satisfy (i)-(iv) in Corollary 3.8 by (ii)-(v), hence we 
have a general SW structure. The converse is easily seen 
from the identification O(x) = (<l>o,1T(X)<l>o) where XEY, 
and 1T is the lIP representation of Y on Yr' as in Definition 
3.3. • 

Remark: Later on the functional 0 will be called the 
class functional of the SW structure. When we want to admit 
spontaneous symmetry breaking, the requirement that Xo is 
the only cyclic U-invariant element should be relaxed, in 
which case (vi) above, can be omitted. 

Apart from the set of principal left ideals for the left 
module X one can also consider factor spaces of left ideals. 
Let f be ~n Y -left ideal containing th~ subleft ideal K C f. 
Then f I K is a left Y module, and we need some cyclic 
element in it, i.e., there should exist an xoEf such that 
Y(xo+K) =/ or Yxo+K=/. Note that /IK 
=Yxol(YxonK). 

Theorem 3.11: Given the objects Y, {L; (A.)}, a: 
~I-+Aut Y as above, as well as two a-invariant left ideals 
KCJCY and an xoEJ such that Yxo+K=J, 
ay (xo) CXo + K, there exists a SW structure for each pair 
(J,F)EYr XY which satisfies 
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(0 KC{xEJlf(x*y) =0 'dyEJ}; 
(ii) f(x) =f(ag(x») 'dgef§, xEYxo; 
(iii) XoEtJ Fxo + K; 
(iv) tJ a g (F)xoC tJ Fxo + K; 
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(v) f(x~F*tJ +Fxo) >0; 
(vi) f(x~F* g +Fxo) = 0; 
(vii) {Y/xo + K}n{x + K IxEJ,a(x)ex + K} 

C{xo+K} . 
Proof: Let S be the canonical map JI-+J I K, hence 

S -1(Sx) = {x + K}. From (i), the lIP defined on J IKby 
(Sx,Sy): = f(x*y) makes sense. ThenJ /Kis a left Y mod­
ule by Asx = SAx 'dAEY, which is well-defined because 
A{x + K} = {Ax + AK}S;;; {Ax + K}. Clearlysx" is acyclic 
element in J I K, and as J and K are a invariant, 3a' defined 
on J IK by a; (sx): = Sa. <x} , and we define a;: = Ug (cf. 
3.8). Then from (ii) it is easily verified that Ue = I; 
(sz.Asy ) = (Ugsz,ag(A)UgSy); and (Sz,UgSy ) is contin­
uous in g. By (iii) we find SXo EtJ SFxo' and this covers all 
possibilities because SYxo = J IK. From (v) we see that 
(ASFxo.ASFxo »0 'dAEtJ, and by (vi), (DsFxo,DsFxo ) 
=0 'dDED. By (iv), Ug(tJSFxo)CtJSFx", and (vii) en­
sures that SXo is the only U-invariant cyclic vector in J IK. 
Hence with X = J IK, Corollary 3.8 ensures that there exists 
a general SW structure. • 

Remark: When spontaneous symmetry breaking is re­
quired, (vii) should be omitted. When xoi! exists, 
Y Xo = Y, and J IK is a factor space of Y. 

From the paragraph preceding Theorem 3.11, we note 
that the construction J = Y Xo + K will in fact cover all pos­
sible left ideals for which S Xo in cyclic in J I K. It is possible to 
define Hilbert space structures on the principal left ideals, 
and then to look for Gram operators from which to obtain 
SW structures, but as the representations of Y on these Hil­
bert spaces will be unitarily equivalent to GNS representa­
tions, we now consider the latter instead. Consider the GNS 
representation of Y associated with an wE€i, i.e., 

1T",: YI-+.%'(Yr'",), Yr'",:= YIN"" 

N",:={AEYlw(A*A)=O}, s: YI-+YIN", 

is the canonical map, 

(sAlsB):=w(A*B), 1T",(A)SB:=SAB' 

The Gram operators can be chosen from the set .%' h (Yr' w ), 

and these translate to Y as 

{YE.%' (Y)ly(Nw ) = N"" w(y(A)*B) = w(A *y(B») 

'dA,BEY} . 

There are two interesting subsets of this, i.e., where 
YEAut Y and where YEY, i.e., it acts by left multiplication 
of an element GEY. The last subset is the one we concentrate 
on (for the first, consult Ref. 14). Define 

Y~: = {GE.rlw(AG*B) = w(AGB) 'dA,Be:T}::;Yh • 

Theorem 3.12: Given Y, {L; (A.)}, a: f§I-+Aut Y as 
above, there is a Hilbert SW structure for each triplet 
(W,G,E)E€iXY~XY such that 

(i) ay (N",) CN"" 
(ii) w(A [G,F]B) = 0 'dA,B,FEY, 
(iii) lE{tJE+N",}' 
(iv) w(E*GtJ +E»O, 
(v) w(E *Gg +E) = O. 

When spontaneous symmetry breaking is not allowed, we 
also require 
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(vi) ~CeY, 1 such that Y = {YC + Nw} and 
a[§ (C) ~{C +Nw}. 

When G 2e{ 1 + N w }, the SW structure is a Krein SW struc­
ture. 

Proof" With the identifications X = JY' w' Xo = S 1 , 

UgSA: = Sa. (A) , which makes sense via (i), the proof is a 
routine verification of3.9, but for clarity we spell out some of 
the details. Clearly U is a homomorphism, and Ue = I, and 
the cyclic vector Sl is U invariant because UgS l = Sa. (1) 

= Sl. Rewrite (ii):m(A *GFB) = m(A *FGB) 'tIA,B,FeY 
to get 

{1rw (F)*SA l1rw (G)SB) = (SA l1rw (G) 1rw (F)SB) 

which satisfies (i) of 3.9. To verify (ii) of 3.9 consider 

(1rw (G)SA IU g- 11rw(ag (F»)UgsB) 

= (SGA I U g-ISa.(FJa.(B» 

= (SGA ISag-'(ag(FB»)) = (SGA ISFB) 
= (1rw(G)sAI1rw(F)SB) 'tIA,B,FeY, 'tIgeY. 

To verify (iii) of 3.9, note that (SA 11r w (G) UgsB) 
= m(A *Gag (B) ) is continuous in g if all the other quantities 

are fixed, because all the operations involved in this con­
struction are continuous. For condition (iv) of Corollary 
3.9, note that with the identifications xo-+Sl> x-+SE, (iii) 
implies S 1 eS &' E = 1r w ( tJ ) S E. (iv) above can be rewritten 

m(E*GA *AE) = (sEI1rw(G)1T",(A *A)SE»O 'tIAetJ, 

which verifies condition (v) of Corollary 3.9. Similarly (v) 
satisfies (vi) of3.9. 

Note that the first part of (vi) says that S e is cyclic, and 
the second part that it is Ug invariant: UgSe = Sa. (e) = Se, 
hence (vi) says that there are no cyclic U-invariant elements 
of JY'", other than Sl' and this corresponds with 3.9 (vii). 
For the last statement, note that G 2e{1 + N",} implies that 
~(~2=L • 

If one can find a Dirac state which is invariant with 
respect to the physical transformation group, this will cer­
tainly induce a SW structure on the C *-degenerate system, 
and the construction above will be an interesting alternative 
to the purely algebraic constructions of before. Both meth­
ods, as we saw, result in the same final physical algebra. 
Conversely, given a SW structure as above, from the con­
verse part of Theorem 3.10, we see that on tJ this is the 
restriction of a Dirac state, covariant on tJ. The interesting 
case is when this Dirac state on tJ cannot be extended to a 
covariant Dirac state on Y. This is the situation when the 
real usefulness of the lIP representations arise. Hence the 
purpose of using the lIP formalism is to obtain a cyclic co­
variant representation for the physical algebra !!It that may 
not be obtainable from covariant ordinary representations 
onY. 

The final concept of Ref. 3, which we adapt to the C *­
algebra context, is that of a generalized gauge transforma­
tion. This arises within the following situation. There is a C *­
degenerate system {Y,ii?', tJ c} with its transformation 
group a: Y>---+Aut Y, a[§ cr, and two lIP representa­
tions 1r; : Y >---+2' (~; ), i = 1,2, and two SW structures 
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Definition 3.13: A generalized gauge transformation is a 
pair of SW structures as above and a bijection g: 
JY'I phys>---+JY'2 phys such that 

(i) (<I>I,1rI(A)\III)1 = (<I>2,1r2(A)\II2h 

such that TJ'IJ, =g(TJ'IJ,), TJ~, =g(TJ~,>, 

where TJ: JY'i >---+JY'; / JY';' is the canonical map, 

(ii) TJ~,o = g( TJ~IO) . 

Clearly what this is saying, is that the two SW structures 
induce the same covariant cyclic representation on !!It up to 
unitary equivalence (cf. Corollary 3.8, converse part). A 
special gauge transformation is where the two SW structures 
are identical except for the lIP representations 1r;, g is the 
identity, and hence (i) is 

(<I>,(1rI(A) -1r2 (A»)\II) = 0 'tIAetJ, 'tI<I>,\IIeJY". 

Call two SW structures gauge-equivalent if there is a 
generalized gauge transformation connecting them. Given a 
SW structure, define its classfunctional (cf. Theorem 3.10) 
to be O(A): = (<I>o,1r(A)<I>o) 'tIAeY. 

Theorem 3.14: If two SW structures are gauge equiva­
lent, then the restrictions of their class functionals to tJ are 
equal. Conversely, given two SW structures with Oil tJ 
= 021 tJ, and if the tJ -cyclic elements of JY';, i = 1,2, de­

noted by <I>? (cf. 3.8), are related to <1>;0 by <l>iOE1r; (S)<I>? 
+ JY';' for some SetJ, then these two SW structures are 

gauge equivalent. 
Proof" From the definitions, the first part is clear. We 

prove the converse. Let there be given two SW structures 
according to the hypothesis above. The representation in­
duced on !!It by these SW structures are 

1r; (SA) = (1r; (A) 1JY';)mod JY';' 'tie tJ , i = 1,2 . 

From the cyclic property (cf. 3.8), any \II;eJY'; phys can be 
written as \II; = 1r;(SA )TJ~?forsomeAetJ. Note that ifTJ~;o 

#TJ~?, then 3S;etJ such that TJ~;o = 1r;(Ss, )TJ~? The hy­

pothesis above merely says that SI = S2 = : S. We can de­
fine a map g: JY'I Phys>---+JY'2 phys by 

g [1r; (SA )TJ~? ] : = 1ri (SA )TJ~~ . 

This map will be well defined, and a bijection if we can show 
that 

for each AetJ. Now 

tP; (SA): = (TJ~?I1r; (SA )TJ~?); = (TJ~., 11r; (SS*AS )TJ~.,>; 

= 0; (S*AS) 'tIAetJ. 

So as SetJ, we have OI(S*AS) = 02(S*AS), i.e., 
tPI(SA) =tP2(SA)· Then from 1r;(SA)TJ~?=OitfSAeN"" 
: = {SAe!!ltlsA*AeKertPJ,we get that g is a bijection. To 
verify 3.13, note that 

g [1r; (Ss )TJ~d = g[ TJ~,J = 1ri (Ss )TJ~~ = TJ~,o . 

Furthermore, 'tI<I>I' \II1eJY';, 3B,CetJ such that 

TJ~, = 1r; (SB )TJ~o , 
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and 

1]'11, = 'IT; (SC )1]4>~ • 

Then 

(<1>1' 'lT1 (A) '111)1 = (1]4>~ /'IT; (SB*AC )1]4>~) I = ifJI (S B*AC) 

= ()I(S*B*ACS) 

and 

(<1>2' 'lT2(A)'I12h = (g[ 1]4>, ] /'lT2 (SA )g[ 1]'11,])2 

= (1]4>~/'lT2 (SB*AC)1]4>~)2 

= ifJ2(SB*AC) = ()2(S*B *ACS) , 

where 1]4>2 =g[1]4>,], 1]'11
2 

=g[1]'II,]. This, together with 
()I/ &' = ()2/ &', verifies Definition 3.13. • 

Corollary 3.15: In the terminology of Corollary 3.8, two 
Xi' i = 1,2, satisfying 3.8 (i)-(iv), give rise to gauge equiva­
lent SW structures if 3SE&' such that 

XoE(SXI + (XOn&'x l »)n(SX2 + (XOn&'x2»)· 

Because the later SW structures are applications of Corol­
lary 3.8, we shall not further discuss gauge equivalence for 
these. 

Remark' If instead of Definition 3.13 (ii) we assumed 

(ii') 1]4>~ = g [1]4>~] , 

then the results above simplify drastically, in that 3.14 be­
comes an if and only if statement, i.e., class functionals on &' 
are equal iff their SW structures are gauge equivalent, and in 
3.15 we will find that all the SW structures are gauge equiva­
lent. We can argue for assuming (ii') instead of 3.13 (ii) 
(which has been taken directly from Ref. 3), on the follow­
ing grounds. The bijection g is supposed to establish a con­
nection between the two representations obtained for the 
physical algebra, fit, and in these representations the cyclic 
elements derive from <I>?, and not from the <l>iO 'so Now while 
1]4><0 is clearly invariant under the unitary transformations of 
Y on!ir'i phys' it is not cyclic. If one requires that the speci­
fied cyclic elements of !ir'i phys should be invariant under 
physical transformations, it would be necessary to require in 
addition that U ~)<I>?E{ <I>? + !ir';'}. Clearly, if the cyclic ele­
ments of !ir'i phys do derive from <I>,"(), then none of these 
complications will arise. 

As was mentioned in the remark below Theorem 3.7, in 
order to obtain a covariant representation of fit, it is suffi­
cient to have the weaker condition 

(ag (A) - (Ad Ug)A )!ir"c!ir''' VAE&' K . 

This is equivalent to the following. 
Definition 3.16: A weak Strocchi- Wightman structure 

(w SW structure) is a PSW structure as in 3.3 for which (i) 
there is a homomorphism U: Y 1---+ X' (!ir') such that 

(<I>,A'I1) = (Ug <I>,ag (A) Ug'l1) 

V<I>,'I1E!ir', VAE&', VgE[§, 

andf (g): = ('I1,Ug <1» is a continuous function of g for the 
other quantities fixed; 

(ii) Ug!ir"C!ir"VgE[§, 

(iii) <1>0 is the only cyclic vector such that Ug <1>0 = <1>0 VgE[§. 
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It is a straightforward matter to adapt the theorems above to 
this concept, but for later use we state the following theorem. 

Theorem 3.17: Relax the uniqueness of the vacuum re­
quirement. Then for each gauge transformation {JEKer Tc 
(cf. Sec. II) and functionalfEY: such that 

(i) ff!3ag(A») =f(A) VgEY, VAEY, 
(ii) f(i») = 0, . 
(iii) f( &' + ),;;pO, 

we have a wSW structure. 
Proof: Let S: Y I---+Y I Nf be the canonical map, where 

Nf : = {AEY[(A *B) = 0 VBEY} 

is a left ideal. Then Y INf is a left Y module by ASx 
= SAx VA,xEY, and it has the natural lIP f(x*y) 
= :(Sx,Sy)' The cyclic element is Sl' Then !ir" = S&, 

!ir''' = SfP' Define Ug (Sx): = SPa. (x) . Now ({Jag )E"'fc if 
ag E"'f c' because {JEKer Tc C "'fe' and so U: Y I---+X' (Y I Nf ) 

is a homomorphism. Now 

{JEKer Tc ~ (w/{J(A)x) = (w/Ax) VWEfOD,VA, XE&' . 

By simple manipulations 

{JEKer T~(w/x{J(A)y) = (w/xAy) VX,y,AE&' VwefOD . 

By (ii),(iii),J/&'EfOD, and Ker Tc is a group, i.e., 

{JEKer Tc ~{J -IEKer Tc . 

Hence 

(UgSX ' ag(A)Ugsy) 

= ff!3ag (x*)ag (A ){Jag (y») 

= f( ({Jag) (x*){J -I ({Jag) (A) ({Jag) (y») 

=ff!3ag(x*Ay») =f(x*Ay) 

= (SX, ASy) Vx,y, AE&' Vge[§. 

The function h(g): = (Sx ,UgSy ) = f(x*{Jag (y») is contin­
uous in g for each pair x,y. Finally, 

Ug!ir" = UgS& = S{3a.(&) c!ir" 

because ({Jag )E"'f. The remaining requirements in the defi­
nition of a wSW structure is verified by the same arguments 
as those found in the proof of 3.11. • 

The important point of this theorem is that for a strict 
SW structure we needed invariance of the functional under 
the specified automorphism group [cf. 3.11 (ii)], but for a 
wSW structure, it suffices to have invariance of the func­
tional up to a specific gauge transformation. This will be 
used in the last example of Sec. IV. 

We now return to problem (i), i.e., given a cyclic unital 
*-algebra Y of operators on a lIP space, and a supplemen­
tary condition XEY such that the physical subspace 
!ir": = {<I>E!ir/X<I> = O} is positive semidefinite and con­
tains the cyclic vector <1>0' what algebraic structures are im­
plied in Y? As Y contains nonphysical objects, it is not 
clear what physical topology to define on y, although the 
final non degenerate physical algebra should be a C * -algebra. 

Denote the null-space of !ir" by !ir'''. Then we define the 
algebra of observables by 

&'i: = {AEY/A!ir"C!ir"::JA *!ir"J 

and the constraint algebra by 
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9;: = {DEYIDJlt"CJlt''':JD *Jlt"}3X. 

Note that {X}'C tJ;, letJ;, lEE9;, and 9; C tJ;. Thephys­
ical algebra is defined as 

fYt;: = (&'; 1Jlt")mod Jlt''', 

and this is required to be a C *-algebra in the C *-norm for 
bounded operators on the physical Hilbert space 
JY . = 7t"" I Jlt''' . The definitions of tJ; and 9; preserve phys' 

sums, multiples, products, and adjoints; hence these are 
*-algebras, and we also verify that 9; is a two-sided ideal for 
tJ;. Hence fYt; "'" tJ ; 19;. Now using the definitions and the 
fact that <1>0 is cyclic and in 7t"", we note that Jlt" = tJ; <1>0' 
and 7t"''' = 9 ;<1>0' Then XJlt" = XtJ ;<1>0 = 0 will only fol­
low fromX<l>o = Oif tJ; C{AeYlxAe[Yx]} = :Y;. Since 
tJ; is a *-algebra, &'; cY; nYr. Conversely, given 
AeY; nYr, we findXA7t""C [YX] tJ;<I>oC [Yx] <1>0 = 0, 
i.e., A preserves 7t"". Similarly A * preserves 7t"", and hence 
Y; n Yr = tJ;. This does look like the previous structure, 
except that 9;:J Yr JJ1 (X) Y;, but is not equal to it. 
[JJ1(X) is the *-algebra in Y generated by X.] The reason 
for this discrepancy is because in the usual situation we deal 
only with positive functionals and hence Hilbert spaces, and 
so there are no zero norm states such as in Jlt''' above. The 
previous structure of 9 would have been obtained if we 
required 9 ;Jlt" = 0, instead of 9 ;Jlt" cJlt'''. Moreover, 
Y; n Yr =1= vii (!j); ), though it is contained in it, because 
Xvii (9; )<1>0=1=0, except in special circumstances. Because 
Xvii (9; ) <1>0 C7t"''', the generalization of the observables 
from X' to tJ c C vii (9 i) also entails the generalization of 
Jlt" to &' c <1>0' and this will be reasonable only if the latter 
space is positive semidefinite, and if its zero norm part is 7t"''' 
exactly. 

IV. EXAMPLES: LINEAR BOSON THEORIES 

The discussion in this section concerns linear boson 
fields with linear Hermitian constraints. In Refs. 1 and 17 we 
considered the theory of electromagnetism as derived from 
Dirac's constraint theory, and this turned out to be the pro­
totype for any linear boson theory with linear Hermitian 
constraints. We summarize here the structures obtained. 

The field algebra Y is chosen to be Manuceau's C *­

algebra of the CCR,20 fl. ( f!2 ), over a suitable test function 
space f!2 with symplectic form B(·,). To fix notation, we 

define fl. (f!2) and indicate its heuristic correspondence 
rules. 

Given a canonical pairqi (X),Pi (x) on a Hilbert space 
Jlt', with some internal tensor or Lie structure indicated by 
the index i, and equal-time commutation relation (ETCR): 
[qi (x)'Pj (x')]xo=xo =igijD3 (:f-:f'), smear over a suit­
able test function space, say E9; Y(i) (R) to obtain the form 
(',) and the CCR: [qxo (F),pxo (G)] = i(F,G). Let £!2 be 
the complexification of E9 iY(i) (R) (or equivalently, its di­
rect sum with itself) with the usual norm. Then a symplectic 
form 

B(F,G) = B(F) + iF2 ,G) + iG2): = (F),G2) - (F2,G) 

can be defined on it. Using 

W(F): = exp(ipxo (FI ») exp(iqxo (F2») exp[ - i(FI , F2 )/2] , 
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this defines a heuristic Weyl system: 

W(F) W(F') = W(F + F')exp[ - iB(F,F')/2] , 

which expresses the canonical structure. For commutation 
relations of the form [AI' (x), Av (x')] = igl'vfl.(x - x') we 
obtain a similar Weyl system.21 Abstractly, the procedure is 
as follows. 20 

Definition 4.1: Given a linear topological space £!2 with a 
sympletic form B on it, let fl. ( £!2) be the normed *-algebra 
such that the following holds. 

(i) The elements of fl.( £!2) are complex-valued func­
tions on £!2 with support consisting of a finite subset of £!2 . 

(ii) Let fl. (f!2) have the obvious linear structure, and 
the multiplication law: 

(fd2)(Z): = L fl (zl)f2(Z - z)exp [ - iB;ZI,z) ] . 
zleJ!) 

The involution is defined by f* (z): = f( - z) . 
(iii) Define a norm in /l(f!2) by IIflll: = l:ze§ If(z) I. 

Denote the completion of fl. ( f!2) in this norm by fl.) ( f!2 ) . 
ThesetoffunctionsDz such thatDz (z') = 1 ifz = z', and 

zero otherwise, forms a linear basis for fl. ( £!2 ). Then the C *-

algebra of the CCR, fl. (£!2 ), is defined as the enveloping C *­
algebra of fl.1 (£!2), i.e., the closure of the latter in the follow­
ingC *-norm Ilfll: = sup7TEP 111T(f) II, whereP denotes the set 
of all nondegenerate representations of fl.1 ( £!2 ). Symplectic 
transformations T on £!2 are defined as linear transforma­
tions which satisfy B( TZ,Tz') = B(z,z') Vz,z'e£!2. These can 

all define automorphisms on fl. ( f!2) by a [15 z ]: = 15 Tz' De­
note the group of symplectic transformations on f!2 by 
S(f!2 ,B). 

The connection of fl. (£!2 ) with Weyl systems on {f!2 ,B} 
is furnished by the result)8 that there is a bijection between 
the nondegenerate representations 1TEP and the Weyl sys­
tems on {£!2 ,B}, and it is realized by the relation 
W1T (F) =1T(DF ),Fe£!2. 

Any linear Hermitian combination of Pi' qi and their 
derivatives can be specified through a particular element of 
the complexified test function space £!2. Thus if r is such a 
combination, and Ce£!2 is the element which specifies it, then 
we have a correspondence exp iA. r~ -tc, AeJR. So given a 
subspace Ctf C £!2 obtained from the heuristic constraints in 
this manner, the abstract constraint set (cf. 2.2) is defined as 
~: = {DFIFeCtf} = 15'6' The T procedure is then carried 
through on this LF(A):=Du-l, FeCtf, and we6D 

iff (wIDFA ) = (wIA) = (wIADF) VAeY,FeCtf,etc. With 

/l: = {Fe£!2IB(F,C) = 0 VCeCtf} 

we found thae 15 = D2} n&'. Clearly C *(15", ) ~JJ1(L)', and 
below we will show that C * (15", ) = JJ1 (L)'. In this notation, 
C * ( .) means the C *-algebra generated by its argument in 
the larger C * -algebra under consideration (here Y). There 
may be additional elements to these in &', of the form 
l:;a;Dp with F;EE/l Vi, but as it is very difficult to get our 
hands . on these, we make the choice &' c = C * (15", ) 
= JJ1(L)'. Now JJ1(L) ,\&' c does not affect fYt c' and hence 
we might as well require JJ1 (L) C & c' i.e., &' C/l. In this case 
JJ1(L) is commutative. Then 9ntJ c = JJ1(L)C * (15", ), 
and so the chosen physical algebra is fYt c = JJ1 (L)' I 
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d (L) d (L)' . In Ref. 1 we have not made this distinction 
between tJ and tJ c' Current work on a different problem 
proved fYt c to be nontrivial, and to be simple if Ctf is the 
degenerate part of,h with respect to B. 

First we show that C*(8,..) = deL)'. 
Theorem 4.2: deL)' = C *(8,.. ). 
Proof: It suffices to show d(L)'~C*(8,..). Consider 

AEd(L)'na(.~2). Then A = ~7Aj8F" F jE{2 ,AjEC, n < 00. 

Then 

AEd (L)' =>~7Ad 8F, ,8c] = 0 VCECtf 

=>~jAj8F, +c2 sin !B(Fj,C) = O. 

Now as 8F is a linear basis of a(.~?), and F j + C = Fj 
+ C iff F j = Fj, we get B(FuC) = 0 VCECtf, and hence 

FjE,h. ThusAEC*(8,..), i.e., 

d(L)'nau~) CC*(8,..) Cd(L)' . 

By Ref. 20, a ( g) is dense in .7 = a ({2 ), and hence any 
element in .7 can be reached as the limit of some Cauchy 
sequence in a ( g ) . So in order to prove that 
C*(8,..) = deL)', we need to show that each element in 
d (L)' can be reached by a Cauchy sequence in 
d (L)' n a ( g ). Thus we wish to show that for any se­
quence {Aj}j":, I converging to HEd(L)', where 
Aj : = ~7~ IA{8F,Ea(g) is such that 111T(Aj ) -1T(A k )11-+0 
for j, k -+ 00 V 1TEP: = set of nondegenerate representations 
of a I ( g ), there exists a similar sequence {Bj }, where 
Bj : = ~7~ I y{8F, such that all FjE,h, and this sequence con­
verges to the same elementHEd (L )'. Assume that all theFj 

of all the terms of the sequences used here are united into a 
single set over which a single index ranges. Denote those F j 

in,h by Pj , and those F j not in,h by T j . Let {A j} be a Cauchy 
sequenceina( g) converging to anHEd (L '). Then we can 
write 

A. = ~ A~8F = ~d,8p + ~/3j8T . 
J L'i Llj L'I 

l ; i 

Then for 1TEP: II~j/3{1T( [d (L), 8T,] )11-+0 as j-+ 00, and 
hence for L(C)Ed (L), CECtf we have 

II ~ /3{1T( [ 8c ,8T, ] ) II 
= 112i ~ /3{1T(8c + T,)sin! B( C,Tj) 11-+0 

asj-+ 00, V1TEP, and VCECtf. Thus, VCECtf, 

nJ -.. 1 1 I /3 {/3Jk sin - B( C,Tj ) sin - B( C,Td 
j.k 2 2 

Xp", (Tk - T j )exp (i12) B(Tj>Tk)-+O 

asj-+ 00 for all generating functionalsp1T' This is seen from 
111T(A) 112 = (5011T(A *A)150}.Sinceonlythe/3'sdependonj, 
consider equality for the limits/3j' Moreover, if this equation 
holds for a particular CECtf, it must hold for AC, AER. Let 
nj -+ n be arbitrary large but finite for the moment. So 

n _ i 
I/3j/3kP1T(Tk - Tj)exp-B(Tj>Tk ) 
j.k 2 

X sin ~ B( C,TJsin ~ B( C,Tk ) = 0 , 
2 2 
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VAER, CEtCtf. Since TAh, 3CjECtf such that B( CuTj) #0. 
Take a suitable linear combination C: = ~7aj Cj such that 
r j: =! B(C,Tj) #0 Vi. Then it may not be possible to dis­
tinguish all the Tj through such elements CECtf, i.e., it may 
be that there are values of i, say I and m for which r / = r m • 

This is the case if for instance T/ - TmE,h. Moreover, 

A jk :=Pi/3kP1T(Tk - T j ) 

Xexp(i12)B(Tj ,Tk ) #0 Vi,h;,n. 

So we wish to solve 

~7.kAjk sin(Arj ) sin(Ard = 0 VAER 

for A jk , where r j are given nonzero numbers. Now (A) is a 
positive definite n X n matrix because 

n 

yAy = I rjAjkYk 
j.k 
n __ i 

= I Yj/3iYk/3kP1T(Tk - T j ) exp-B(Tj,Tk ) 
~ 2 

= (50 I 1T( (* Yj/3j8T, r (t Yk/3k 8Tk )) Iso} >0, 

VYECn 
• Hence A defines a positive sesquilinear form on cn 

by (y,8): = YA8. Then an application of the Cauchy­
Schwartz inequality, we find that if yAy = 0, then 
8Ay = 0 V8ECn

• Hence we obtain 
n 

I AjkYj sin(Ar k) = 0 VAER, YEcn. 
j.k 

By letting Y vary over the usual basis of cn 
, we obtain the 

following system of equations: 

~Z=IAjksin(Ard=O VAER, i<,n. 

By varying A, we can very quickly overdetermine the Ajk's, 
and except for those values of i corresponding to the r m 

which are not different from all the other r;,s, obtain 
A jk = O. However if X is an index set for which all rj's are 
equal, then for those A jk it is only possible to say ~jEX A kj 
= 0 V k. Now since it is not possible to specify with the 

given information what the sets X are, in general we only say 
that ~7k A jk = O. This means V 1TEP, 

and so ~7/3j8T, = O. With the necessary formal adaptations, 
this argument generalizes to n = 00, and so ~7J/3{8T, -+0 as 
j-+ 00, i.e., {Aj}t= I converges to the same limit as 

{~7Jd;8pJ)': I CC*(8,..) . 

Therefore d(L') = C*(8,..). • 
To conclude this general account of degenerate linear 

boson fields, we remark that if G is the physical transforma­
tion group (containing the dynamics), then it is generally 
represented by symplectic transformations on {2, i.e., T: 
~(g,B), and we obtain the corresponding automor­
phisms on.7 by ag (8F ): = 8T• F • Then for the constraints to 
be consistent with these automorphisms, it is sufficient to 
have T G Ctf C Ctf, in which case it follows that T G,h =,h. 
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Next we wish to demonstrate the existence of SW struc­
tures and wSW structures on the degenerate linear boson 
fields just described. First, consider the class of F ock repre­
sentations. These representations 1T;: Y ~B(Yrf> are asso­
ciated to generating functionals p; on f?2 by 

p;(F) = (Sol1T;(8F ) ISo) =exp[ -l(F,F);J, (*) 

where (. , . ) ; is an inner product on f?2 such that 
Im(',); = B(',), and So is the cyclic element of Yrf. Giv­
en a generating functionalp;, it will through the expression 
( *) define a positive functional (J)? on A (f?2 ). This will define 

a positive functional (J); on Y = A (f?2 ) only if (J)? is contin­
uous in the C *-topology, i.e., if 

p;(F) =exp[ -1(F,F);J.;;;CII8F II =CeR+. 

This is only satisfied if (F,F); >0 V Fe!l2. In this case one 
finds that the GNS representation space of (J); is isometrical­
ly equivalent to a Fock space constructed on the Hilbert 
space obtained from the completion of f?2 in the ( . , . ) topol­
ogy. However, it also indicates that in the lIP situation, we 
should expect problems in trying to execute a similar con­
struction from generating functionals of the formp;. 

Starting from a lIP space, Yr~l) = {f?2 ,(', )j, Mint­
chev lO constructed a Fock-type lIP space, on which he could 
define a Weyl system such that its vacuum expectation value 
is exactly p;, i.e., 

(Sol W(F) ISo) = exp[ -l(F,F); J =p; (F) . 

Hence we expect some structure resembling the triplet Yr, 
Yr', Yr" of 3.3 to be present in Yr~ I) for a degenerate phys­
ical system. Now such a structure is already available in a 
degenerate linear boson field, in the form Yr~ I) ,jz., ~ , and so 
in what follows we will demonstrate the existence of SW 
structures or wSW structures associated with lIP's ( " . ); on 
f?2 which satisfy 

(F,F);>O VF9h; (C,C); =0 VCeCfi; 

and 

(TgF, TgH); = (F, H); V F,He!l2 , geG. 

Note that from the positivity onjz. we can apply the Cauchy­
Schwartz inequality to get an equivalent condition for the 
second one: (F,C); = 0 V F9h, Ce~. Below we show a 
natural way for obtaining an indefinite functional/; on Y 
fromp; [defined from a ( " . ); as above J, which will give the 
right SW structures. The uniqueness of the vacuum require­
ment will not be enforced. 

Theorem 4.3: Given an lIP space {!l2 , ( . , . ); } such that 
(F,F);>O VF9h and (C,C); = 0 VCeCfi, the functional 
p; (F): = exp[ -l(F,F); J will define a state{J); on C*(8,...) 
such that ~ = .s£ (L).s£ (L) , C Ker (J);. Moreover, if 
(TgF,TgH); = (F, H); VF,H9h,geG, then{J); is Ginvar­
iant. On the other hand, if the symplectic transformation S 
defines a gauge transformation peKer Tc and (STgF, 
STgH); = (F,H); VF,H9h, geG, then (J); is G invariant up 
to this gauge transformation p. 

Proof: Since (J); is continuous on a generating set of 
C*(8,...) by 

(J);(8F ): =p;(F) = exp[ -l(.F,F);].;;;1 = 118F II VF9h, 

we get thatp; will define the continuous linear functional (J); 
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on C*(8,... ). First, we verify that (J); is positive on C*(8,...). 
Now if we can show that (J); is positive on a generating set of 

tJ + = (.s£(L)')+ = C*(8,...)+, 

then it will be positive on all convex combinations of those 
elements and their limits. The generating set of tJ + is 

{A *A IA = ;tl A;8F, , F;9h, A;eC, ~IA; 1< oo} . 
Notation; An: = l:7= IA;8F " F;9h; (F,F); = : (F);, and the 
( . ) ; is a prenorm on jz.. So we wish to show that 
(J); (A ~An »0 VneZ+, 

VA k , VFk9h. Note that this is the twisted positivity condi­
tion for p;, which is usually employed to characterize gener­
ating functions of the C *-algebra of the CCR. 18 If (.); were 
an ordinary norm onjz.,p; would be the generating function 
of an ordinary Fock state. The argument of the exponential 
in ( .. ) is 

(i/2) B(Fk, Fj) - !(Fj - Fk )7 

= (i/2)B(Fk,Fj) -l(Fk -Fj,Fk -Fj); 

= (i/2)B(Fk,Fj) - H (Fd7 + (Fj)7 - 2 Re(Fk, Fj);] 

= -!(Fk );-1(Fj)7+!(Fk,Fj);, 

since B(',') = Im( ',' );. Hence we only need to show that 
exp (Fk , Fj ); is a positive definite kernel onjz. Xjz. because A k 

is arbitrary, and so can be redefined as 

Ak ->Ak exp ( - 1> (Fk )7 . 
Now exp !(Fk,Fj); is positive definite iff (Fk,Fj); is (cf. 
Ref. 23, Theorem 2.2 p. 74), and ( ',' ); is certainly a positive 
definite kernel onjz. Xjz.. Thus (J); (tJ +) >0. So it follows that 
(J); is a state because (J); (1) = (J); (80 ) = 1. To show 
~ C Ker (J);, it suffices by the general theory of Sec. II to 
show that{J); (8c ) = 1 VCe~, and this follows directly from 
(C,C); = OVCe~ which is given. The last two assertions of 
the theorem follow from 

(J);(ag (8F ») = (J); (8 r•F ) 

and likewise 

= exp[ -l(TgF, TgF); J 

=exp[ -l(F,F);] = (J);(8F ) , 

(J);(.8a g(8F ») = (J)(8sr•F ) = (J);(8F ) • • 
Hence on the physically relevant part of Y, C * (8,... ), we 

have obtained a perfectly acceptable G-invariant Dirac state 
(J); from p;. The structures on the nonphysical part, 
Y \ C * (8,... ), can be altered according to convenience with­
out affecting the physics. In what follows, we discard the 
information from the irregular part of Pi' i.e., p; (F)VFfI/t, 
by extending the Dirac state (J); to a G-invariant Hermitian 
functional/; on Y. The GNS representation of/; will define 
a SW structure according to the general theorems of the 
preceding section (e.g., 3.11). To do this we need the follow­
inglemmas. 
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Lemma 4.4: Given C *-algebras d C fll, and a set 
2' C fll a continuous linear functional on d, /Ed* is ex­
tendible' to a continuous linear functional} on fll with 
2' C Ker} iff, 

(i) [2'] nd CKerf, and 
(ii) 3EEd\Ker/such that EI£[2'U% E] 

where 

% E: = {A - /(A) [E I/(E) ] IAEd} . 

If/is Hermitian, then}can be chosen to be Hermitian too. 
Proof Assume 3}Efll* such that}ld = :/Ed* is non­

trivial and 2' C Ker]' Now Ker} is a closed linear space, 
and Ker / = Ker}n d, hence [2'] n d C Ker / Since/is 
nontrivial, d \ Ker / =/- 0. Choose any EEdKer f, then 
% ECKer/because VAEd: 

0= /(A) - /(A) = /(A) - /(A) [f(E)I/(E)] 

=/(A - /(A) [E I/(E)]). 

Hence [2'U% E] ~Ker]. From /=}Id we see that 
EI£Ker j, and so EI£ [2' U % E ]. 

Conversely, assume 3/Ed*, a set 2' C fll and an 
EEd\Ker/ such that [2'] ndCKerf, a~d EI£2' E 
: = [2' U % E ]. Then we wish to show that 3/Efll * such 
that 2'CKer/ and }Id =/ Now EI£2' E implies that 
2' E =/- fll, and hence the normed linear space fll 12' E is 
nontrival with the norm defined by lisA II: = inf{IIA 
+ L IIILE2' E} where s: flll-+fll 12' E is the canonical map. 

Then there is a bijection between the continuous linear func-
tionals on fll 12' E' and the continuous linear functionals on 
fll with 2' E in their kernels. Since EI£2' E, there are func­
tionals hE(fll 12' E)* for which h(SE) =/-0, and these can be 
normalized to get h (SE) = /(E). Hence there arefunction­
als }Efll* with 2' ECKer} and fJE) =/(E). So 
2'c2' E CKerj, and % E c2' E CKerf, i.e., VAEd: 

o =}(A - /(A) [E I/(E)]) 

=}(A) - /(A) [}(E)I/(E)] =}(A) - /(A) , 

that is,}(A) =/(A) VAEd, i.e.,}ld =A. 
If/is Hermitian, we restrict our attention to real-valued 

functionals on the real linear space corresponding to the self­
adjoint elements of the C *-algebras. The argument above 
then carries over in a direct fashion. • 

Remark: If /Ed* is positive, it may not be possible to 
get a positive extension }Efll * with 2' C Ker]' As an exam­
ple to see this, we use Theorem 2.4. That is, specify a con­
straint set in fll \ d such that the linear space generated by it 
has only the trivial intersection {O} with d, but which does 
not satisfy the nontriviality condition of 2.4. Then there are 
no states vanishing on the constraints in fll . 

For a C *-algebra Y with a group action a: ~Aut Y 
on it, denote 

(aG - L)Y: = {ag(F) -FlgEG,FEY}. 

Then a functional/EY* is G invariant iff[ (aG - L)Y] 
CKer/ 

Corollary 4.5: Assume two C *-algebras d C fll, and an 
d -preserving group action a: ~Aut fll. Then all G-invar­
iant Hermitian functional on d can be extended to G-invar­
iant Hermitian functionals on fll if 
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[(aG -L)fll]nd= [(aG -L)d]. (***) 

Proof We wish to apply 4.4. Let/be a nontrivial G­
invariant functional on d. Then V EEd \ Ker / we have 
EI£[ (aG - L)dU% E] CKerf, by arguments above. As­
sume also that the condition (***) of the theorem holds. In 
the notation of Lemma 4.4, take 2' = [(a G - L)fll]. Then 
[2'] n d = [(aG - L) d] C Kerf, and so Lemma 4.4(i) 
is satisfied. For Lemma 4.4 (ii), note that % E C d V EEd 
\ Ker / Since d is a closed linear space, we can verify that 
[2'U% E] nd = [( [2'] nd) U% E]' Hence we see 
from EI£[2'U% E] iff EI£[2'U% E] nd, that it is only 
necessary to show that 3EEd\Ker/ such that EI£[ (aG 

- L )dU% E ]. But as we saw, allEEd\Ker / =/-0 will sat-
isfy this. • 

Now for a constrained boson theory as above, we have 
fll = Y = ll.( f!2 ), d = C *(15", ), andag (DF ) = DT• F , and 
T Gft = ft. To apply the preceding corollary, we need to show 
that 

Since (ag - I) is linear and continuous, 

and 

[(aG -I)C*(D",)] = [(aG -1)15",]. 

A general element A E [ (a G - I) 15 g ] is the limit of a Cauchy 
sequence of the form: {l:7~ 1 r{ (DTg,F, - DF, ) }t= l' The in­
dex i here has taken into account all relevant elements of 
f!2 X G. Now in the proof of Theorem 4.2, we showed that 
given a Cauchy sequence {l:7i A{DF, }t= 1 converging to an 
element in C * (15", ), that of the two Cauchy sequences ob­
tained from its natural decomposition with respect toft: 

the second one converges to zero: {l:7i{3{DT, }-+O asj-+ 00. 

Hence if AE[ (aG - I)Dg ] nC*(D",), then we decompose 
its converging sequence in the same manner. Since T Gft = ft, 
we get that (DT•F - DF )Ell.(fi) iff FEjl. So with the decom­
position 

nJ 

+ 2;{3{(DTg,T, - DT) , 
I 

whereP;Ejl~ T;. we get that the limit ofl:7i a{ (DTg,p, - Dp, ) 
isalsoA.Hence[(aG -1)Dg ]nc*(D",) = [(aG -1)15",], 
and so all G-invariant Hermitian functionals on tJ c 

= C*(D",) can be extended to G-invariant Hermitian func­
tionals on Y = ll. ( !!2 ) . 

Proposition 4.6: Given a degenerate boson field as above, 
and lIP ( ... ); on f!2 which satisfies (F,F); >0 V FEjl and 
(C,C); = 0 VCE1f, it will define an SW structure ifin addi­
tion (TgF,TgH); = (F,H); VF,HEjl, geG, and it will de-
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fine a wSW structure if (STgF, STgH)j = (F,H)j 
V F ,Hf:jt, geG, where the symplectic transformation S de­
fines a gauge automorphism on Y. 

Proof This is simply obtained by constructing Wi by 4.3, 
extending it to/; by the remarks following 4.5, and applying 
3.11 to/; for a SW structure. (Put Xo = I, J = Y, F = I.) 
For a wSW structure, the extension lemma above adapts 
easily, and we obtain the result on application of 3.17. • 

It is possible to define lIP's (',.) j by employing the 
operators J jeS(!l2 ,B) which satisfy J~ = - I. This is done 
as follows: (F,H)j: = B(F,JjH) + iB(F,H). By an exten­
sion ofthe usual nomenclature, Jj is called a complex struc­
ture. 

The first example of an application of the theory above 
that we present is that of a one-dimensional scalar boson 
constrained to live only in a periodic set of intervals. Hence 
we make the following choices: 

!l2 = y2(R), B(F,G) = f (FIG2 - F2GI ) , 

Y = A(!l2), 

where F = (FI ,F2). In order to define the constraint set Yff, 
define the intervals In: = [2nb,(2n + l)b] CR, beR+ 
fixed, neZ, I: = U neZ. In and the set 

vii: = {feY(R)13neZ such that suppjCIn }· 

Then the constraint set is defined as Yff = (O,vII), so that one 
findsjl = (vii 1, Y (R»), where 

viii: = {feY(lR)lsupp!Elln VneZ+}. 

Define physical transformations as the jumps between ad­
missible intervals, but to the same relative position in the 
new interval: 

dkF: = (FI(X + 2kb),F2(x + 2kb»), keZ. 

These transformations are clearly symplectic, preserve Yff, 
and hence are physical. In order to demonstrate the exis­
tence of an SW structure for this model, we apply Proposi­
tion 4.6, i.e., we wish to find a complex structure J which 
satisfies the conditions: 

B(F,JG) = B(G,JF) VF,Ge!l2; J2 = - 1, 

B(F,JC) = OVFf3,h VCeYff; B(F,JF»O VFf3,h, 

B(F,JF) = B(dkF,JdkF) VFe!l2. 

With the definition 

{
I, if xeI; 

P(x): = 0, if xt.I, 

the complex structure 

J= (iP P- 1) 
I-P -iP 

will satisfy all the requirements. As the verification is 
straightforward, we leave these to the reader. 

As a final example, we present electromagnetism in the 
Landau gauge. Rideau24 has already constructed a wSW 
structure in the heuristic framework, and the algebraic part 
of the theory has been cast into exact C * -algebraic language 
by Carey and Hurst. 19 Very little additional work is required 
to fit it into the present framework, apart from identifying 
the corresponding concepts. We present some of the details. 
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As in Ref. 19, the field algebra Y L for the Landau gauge 
is set up over momentum space. Let Y: = {<:4-valued, coo_ 
functions of fast decrease on R4}. The Fermi symplectic 
form is 

B(J,g):= f d4k8+(k2) [P"gp. _]p.gp.] , 

where 8+ (k 2): = 8(ko - I~ 1 )/21~ I. Let 

C+: = {keR4lk 2 = 0, ko>O} 

be the positive frequency light cone without the origin. In 
order to make B nondegenerate on Y, one normally factors 
out the off-C + parts of the elements of Y. The Landau sym­
plectic form is defined as 

BL (J,/,): = B(ZJ,Z/,) , 

where 

(Zj)p.(k):=jp.(k) +~ [kJ'V(k) -~(k%(k»]. 
2ko 2ko ako 

This corresponds to the usual heuristic expression.24 Clearly 
due to the last term, B L involves more of the Cauchy data 
than does B. In order to make B L nondegenerate, define 

fjJ: ./f-<p~(~): = (Zj)p.IC+. 

Then the test function space on which we choose to set up the 
C *-algebra ofthe CCR's is!l2 = Y /Ker fjJ, andB L is nonde­

generate on !!) . Hence take Y L: = A ( !!) ,B L ) as in Manu­
ceau.20 As smearing is done as usual, the elements 
jp. (k) = kp./(k)eY will correspond to ap. AI' (x), and so 
since one finds that kp./(k)eKer fjJ Vj(k), the transversa­
lity condition a I' AI' (x) = 0 holds as an operator condition 
on Y L' This is one example of how to treat an algebraic 
condition (cf. Sec. II). 

In order to define a C *-degenerate system in Y L, note 
that in Ref. 2 the Maxwell equations are imposed as state 
conditions. Hence we would prefer our specified constraint 
set to contain these. The set of test functions 

will correspond to Fp.v ,v (x) after smearing. Now 

Z(kp.k v - k 28p.v )jv (k) IC+ 

= -Zk%IC+ = kp.k "Iv IC+. 

Hence, following the literature, we take as constraints all 
equivalence classes of functions jeY such that ZjIC+ 
=fjJ~ (~) = kp.S(~), whereko = I~ I. Call this set Yff. Then 

the observables (7 will be generated by 

jl: = {je!l2IB dJ,/,) = 0 V/'eYff}, 

BdJ,/,) = B (ZJ, kp.S(~)) 

= 1m f d 3k [fjJ~ (k)kp.t(k)] = 0, 
c+ 21k I r - -

for all functions S(k), and this will be the case if 
fjJ~ (~)kP- = 0, ko = I{I. Take the set of equivalence classes 
of such j's to be jl. By the definition of Z, jf3,h iff 
kp./p.l C + = O. Clearly Yff Cjl. In Ref. 2 Strocchi and Wight­
man required that Fp.vetl. Letjp.v be an antisymmetric ten­
sor function. Then 2kvjp.v corresponds to Fp.v, i.e., 
F(j) = A (2kJp.v ). Then (Z2kJp.V)A kA IC+ = Ofollows 
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easily, which verifies F,.ve&. Through the definition of Z 
one also gets that if /eC(;, then/,. (~) = k,. r(~) IC+ for a 
specific r(k), related to t(k). 

Now that C(; andfi are specified, and contain the right 
objects, the Poincare transformations still need to be de­
fined. These are given on f!2 as 

(Ugf)(k) =eia-kA/(A-lk) , 

where g = L (A,a) is in the orthochronous Poincare group. 
These transformations translate on the q/'s using 
(U'q/) (k) =(jJu.f(k) t024 

g ,. _ ,.-

U' mf (k) = eia -k {A vmf (A -lk) - ~ 
gT,. _ I' T v 21~ 1 

X [Ai O (~:) (A -lk) + ia({tl(A -lk)]} , 

where ko = I~ I, and cd (~): = kP(jJ~ (~) = kP /1' (~). One 
easily checks that Ug respects Ker (jJ, hence is defined on f!2 , 

and that it is symplectic. Moreover, if (jJ~ (~) = kpt(~), 
then (jJ ;'.f(~) = kpeia -k t(A -lk), i.e., Ug preserves CC, i.e., 
ageY', where a g is the automorphism on Y L defined by Ug • 

Now in order to find the structures according to Propo­
sition 4.6, it is simple just to adapt the existing structures in 
Ref. 24 to this context. The rigorous existence of a wSW 
structure for the Landau gauge will be demonstrated if we 
can exhibit an indefinite inner product ( . , . ) on f!2 such that 
(Tp UgJ, Tp Ug/') = (J,/') 't:IJ,/,e!Z2, where Tp is a sym­
plectic transformation defining a gauge transformation p, 
and 

(J,C) = 0 't:I/f0., CeC(;; (J,f);;,O 't:I/f0.. 

Such an inner product is given by24 

f d3k [ -- cd(k) (J(k)] 
(J,/,) = I~ 1 - f,. (~) /,p(~) - 21~ 12 - , 
which is non-negative if / = /' and kP /,. 1 C + = 0 because 
spacelike photons are not admitted into the theory, and it is 
zero if kP fp IC+ = 0 andf~ (~) = kpt(~). Now (.,) can 
be derived from the Poincare invariant inner product 

- f(d 3k /I~ 1 )/1' (~) /'''(~) by the gauge transformation 

/,. (~) -/1' (~) + k,.k '1v (~)/4k ~ . 

As the invariant inner product is evaluated on C +, this is not 
required in the gauge transformation. One easily verifies that 
the gauge transformation is symplectic, and its associated 
automorphism on Y is in Ker Tc. Hence ( ., .) is Poincare 
invariant up to this gauge transformation. So, on considering 
the relevant expressions above, we find that we have shown 
the existence of a wSW structure. 
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v. CONCLUDING REMARKS 

While the structure of lIP theories are modelled on the 
Gupta-Bleuler version of electromagnetism, the current 
theory does not as yet have enough machinery to deal with it. 
The reason for this is that the constraints X used in Gupta­
Bleuler electromagnetism are non-Hermitian, and it is there­
fore not possible to define elements in the linear field algebra 
corresponding to exp(iAX), neither can we use the Hermi­
tian parts of X. On the other hand, the logical choice 
exp(iAX*X) for the constraint is nonlinear in its argument, 
and hence cannot be defined as an element in the linear field 
algebra. It is therefore necessary to develop a general theory 
of outer constraints, i.e., the constraints imposed are not 
contained in the field algebra in contrast to the situation 
above. This problem has already been solved separately, and 
will be submitted for publication soon. The theory above 
shifted neatly into place, and provided an acceptable C *­
field theory of the Gupta-Bleuler situation. 
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In geometric quantization it is well known that, if/is an observable and F a polarization on a 
symplectic manifold (M,w), then the condition "Xf leaves F invariant" (where Xf denotes the 
Hamiltonian vector field associated tot) is sufficient to guarantee that one does not have to 
compute the BKS kernel explicitly in order to know the corresponding quantum operator. It is 
shown in this paper that this condition on/ can be weakened to "Xf leaves F + Ft 
invariant"and the corresponding quantum operator is then given implicitly by formula (4.8); 
in particular when Fis a (positive) Kahler polarization, all observables can be quantized 
"directly" and moreover, an "explicit" formula for the corresponding quantum operator is 
derived (Theorem 5.8). Applying this to the phase space R2n one obtains a quantization 
prescription which resembles the normal ordering of operators in quantum field theory. When 
we translate this prescription to the usual position representation of quantum mechanics, the 
result is (among others) that the operator associated to a classical potential is multiplication 
by a function which is essentially the convolution of the potential function with a Gaussian 
function of width fl, instead of multiplication by the potential itself. 

I. PRELIMINARIES 

In Secs. I-III we give a brief summary of geometric 
quantization, mainly to fix the notation; for more details the 
reader is referred to Refs. 1-3. 

Suppose (M,w) is a symplectic manifold; denote by Xf 
the Hamiltonian vector field associated to the function f 
M - R, defined by i xp + d/ = O. Let L ...... M be the prequan­
tization line bundle over M with connection V and compati­
ble Hermitian form ( , ) such that curv(V) = wlfl [we 
suppose that (M,w) satisfies the quantization condition]. 

Let F be a (positive) polarization, i.e., F is a complex 
distribution of constant complex dimension n = ! dim(M) 
satisfying 

(i) 3 kEN, O<k<n: dimc (FnFt) = k (t denotes 
complex conjugation), 

(ii) V mEM there exists a neighborhood U such that 
(a) 3 zl, ... ,zn: U ...... C: Xz" ... ,xn spanFon U, and 

{t,z j} = 0 ({ , } denotes the Poisson 
bracket), 

(b) 3 wl, ... ,wk
: U ...... C: Xw" ... ,xwk span FnFt 

on U, 
(iii) V vEEm :i'w(v,vt ) ,>0 (positivity). 
IfF is a polarization then there exists by definition a real 

foliationD such that DC = FnFt; it follows that there exists 
another real foliation E such that E C = F + Ft, 
E 1 = D, D 1 = E (orthoplement with respect to w). We 
suppose that the quotient space MID admits a manifold 
structure such that the canonical projection 1T: M ...... MID is a 
submersion. The image 1T * E in MID is a foliation of even 
dimension and F induces a complex structure on the leaves 
of 1T * E such that the following description holds: X z EE¢::;,z is 
a function on MID, holomorphic on the leaves of 1T * E. 

Define R F to be the principal GL(n,C) bundle over M 
ofallF frames and suppose there exists a principal ML(n,C) 
bundle R -F over M and a 2-1 bundle covering pr of R -F 

over R F, where ML(n,C) is the metalinear group with 

projection p: ML(n,C) ...... GL(n,C); we denote by 
A: ML(n,C) ...... C the well-defined map which represents the 
"square root of det," i.e., A(g) = ± V det(p(g»). Under the 
assumption that R _F exists, B -F will denote the bundle of 
( - p-F-forms, which is the C-line bundle over M associat­
ed with the principal bundle R -F by the representation A. 
The sections v of B _F can be identified with functions v on 
R -F with the transformation property 

v(a'g) = v(a) ·A(g)-I = ± v(a)' (vdet(p(g»))-t, 

for aER -F, gEML(n,C), p(g)EGL(n,C). 
(1.1 ) 

On B -F there exists a partial (i.e., defined for vectors vEE 
only) flat connection V, and with these ingredients we define 
the quantum bundle (QB) with partial connection V by 

QB = L ®B -F, "V = VIL + VIa-F'" 

By an F-constant section'll of QB we will mean a section 
which satisfies V sEE: V 5'11 = 0; the same convention holds 
for sections of Land B -F. 

Since the Hilbert space constructed by geometric quan­
tization consists of F-constant sections of QB, we will inves­
tigate these sections in more detail; in Sec. III the Hilbert 
space and the inner product will be defined more precisely. 

By using refinements of covers one can always construct 
a cover {Ua laEA} of M satisfying the following conditions. 

(i) It trivializes the bundles, L, R F, R -F, B -F and QB 
simultaneously. 

(ii) On Ua there exists a symplectic potential 
U a: dU a = wand the connection V on L is given by 

Vssa =Ssa - (ilfl)Ua(s)sa, (1.2) 

where the function Sa represents a local section of Lover Ua 

(this follows from the construction of L; the transition func­
tions of L are related to the exact one-forms Ua - Up). 

(iii) There exist rt, ... ,r'<: Ua -R and 
~+ I, ... ~: Ua ...... C such that Xr' , ... ,x,.. span D, 
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Xr, ,.··,xrk ,xZk + I ,.··,xZn =Xr, ,.·.,xzn span F and the frame 
(Xr, , ... ,xz") corresponds to the identity EGL(n,C) in the 
local trivialization of R F (the existence of these functions 
follows from the definition of a polarization). 
The elements of R -F are called metaframes, so to each F 
frame (SI, ... Sn) correspond two metaframes called 
(SI, ... ,Sn ) - (remember that pr: R -F -oR F is a 2-1 cover­
ing). Whenever we need to define exactly which metaframe 
we have to use, we will specify it; in particular the metaframe 
(Xr, , ... ,xz") - represents the identity in ML(n,C) in the 
same way as pr( (Xr, ,.·.,xzn ) -) = (Xr, , ... ,xzn) represents the 
identity in GL(n,C) [see condition (iii)]. 

We will call a cover {Ua laEA} a nice cover if it also 
satisfies a final condition. 

(i v) For each aEA there exists a local F-constant section 
'l'a ofQB over Ua which is nowhere zero on Ua . 

Remark: If {Ua laEA} is a cover satisfying conditions 
(i)-(iii) then the local trivializations v" of B -F, defined by 

(1.3 ) 

are F-constant sections, hence the search for F-constant lo­
cal sections of QB can be reduced to the search for F-con­
stant local sections of L. 

It is well known that two F-constant sections 'l'and X of 
QB differ locally by a function on M /D (better: a function 
constant on the leaves of D) which is holomorphic on the 
leaves of 1T ... E. Hence if F is a positive Kahler polarization 
(i.e., D = {O}<=}k = 0) thenM /D = M, 1T. E = E, and Fin­
duces a complex structure on M turning it into a Kahler 
manifold. The existence of a nice cover with local F-constant 
sections ofQB tells us that QB is a holomorphic line bundle 
(i.e., on Ua n Up the 'l'a and 'l'P differ by the transition func­
tion which is holomorphic and nonvanishing since 'l'a and 
'l'P are both F constant and nonvanishing). It follows that 
the Hilbert space (which we will define in Sec. III) consists 
of hoi om orphic sections ofQB. 

In the general case (F not Kahler) one can sometimes 
construct a Coline bundle over M /D which is holomorphic 
on the leaves of 1T. E, but success is not guaranteed (e.g., the 
circular polarization on ]R2,\ {O}). 

II. THE BKS KERNEL 

In this section we will give a heuristic definition of the 
BKS kernel (named after Blattner, Kostant, and Stern­
berg); for a more thorough definition using the metaplectic 
bundle we refer the reader to Ref. 2. 

Suppose F and F' are two polarizations for which there 
exist two real foliations (of constant dimension) D 1\ and 
E 1\ satisfying 

(i) FtnF' = D f\(:, 

(ii) Ft +F'=EI\C, (2.1) 

(iii) M / D 1\ has a manifold structure and 

1T: M .... M / D 1\ is a submersion. 
Then E 1\ 1 = D 1\, D 1\ 1 = E 1\ and one can define a pairing 
(i.e., a sesquilinear form) ('1','1") between F-constant sec­
tions 'I' of QB = L ®B -F and F'-constant sections '1" of 
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QB' = L ®B -F' by 

('1','1") = { ('1','1"), 
JMID A 

where ('1','1") is a density (i.e., a complex measure) on 
M / D 1\ defined by the following process. Suppose 
'1'(') = 5(') ® v(') is a local representation of '1'('), 5(') a section of 
L, va section of B -F and v' a section of B -p'. Choose vec­

tors SI""'Sn' S k+ I , ... ,S~, t1, ... ,tkETmM
C such that 

(SI, ... ,Sk) span D 1\, 

(SI, ... ,Sn) span F and (SI"",Sk,Sk+I""'S~) span F', 
(SI"",sk,sl+ I""'S!,S k+ \> .. ·,S ~,tl,· .. ,tk) span TmM

c
, 

(2.2) 

then (t)o)=1T. (sl+ \>··.,S!,S k+ \> .. ·,S ~,tl,· .. ,tk) is a 
(complex) frame at 1T( m)E M / D 1\ and we define the den­
sity ('1','1") at 1T(m) on the frame (t)o) by 

('1','1") (1T(m) ),(t)o) 

= (5,5') (m) ·V(SI, ... ,Sn )-)t 

X ·V'(SI,· .. ,Sk,S k+ I "",S ~ )-) 

X V (det( (ih) -IW(SJ,S ~ ) )Ij,u = k + I •... ,n) 

X ILi(SI, .. ·,tk ) I, (2.3) 

where Li= ( - l)n(n - \)!2'wn/ n! is the Liouville volume­
formonM. 

An equivalent definition using an arbitrary frame (t») 
at 1T(m) is given by 

('I', '1")( 1T(m) ,( (t))) 

= (s,s')(m)'v(SI"",Sn)-)t 

X 'V'(SI"",Sk'S k+ I "",S ~ )-) 

X V (det((ih) -IW(S J,s ~ »Ij,u = k + I, ... ,n) 

X ILi(SI"",Sk,1T; l«t»)I, (2.4) 

with 1T; I( (t») an arbitrary lift ofthe frame (t») to T mMc, 
Using the fact that '1'(') is F(') constant one can prove that 

the right-hand side of (2.3) and (2.4) is independent of the 
choice of m in the fiber above 1T( m ), and these formulas 
define a density on M / D 1\, except for two facts: (a) we have 
not specified which metaframe we have to choose (there al­
ways exist two possible choices which differ by a minus sign 
when Va is applied), and (b) we do not know which branch 
of the (complex) square root we have to use. In general one 
needs the metaplectic bundle to answer these questions; 
however, in the cases we are interested in one does not need 
the metaplectic bundle (see also Refs. 4 and 5). 

III. THE INNER PRODUCT AND THE HILBERT SPACE 

If F = F' is a positive polarization then one can choose 
S; = Sj,j = k + l, ... ,n, and so det((ih)-lw(sJ,s ~») isposi­
tive [use that VEDc<=}UJ(vt,v) = 0] hence we can choose 
everywhere the positive square root without running into 
trouble. Furthermore, if we choose a nice cover, then each F­
constant _section 'I' of QB admits a local representation 
'I' = Sa ® v" [v" defined by (1.3)] and the 2n - k vectors 
Xr, , .. ·,xr",xzk+ I , ... , Xzn , Xzk+ I , .. ·,xzn satisfy the first two con-
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ditions of (2.2), so on 1T(Ua ) we find for two F-constant 
sections 'I' and '1" of QB, using (2.4): 

('1', '1")( 1T(m) ,( (S-») 

= (sa ,S~ )(m) 'v"( (XrJ,xzu) -)t 'v"( (XrJ,xzu)-) 

X (det( Uh) -IW(XzJt,xzu) )j,u = k + I, ... ,n) 1/2 

X ILi(Xr, , ... ,x,..,1T; 1«5'))) 1 

= (Sa,s~)(m)' (det( Uh) -IW(XzJt,xzu) )j,U = k + I, .... n) 1/2 

X ILi(Xr, , ... ,x,..,1T; I«S-))) I. (3.1) 

This formula defines a density for each pair of F-con­
stant sections '1','1" of QB which is positive if 'I' = '1", de­
pends linearly on '1" and antilinearly on '1', hence we can 
define a Hilbert space H as the completion of the pre-Hilbert 
space (PH) defined by 

PH = {'I': M --QBI'I'is F constant and fMID ('1','1') < 00 }, 

with inner product ('1','1") = r ('1','1"). (3.2) 
JMID 

Of course, if we wish to obtain results it remains to show in 
each case that H #{a}, a fact which sometimes leads us to 
consider distribution valued sections of QB, instead of C 00 

sections (e.g., on R2\ {a} with the circular polarization) 
(see Refs. 2, 6, and 7). 

IV. QUANTIZABLE OBSERVABLES 

IfJis an observable, i.e.,f M--R, then a quantization 
procedure should associate to J a self-adjoint operator f on 
the Hilbert space H. In geometric quantization the general 
procedure is given below, although it does not guarantee that 
the result is a self-adjoint operator. However, it turns out 
that in almost all interesting examples the result is a self­
adjoint operator. To construct f one proceeds as follows: let 
p, be the flow on M associated to the Hamiltonian vector 
field Xf' define the polarization F(t) by F(t) = P _ ,.F and 
the bundleQB(t) byQB(t) = L ®B -F(1). Then there exists 
an associated map on sections of L (called p~ by abuse of 
notation) and a map (called P,., also abuse of notation) P,. : 
R -F --R -F(t) which are both defined in a "canonical" way 
[e.g.,p,.: R -F --R -F(1) is the lift to the metalinear bundles 
of a map which is the restriction to R -F and R -F(1), respec­
tively, of the flow on the bundle of all n frames of M (of 
which R -F and R -F(1) are subbundles) associated to the 
flow p, on M]. If S is an arbitrary section of L (with local 
representation Sa with respect to a nice cover) and v an arbi­
trary section of B -F then 
(p~s)a (m) 

=Sa (p,m) .exp( (ili)-I 50' Wa (Xf ) - J)( psm)dS). 

(4.1 ) 

(p~v)(S-)-) = v«(p,. (S-)t), 

(P,. (S-) t defined by continuity in t. (4.2) 

The map pr QB--QB(t) defined by p~(s®v) 

= (p~s) ® (p~v) now obviously has the property that if 'I' 
is a F-constant section of QB then p~'" is a F(t)-constant 
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section of QB(t). Finally we assume that for all tE(a,E) 
(E> a) F and F( t) satisfy the conditions (2.1) for a pair of 
polarizations. If we denote the pairing between QB and 
QB(t) by ( , h.F(t) and the inner product in H by ( , ) H 

then the operator f is defined by the equation 

(X,f '1') H = lim - iii ~(X ,p~'I') F.F(1P X, 'l'EH. (4.3) 
'ID dt 

Remark: It is not at all evident that this formula defines 
an operator f, and indeed there exist examples in which this 
"definition" does not yield a result, for instance in cases in 
which lim (X, p~'I') F.F(t) is not equal to (x, '1') H' 

In general one has to know the specific form of J to 
compute ( 4.3); however there exist conditions onJ for which 
one can simplify (4.3) and in which one can obtain an explic­
it expression for the operator f. Two of such conditions are 
well known: (a) ifJis constant along F, i.e., [Xf,F] = {a}, 
then fis multiplication by f; (b) if Xf leaves Finvariant, i.e., 
[Xf,F] CF, then fis represented by a first-order differential 
operator. 

In this paper we will show that there is an even weaker 
condition for which we can compute f explicitly: the condi­
tion [Xf,Ft + F] CFt + F. To compute (4.3) with this 
condition onJwe proceed as follows: first observe that, since 
J is real and F a polarization, we also have [Xf'D] CD, 
which implies that F and F(t) satisfy conditions (2.1) with 
D A = D and E A = E; it follows that we may replace in 
(4.3) the "lim tWd Idt"by"d Idt 1,=0'" Now we choose a 
nice cover and two arbitrary elements 'I' and '1" of H, and we 
perform the calculations on a local chart Ua where we have 

'I' = s ® v", '1" = s' ® v", [see (1.3)], 

('1", p~'I')( 1T(m ),«S-))) 

= (s',p~s)(m)'v"(Xr},xzu)-)t 

X (p~v")«(XrJ'P _,. (Xzu )t) 

X (det(Uh) -IW(XzJt ' P _ ,.Xzu ) )j.u = k + I ..... n) 1/2 

X ILi(Xr, , ... ,x,k,1T; I( (S-))) I, 
where the lift (XrioP_,.(Xzu »)- to R -F(t) of the frame 
(Xr ) , p _ ,. (Xzu ») is chosen in such a way that it depends 
continously on t and reduces to the well defined metaframe 
(Xr},xzu ) - at t = a. Using 4.2 and the definition of Va (1.3) 

we can simplify this expression to 

('1", p~'I') (1T(m ),( (S-»)) 

= (s' ,p~s)(m) 'v"( (p,. (X,) ),xzu)-) 

X (det((ih)-lw(XzJt,xzu'p,n,u=k+ I ..... n )1/2 

X ILi(Xr, , ... ,x,..,1T; I(S-»)) I. 
We now define functions aj.u and bj,s by 

k 

[Xf,xr}] = I aj.uXr" , l<I<k 
u=1 

k n 

[Xf,xz}] = I aj.uXr" + I aj.uXzu 
u=1 u=k+1 

n 

+ I bj.sXrt , k <j<n. 
s=k+1 
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If we use the transformation property of ( - D-F-forms 
(1.1), we get 

d 11k 
dt 1=0 "a( PI. (X,) ),xz") -) ="'2 j~1 ajj' 

dl (dt('h)-I(X V») )1/2 -d e I (J) zJt~z"·p, 'j,U = k + I •...• n 
t 1=0 

= (..l .± ajj) 
2 j=k+ I 

X (det(Uh) -ll1I (XzJt ,xz" n.u = k+ I •...• n) 112. 

Combining these results with (4.1) and (1.2) we find 

:t I 1=0 ('I1"P~'I1) (1T(m),(t»)) 

= (S',Vxr + (~f +..l..± ajj)s)(m) 
Il 2 }=I 

X (det( (ih) -ll1I (XzJt ,xz") )j.u = k + I •...• n ) 1/2 

X I Li(X" , ... ,x,k,1T'; I«t))) I. (4.5) 

Comparing this formula with the inner product (3.1) we 
might say 

- ill!!.-\ ('I1"P~'I1) (1T(m),«t))) 
dt 1=0 

= ('I1',Lf 'l1)(1T(m),(t») 

or 

(4.6) 

where the section Lf 'l1 ofQB is defined by the local expres­
sion 

Lf(s ®"a) = ( - illV xr + (r - ~ ill jtl ajj )s) ®"a. 

(4.7) 

By construction the right-hand side of ( 4. 5) is indepen­
dent of m as long as 1T(m) remains fixed, so it is a well de­
fined density at 1T(m)EM /D. However the section Lf 'l1 of 
QB need not be an F-constant section of QB! SO if we assume 
that it is allowed to change differentiation and integration in 
(4.3) (and we do!) then we find 

('I1',f'l1) = f ('I1',Lf 'l1) z ('I1',Lf 'l1) , (4.8) 
JMID 

but nevertheless we cannot conclude that f'l1 = Lf 'l1, be­
cause we do not know whether Lf 'l1 is F constant or not. 
What we are looking for is a way to construct the "F-con­
stant part" out of Lf 'l1:Lf 'l1 determines a linear operator on 
H by (4.8) so (if it is continuous) it determines an element 
f '11 of H. In the next section we will show how to construct 
this element out of Lf 'l1 by means of a kernel representation. 

v. A GENERALIZED BERGMAN KERNEL 

In this section we will assume that F is a positive Kahler 
polarization and that there exists a nice cover; in Sec. I we 
have seen that, under these assumptions, QB is a holomor­
phic line bundle over the complex manifold M, trivialized by 
the local sections 'I1a associated to the nice cover. Now if X is 
any section of QB, we denote by X a :Ua .... C the local repre-
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sentation of X with respect to the trivialization 'I1a, i.e., 

(5.1 ) 

(N.B. the local representation carries a subscript a whereas 
the trivializing section 'I1a carries a superscript); moreover X 
is a F-constant section if and only if X a are holomorphic 
functions. 

To each pair of F-constant section X and X' we associat­
ed in Sec. III a density on M /D=M (because Fis Kahler) 
and in particular ('I1a,'I1a) is a (local) density on M. Letpa 
be a partition of unity subordinated to our nice cover, then 
we can define for any two sections X and X' ofQB (holomor­
phic or not) a density (X,X') by 

(x,x')(m) = LPa (m) 'Xa (m)t·x~ (m)' ('I1a,'I1a)(m), 
a 

( 5.2) 

which coincides with definition (3.1) if X and X' are F con­
stant because on Ua: (X,X') = (Xa ''I1a,X~ ''I1a) 
= X~ 'X~. ('I1a,'I1a) and because ~a Pa = 1. It follows that 

we can construct a Hilbert space L 2 (M,F) defined as the 
completion of the pre-Hilbert space 

with inner product 

(X,X') = IM (X,X') 

and associated norm 

IIxll = v(X,X)· 

If we introduce the measure Il-a on U a defined by 

then this pre-Hilbert space is defined equivalently by 

{X: M .... QB I ~ La IXa 12 dll-a < oo}, 
with inner product 

(X,X') = L f X~ ·X~ dll-a· 
a JUa 

(5.3 ) 

(5.4) 

(5.5) 

By construction the pre-Hilbert space PH defined in 
(3.2) is a subspace of L 2 (M,F) , hence H as defined in Sec. 
III (the completion of PH ) is the closure of PH in L 2 (M,P). 
What we will show first is that PH is a closed subspace (see 
also Ref. 7, §5. 7), hence H"", PH which we will also denote by 
L 2 (M,F) hoi' suggested by the fact that F-constant sections 
are just the holomorphic sections. The main ingredient to 
prove this claim (and others) is the following lemma. 

Lemma 5.1: If X is an F-constant section in PH then for 
any Ua , for any compact subset K of Ua there exists a posi­
tive constant c = c(K) such that, for all mEK, 

IXa (m) l<c(K) ·lIxll· 
Proof: we denote by B(m,E) the open ball of radius E 

around m in a local chart contained in C". Because K is com­
pact there exists a 8> 0: 'tfmEK: B(m,28) C Ua; since Xa is 
holomorphic on Ua ("Ua CC"") if follows by the mean val-
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ue theorem and the Cauchy-Schwartz inequality that 

IXa (m) ! 2..;;const (8) . r IXa (m') 12·dA. (2n), 
JB(m,t;) 

where A. (2n) denotes the Lebesgue measure on en. Now 
('IIa,'IIa) is a continuous density on Ua which is nowhere 
zero, hence there exists a constant c' depending on the com­
pact subset K' defined by 

K' = closureC~ B(m,8»)C Ua , 

such that 

dA. (2n)..;;c'· ('IIa,'IIa) on K', 

hence 

r IXa (m') 12dA. (2n) 
JB(m.t;) 

..;;c'· r IXa (m')iZ'('IIa,'IIa) 
JB(m.t;) 

=c'· r (X,X)..;;c'· i (X,X) =c'·lIxII 2
• 

JB(m.t;) M 

From these inequalities the lemma follows because const(8) 
and c' are postive constants depending only on the compact 
subset K. Q.E.D 

Using this lemma, the proof of the theorem stated below 
is a direct copy of the case of complex functions on a domain 
in en: a Cauchy sequence in L 2(M,Fhol implies pointwise 
convergence, uniform on compacta. 

Theorem 5.2: (1) PH is a closed subspace of L 2(M,F). 
(2) For any mEUa the map PH=H=L 2 (M,F) hoi 
~e,X~Xa (m) is a continuous linear functional. 

Corollary 5.3: For each mEUa there exists a unique F­
constant section K(a,m) of QB in L 2 (M,FhOI , such that for 
each XEL 2 (M,F) hoi: 

Xa (m) = (K(a,ml'X), 

Definition: The generalized Bergman kernel 
K(a.{3) (m,m') is defined by 

K(a,/J) (m,m') = K(a,m)p (m')t [see (S.l)]. (S.6) 

Corollary 5.4: For XEL 2 (M,F) hoi : 

Xa(m) = I r K(a,{3) (m,m')'Xp(m')·df.Lp(m'). 
p JuP 

Proposition 5.5: If «({Jj) is a complete orthonormal set in 
L 2 (M,F) hoi then 

I ({Jja (m)({Jjp (m')t converges to K(a,p) (m,m'). 
j 

Proof: The first step is to prove that for fixed mEUa the 
series (({Jja (m») is a square-summable series, i.e., 
(({Jja (m) )EI2. Therefore let (aj )E1 2 with II (aj ) 112 = l:j laj 1

2, 
then by the Cauchy-Schwartz theorem 

± l({Jja (m) 12 = supremum' ± aj({Jja (m) ,. 
j= I IT(aj)II<1 j= I 

If we associate to (aj ) El2 the element 
N 
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'II = I aj({JjEL 2(M,F)hol 
j= I 
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then 11'11112..;; II (aj ) 11 2
, and so we have 

N 

I l({Jja(m)1 2..;;supremum l'IIa(m)I";;const, 
j= 1 11'1'11<1 

where the last inequality follows from Lemma 5.1. So the 
series of partial sums is bounded from above hence 
(({Jja (m»)EI 2. Applying the Riesz-Fisher theorem it follows 
that X(a,m) ' defined by 

X(a,m) = I f{Jja (m)t({Jj' 
j 

is in L 2 (M,FhOI and we claim that X(a,m) = K(a,m)' There­
fore choose any xEL 2 (M,Fhol' then 

x = I «({Jj,X)({Jj 
j 

[because «({Jj) is complete orthonormal] 

and so [because point evaluation is continuous (Theorem 
5.2) ] 

Xa (m) = I«({Jj,X)({Jja (m) = I«({Jja (m)t({Jj'X) 
j j 

By uniqueness of K (a,m) the equality follows, whence we have 

K(a,p) (m,m') =K(a,m)p(m')t 

= X(a,m)p(m')t = I ({Jja (m)f{Jjp (m')t. 
j 

Q.E.D 

Corollary 5.6: K(a,p) (m,m') is holomorphic in m and 
K(a,/J) (m,m')t =K(P.a) (m',m). 

Having defined the generalized Bergman kernel, we can 
proceed with the main story. An element XEL 2 (M,F) defines 
a continuous linear functional on L 2 (M,FhOI by means of 
the inner product: 'IIEL 2 (M,F) hoi ~ (X,'II)EIC. Since 
L 2(M,Fhol is a Hilbert space this linear functional can be 
represented by an element XholEL 2 (M,FhOI defined by 
(X, 'II) = (XhOI' 'II) where the inner product on the left is in 
L 2(M,F) and on the right in L 2(M,F)hol' 

One can easily show that the map X~Xhol' 
L 2 (M,F) ~L 2(M,F)hOI is the orthogonal projection onto 
the closed subspace L 2 (M,F) hoi and we will show in Propo­
sition (5.7) that this projection can be represented by an 
integral formula using the kernel K(a,/J) . The reason why we 
call this kernel a generalized Bergman kernel is that if one 
replaces L 2 (M,F) by the Hilbert space of square integrable 
functions on a domain G in en and L 2(M,F)hOI by the sub­
space of holomorphic functions then the same reasoning as 
above applies; the associated projection admits a kernel rep­
resentation which is the (usual) Bergman kernel representa­
tion. 

Proposition 5. 7: 

Xhola(m) = I r K(a.P) (m,m')·Xp(m')·df.Lp(m'). 
p JuP 

Proof X - Xhol is orthogonal to L 2 (M,FhOI , hence 
(K(a,m) ,X) = (K(a,m) ,XhOI) = Xhola (m), where the last 
equality follows from Corollary 5.3. Q.E.D. 
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With this proposition we can solve the question posed at 
the end of Sec. IV concerning the construction of operators 
in geometric quantization. 

Theorem 5.8: Let (M,m) be a symplectic manifold, Fa 
positive Kahler polarization and suppose there exists a nice 
cover (see Sec. I). Iffis any observable, i.e.,/: M-+R, then 
the associated operator f on H = L 2 (M,F) hoi is defined by 

Dom(f) = {XeL 2(M,FhoIILrxeL 2 (M,F)}, 

XEDom(f) =>fX = (Lrx) hoi , 

where LrX is defined by (4.7) and the holomorphic part 
(LrXhol by Proposition 5.7. 

VI. APPLICATION I 

In this example we consider the symplectic manifold 
M=R2, m=dp/\dq and the polarization F=C·(a/ap 
+ ia /aq) = CXp + iq' In this case all bundles, L, R F, R -F, 

B -F, and hence QB are trivial so we can identify sections of 
these bundles with functions on M. For L the connection V is 
then given by 

V sS = ~s - (i/-II)il(~)s, 

where we choose the symplectic potential {} = ! (p dq 
- q dp); the compatible Hermitian form is given by 
(s,s')(m) =s(m)t·s'(m). The cover consisting of the one 
chart R2 is a nice cover because the section '1'0 defined by 

'l'0(p,q) = exp( _ (p2 + q2)/(4-11») 

is F constant and nonvanishing. The complex structure on M 
induced by the positive Kahler polarization F is such that 
z = p + iq is a holomorphic coordinate. 

According to Sec. V we have to compute the density 
('110,'110) in order to know the inner product inL 2 (M,F) and 
in L 2(M,Fhol; using formula (3.1) (with Xp + iq spanning 
F) we find 

('1'0,'110) = V (2/h)exp( - ztz/(2-11»)dp dq. 

Consequently if we identify a section X ofQB with the func­
tion g = Xo (i.e., X = g'l10

) , the Hilbert space L 2 (M,F) is 
given by 

L 2 (M,F) = {g: c-+CI(~)1I2L Ig(z)12 

xexp( - ztZ)dP dq < oo}, 
(2-11) 

(g,g') = (~)1I2 f g(z) tg' (z)exp( - ztz)dP dq, 
h Jc (2-11) 

L 2 (M,F) hoi is the subspace of holomorphic functions g; 
since L 2 (M,F) hoi = H describes (according to geometric 
quantization) the quantum mechanical system we find here 
the well known Bargmann representation, mostly used for 
the harmonic oscillator. 

The elements gn(z) = (2h)-1/4(n!)-1/2(2-11)-nI2zn 
form an orthonormal complete system hence [Proposition 
(5.5) ] the Bergman kernel for this Hilbert space is given by 

K(w,z) = L:gn(w)(gn(z)jf = (2h)-1/2 exp( ztw ), 
n (2-11) 

so Corollary 5.4 gives the well known reproducing formula 
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for holomorphic functions on c: 

g(w) = (~ )112 f k(w,z)g(z)exp( ~~:z)dP pq 

= h -lfg(z)exp(zt(W - z) )dP pq. (6.1) 
(2-11) 

Now letfbe any observable and letgEN then 

X -2;( af ~_ af~) 
r - azt az az azt ' 

.( a
2
f a 2f ) 

[Xr,xz] = 21 (azt )2 Xzt + az azt Xz , 

so when we calculate formula (4.7) we get 

L (g'l10) = (2-11 af dg + {f _ zt af + -II a 2f \")'110. 
f azt dz \ azt az aztf 

Applying Theorem 5.8 we find the following prescription to 
compute the operator f (using partial integration, omitting 
'110) . 

Prescription L' In the Bergmann representation the oper­
ator f associated to an observablefis given by 

(fg) (w) 

= h -I f exp(zt(W -z) )(f - -II a:t In(z)dp dq. 
(2-11) \ azaztf 

(6.2) 

We now notice that for "any" holomorphic function k(z) 
the following formula holds: 

h -If exp(zt(W -z) )ztk(z)dp dq 
(2-11) 

=h-Ifex (zt(W-Z»)2-11 dk d d =2-11~. 
P (2-11) dz !p q dz(w) 

Combining this with the previous formula we get a prescrip­
tion how to obtain the quantum mechanical operators asso­
ciated to polynomial observables (see also Ref. 7, §6.3.4). 

Prescription II: if! is a polynomial observable, then the 
operator f in the Bargmann representation is given by the 
following process. 

(a) Compute (f--IIa 2f/(azazt ») as polynomial in z 
andzt . 

(b) Write in this polynomial zt to the left of z. 
(c) Replace each zt by 2-11 d / dz. 
Examples: 

(1) f=2-(p2+q2)=>f=2-z'zt 
2 2 

a:t 1 I =>f--II--=-zt'z---II, 
azazt 2 2 

f= 2- . (2-11 !{)z - 2--11 = -II(z. !{ + 2-); 
2 dz 2 dz 2 

(2) f=2-p2=>f--II a
2
j =zt2 + 2ztz+z2-2-11, 

2 azazt 8 

I 2 d 2 I d r 1 
f=T-II dr +Tm dz +8+"4-11; 
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1 2 (3)f=-q 
2 

a 2f - (zt2 
- 2ztz + zZ + 21i) 

~f-liazazt= 8 

f= -~IJ2~+~Iiz!!..- z2 +~Ii. 
2 dzZ 2 dz 8 4 

Remark 1: The connection between these operators and 
their counterpart in the usual Schrooinger representation 
(H = square-integrable functions of q) will be discussed in 
the third application. 

Remark 2: The eigenfunctions of the Hamiltonian 
H = ~(p2 + q2) are the functions gn defined by 
gn (z) = (2h) -1/4(n!) -1/2 (21i) - n12zn with eigenvalues 
(n + !) Ii (n = 0,1,2, ... ). It follows thattheoperator z (mul­
tiplication by z) is a creation operator, and the operator 
zt = 21i d / dz an annihilation operator. With this interpreta­
tion our prescription to compute f can be stated as follows: 
computef -lia2j/(azazt ) in terms of creation and anni­
hilation observables z and zt and put all annihilation opera­
tors to the left of the creation operators. Stated in these 
words, this prescription resembles the normal ordering used 
in quantum field theory, where--contrary to this case--the 
annihilation operators are put to the right of the creation 
operators. 

Remark 3: In the above description of our system we 
have used the coordinates p (momentum) and q (position) 
and we have introduced a complex coordinate z = p + iq. 
However, this has physically no meaning because p and q do 
not have the same dimension. Ifwe wish to obtain a physical­
ly correct description of our system we can introduce con­
stants a andp with dimensions momentum (resp. position), 
and then define a new complex coordinatez' = pia + iq/P, 
which has no dimension. The changes in our prescription 
due to this change of the complex coordinate are slight: 

H = {g: C-Clg holomorphic}, 

(g,h) = 1/(2ap/h) 1 g(zl)th(ZI) 

( 
- z/tzlap) dp dq 

xexp 21i -;;p' 
and in formula (6.2) and in the prescription Ii has to be 
replaced by the dimensionless constant 1i/(a/:1). 

VII. APPLICATION II 

In this case we consider the symplectic manifoldM = S 2 

together with the symplectic form w = - AE, where A 
ElR \. {O} and E the standard volume- ( = surface-) form on 
S 2. For the physical interpretation ofthis symplectic mani­
fold as representing the phase space of the classical spin, we 
refer the reader to Ref. 8. In polar coordinates «(},t/J) on 
S2:JR3 , E is given by E = sin () d(} /\dt/J; however, we prefer 
to use complex-holomorphic charts on S2 = pl(C) which 
can be obtained by projection from the north/south pole: 
Uo = C = UI with transition function U0 3z-lIz = WEUI , 

which corresponds in homogeneous coordinates (ZO:ZI) on 
pl(C) to Z=Zl/ZO++(ZO:Zl)++W=zoIzl; the relation with 
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polar coordinates is Z = cot g «() /2) eiifJ
• In these coordinates 

the volume element is given by 

E= [-2i/(ztz+ 1)2]dz/\dzt 

= [ - 2i/(wtw + 1 )2]dw /\dwt. 

We now introduce the local symplectic potentials {}j on ~ 
defined by 

{fo = (iA. /(ztz + 1))(z dzt - zt dz), 

{}I = (iA. /(wtw + 1»)(w dwt - wt dw), 

so{}o - {}I = d(iA.log(w/wt»), from which one deduces that 
the gauge transformation gOI of the prequantum bundle L is 
given by 

gOI (z) = exp(i(iA. /Ii) log (w/wt) ) = (Z/zt)A.lIi. 

Since gOI should be a well-defined function on uon UI this 
formula shows (it is not a proof, but it can be made into one) 
that L exists if and only if U /1iEZ, i.e., 

A = n '1i/2, for some nEZ. 

On (S2,W) we use the positive Kahler polarization 
F = CXz = CXw (XI as always the Hamiltonian vector field 
associated to the function f) so with the trivialization de­
fined by these Hamiltonian vector fields, the gauge transfor­
mation g~1 of the F-frame bundle R F is given by 

g~1 (z) = _Z-2 (Xz = -z2X w ). 

Since - Z-2 admits a global square root the metaframe bun­
dle R -:F exists and hence the quantum bundle QB. Using 
formula ( 1.2) one can show that the local sections s j on ~ of 
L defined by 

sO(z) = (ztz + 1)- n/2, SI(W) = (wtw+ 1)-n/2 

are F constant, hence the cover {UO, UI } is a nice cover. Com­
bining the transition functions of the bundles Land B-F 

[the latter has transition function 1/ ( - z - 2) = i/ z] with 
the fact that (wtw + 1) - nl2 = (ztz + 1) - n12. (ztz )n12, we 
get the result that, with respect to the trivialization ofQB by 
theF-constant sections qP = sj ® v j [see formula (1.3)], the 
transition function hOI of QB is given by 

hOI (z) = i/z' (z/zt)n12. (ztz )nI2 = izn - I. 

In other words, a global section X of QB determines two 
holomorphic functions Xi [see (5.1)], who are related by 
the equation: 

Xo = hol'XI{::}Xo(z) = i~ - IXI (liz). 

This shows that Xi can be at most a polynomial in z of degree 
n - 1, implying that if we wish to obtain something nontri­
vial, then n (and hence A) should be positive, and that the 
resulting Hilbert space H = L 2 (M,Fhol has dimension (at 
most) n. At this point we mention that, had we used the 
polarization Ft instead ofF, then the complex coordinate z t 
had been the holomorphic coordinate and we had found that 
Xi could be at most a polynomial of degree - n - 1, imply­
ing that n (and hence A) should be negative and that H has 
dimension (at most) - n. To show that this bound on the 
holomorphic functions Xi is in complete agreement with the 
inner product, we compute the densities ('I'i ,'I'i ), using for-
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mula (3.1): 

(\{Io, \{Io)(z) = (ztz + 1) - n·(w(Xzt,xz )I(ih) )1/2'lwl 

= (Ulh)1/2'(ztZ + 1) -n-I'ldz!\dztl 

= 2(nI21T) 1/2. (ztz + 1) - n - I·dx dy 

(withz = x + iy). 

A similar result holds for (\{II, \{II) but, sinceS 2, Uo consists 
of one point which has measure zero, it follows that we only 
have to deal with the chart Uo with its holomorphic coordi­
nate z = x + iy: omitting \{Io we obtain 

H = {g: C ...... C Ig a polynomial of degree at most n - 1 in z, 

2 (2: y12L Ig(z) 12(ztz + 1) -n-I dx dy < oo} , 

(g,g') = 2 (2: y12 L g(z) tg' (z)(ztz + 1) - n - I dx dy. 

Careful analysis shows that the two conditions on g are 
equivalent, hence we can say that H consists of all polynomi­
als of degree n - 1 in z, and indeed, as already said, H is a 
Hilbert space of dimension n. 

The functions gk (z) = (nI21T) 114 (n - lover k) 1/2 Zk 
form an orthonormal system in H and hence the generalized 
Bergman kernel is given by 

( n )112 n - I (n - 1) 
K(w,z) = - L k WkZ

tk
• 

21T k~O 

Finally letfbe an observable (i.e., a real function on S2) 
then on the chart Uo: 

hence, 

Lf(g\{lO) = [_l_a(ztz+ 1)2aflazt ) 
2n az 

+ f - zt(ztz + 1) af ] g(z)\{I° 
azt 

+ J... (ztz + 1)2 af dg \{Io. 
n azt dz 

(7.1) 

Applying Theorem 5.8, using partial integration, and omit­
ting \{Io we find the following prescription for operators. 

Prescription: For an observab1efon S2, the correspond­
ing operator on polynomialsg of degree U Ifz - 1 is given by 

n n-I (n - 1) kl ztkg(z) 
(fg)(w) = - L w 

1T k~O k c (ztz + 1)n+ I 

X [f(z,zt) _ (ztz + 1 )2 a 2f ] dx dy. 
2n az azt 

Examples: Let (a,b,c)eS 2CR3
, then the correspon-
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dence between the three coordinates (a,b,c) and the com­
plex coordinate z is given by 

a = (zt +z)· (ztz + 1) -1, b = i(zt - z)· (ztz + 1)-1, 

c= (ztz -1)·(ztz + 1)-1, 

which represents the projection from the north pole onto the 
x-y plane. Now we introduce the spin observables SI = Aa, 
S2 = Ab, and S3 = AC; for these observables the expression in 
(7.1) is already holomorphic, so in this case we do not need 
to apply the generalized Bergman kernal to obtain the corre­
sponding operators, which are 

§] = ~ fz [(1 -Z2)! + (n - 1)z]. 

§2 = J... ifz [(1 + Z2)!!-, - (n - 1 )z], 
2 dz 

§3 = ~ fz [2z ! - (n - 1) ], 

whence 

(§2)2 + (§2)2 + (§3)2 = lfz2(n 2 
- 1)1. 

When we say that this model with a classical parameter 
A = (s + ~)fz describes a particle with spin s (2s = 0,1,2, ... ), 
then these results are in complete agreement with the usual 
quantum mechanical description of spin: the Hilbert space 
of a particle with spin s has dimension 2s + 1 = U Ifz = n 
and the sum of squares of the spin operators is 
s(s + 1 )fz21 = lfz2(n2 - 1) 1. Moreover, if we express the 
spin operators as matrices with respect to the orthonormal 
basis gk introduced above (in descending order!), then one 
recovers the usual Pauli-spin matrices; in particular in the 
case n = 2 (spin-!) one obtains 

§! = J...fz (0 1), §2 = J...fz (0 -O'l, 
2 1 ° 2 i IJ 

§3 = J... fz (
1 

0) 
2 ° -1 ' 

and in the case n = 3 (spin-I): 

S,~ ~ V2~G ~ !). 
s,~~ iV2~G -~ -D. 
s,~~G ~ -D 
Remark 1: If one computes in the case 

A = fz(¢?n = 2¢?s =!) 
the operators associated to the observablef = (Sj)2 then one 
finds in all cases f = [(fz2)/3] 1, which is in agreement with 
the observation that S i + S ~ + S ~ = fz2. There is no con­
tradiction with the fact that the sum of squares of the spin 
operators is not equal to the operator associated to the sum 
of squares of the spin observables because we nowhere 
showed nor used that the operator corresponding to a prod­
uct should be the product of the corresponding operators. 
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Remark 2: Contrary to the opinion stated in Ref. 2, 
§11.2, p. 205 (see also Ref. 7, §6.3.6]), it is not necessary to 
change the quantization method to obtain a correct descrip­
tion of the quantized spin. The procedure described above is 
quite adequate: the classical model with parameter 
A, ( = n' !II) describes, after quantization, a particle with spin 
s = A, III - !. In my opinion it has the definite advantage that 
can describe a particle with spin, value zero, i.e., in the classi­
cal model there exist spin observables, which yield, after 
quantization, always the value zero. The alternative is a clas­
sical model without an extra sphere in the phase space, hence 
without the possibility to measure spin (except by saying that 
it does not exist). At this point it should be mentioned that 
the value A, = 0 is not allowed, because then the symplectic 
form reduces to zero and is no longer a symplectic form. 

VIII. APPLICATION III 

In this section we want to analyze the effect of the quan­
tization prescription given in Sec. VI, when translated to the 
usual Schrodinger representation: H = functions of the posi­
tion (see also Ref. 2, §S.I and Ref. 7, §5.11.5). We will do 
this in the case M = T*R3 = R6 = C3

: the phase space of a 
single particle in R3. To avoid confusion with dimensions we 
introduce (as in Remark 3 of Sec. VI) constantsaand,Band 
dimensionless coordinates Xj = pJa and Yj = qjl,B on M; 
furthermore we define the complex coordinates 
Zj = Xj + iYj (the coordinate z' of Remark 3, Sec. VI), and 
we introduce the dimensionless constant r = a,B /11. Finally 
we introduce two polarizations: a "holomorphic" polariza­
tion Fh spanned by XZj and a "vertical" polarization Fv 
spanned by Xyj . 

In these coordinates OJ = a,B ~j dXj 1\ dYj and as in Sec. 
VI we use the symplectic potential 

1 
f}=-a,Br (Xj dYj -Yj dXj). 

2 j 

To facilitate the notations we introduce the column vectors 
x, y, and z with entries xj , Yj' and Zj; furthermore the symbol 
T applied on column vectors will denote transposition and 
the symbol t will denote transposition and complex conjuga­
tion, hence JlzJl2 = ztz = xTx + yTy = JlxJl2 + JlyJl2ER. 

The bundlesL, R F
, R -F, R -F, and hence QB are trivial 

for both polarizations, so we identify sections with functions 
on M. With the symplectic potential f} we compute the F­
constant sections of L according to (1.2): 

IIJ Fv constant~lIJ(x,y) = IIJv (y)exp( - FyxTy ), 

X Fh constant¢>x(x,y) = Xh (z)exp( - !rztz ) 

and X h holomorphic in z. 

Applying the theory of Sec. III we obtain two Hilbert spaces 
Hv and Hh given by 

Hv = {lIJv(Y)I.l,llIJv(YWdY< <Xl}, 

Hh = {Xh (z) I (YI1T) 3/2 l, IXh (zW 

X exp( - ~ rztz )dX dy < <Xl} . 

Since the polarizations Fv and Fh satisfy conditions (2.1) 
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with D" = {O} and E" = T*M, there exists a pairing 
between Hv and Hh given by [using formula (2.4)]: 

(IIJv,Xh) = (~ ~r/2 L, (IIJv (y)exp( - ~ iyxTy) r 
XXh (z)exp( - : rztz) dx dy. 

This pairing defines unitary maps Uvh : Hh -+Hv and Uhv : 
Hv -+Hh by 

(IIJv,UvhXh)Hv = (IIJv,Xh) = (UhvllJv,Xh)Hh' (S.l) 

which are given explicitly by the formulas 

(UvhXh)(y) = [e"'i/4(~)1/2r 

X J Xh (z)exp( - : y[ztz - 2ixTy]) dx, 

(Uhv IIJv )(z) = [e - "'i/4(~r/2r f IIJv (s) 

xexp( - ! y[ - ZTZ + 4isTz + 2sTS]) ds. 

That these formulas are ~ndeed given by (S.l), that they are 
unitary, and that they are inverse to each other can be veri­
fied by using the reproducing formula (6.1), the Fourier 
integral Sexp(ixy)dx = 2m5(y) and the Gaussian integral 
Sexp( -1Tx2Ia)dx = Va (fora>O). 

With these ingredients we can translate the prescription 
of Sec. VI as given by formula (6.2) to the usual Schrodinger 
quantization: let f = f( x,y) be an arbitrary observable and 
let IIJvERv, then 

f IIJ v = Uvh (f( Uhv IIJ v» = Uvh «(Lt ( Uhv IIJv ) )hol ) 

or, more explicitly, 

(fllJv)(Y) = [~ (~r/2r f f f exp(iyrT(y - t)l 

xexp( -! y[ilt - sll2 + lIy - s1l2) 

X(/(r,s - (4y)-1 [A, + As V) 
X IIJ. (t)dr ds d t. (S.2) 

Example L' If the observablef does not depend on x, i.e., 
it depends only on the position coordinates, then the integra­
tion over rand t in (S.2) can be performed and one obtains 

(fllJv)(Y) = [(~r/2 f (/- (4y)-IAf)(s) 

xexp( - rlly - SIl2)ds] 'lIJb (y), 

in other words fis multiplication with a functionjo(y) de­
fined by 

JOey) = (~r/2 f (f - (4r)-IAJ)(s) 

Xexp( - ylly - sll2)ds 

=(1- (4y)-IAy ) 

x[(~r/2 J j(s)exp( -Ylly- s Il2)dS]. (S.3) 
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We now notice that the constant lIr is usually very small 
(a = 1 m, {3 = 1 kg· m/sec:::} r:::: 1034 ), so if we neglect for 
the moment the additional term (4r) -1 ll. in (8.3) thenfO is 
the convolution offwith a Gaussian curve of width :::: lIr, 
i.e., roughly speakingfO is the average of the potentialfover 
a region of dimension 11 r around the point y. This prescrip­
tion of replacing the potential by such an average is some­
times used in quantum mechanics to explain certain correc­
tion terms (e.g., the Darwin term in the Hamiltonian of the 
hydrogen atom, see Ref. 9 with the explanation that the elec­
tron is not a mathematical point). Let us investigate in more 
detail the integral (8.3), to see its effect upon different poten­
tials: 

f = 1 Yl Y2Y3 

fO = 1 Yl Y2Y3 

(Y2)4 

(Y2)4 - 3(2r)-2. 

Another interesting potential is the Coulomb potential 
fey) = Ilyll-l for which one obtains 

and we see that indeed fO differs from f only in a region of 
dimension lIr. 

Example 2: In this example we consider observables 
which are linear in the momentum (i.e., linear in x), so sup­
posef(x,y) = Xj 'g(y), then one finds after partial integra­
tion in (8.2) with respect to the variable t: 

(f'l'v)(Y) = -.!.. o'l'v (y)[(L)3/2J(g_ (4r)-Ill.g)(s)exp( -rlly- sIl2)dS] 
r aYj 1T 

+ 'l'v (y). [ ~ ~i.(: yl2 J 0 (g - <;:;) -Ill.g) exp( - rlly _ sIl2)dS] , 

or without the wave function 'l'v : 

There are several interesting possibilities, of which we will 
study only two: the casef = Xj (i.e., the linear momentum) 
and the casef = YjXk - YkXj (i.e., the angular momentum). 
Evaluating the integrals in (8.4) we see that the second term 
vanishes in both cases and (after some calculations) we ob­
tain 

or, reintroducingpj = axj , qj = {3rj and r = a{3lfz: 

Example 3: We could go on with higher powers ofx, but 
the calculations become more and more complicated. How­
ever, the observablef = !lIxll2 is interesting enough to calcu­
late; after twice integrating by parts in (8.2) one finally ob­
tains 

f= - (2Y)-Ill.y , 

or, in other words, the kinetic energy !llpl12 is represented by 
- ~fz2ll.q. 
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(8.4 ) 

j 
IX. FINAL REMARKS 

Remark 1: It should be noted that the theory of general­
ized Bergman kernels can be applied as well to geometric 
quantization using ( - p-F-densities instead of ( - p-F­
forms, because in that case too, two F-constant sections of 
QB differ by a function which is holomorphic on the leaves of 
1T.E. 

Remark 2: The difference between the use of ( - !>-F­
densities and ( - !) -F-forms in the first application is that in 
prescriptions I and II the expressionf - fz a 2f I OZ OZ t should 
be replaced by f - 2fz a 2f loz azt . 

In the second application the difference is that (a) in the 
description of the Hilbert spaceH, the "parameter" n should 
be replaced by n + 1 (so the dimension of H becomes n + 1 
instead of n) and (b) in the prescription for fthe expression 
f - (ztz + 1)2/2n a2j loz azt should be replaced by 
f - (ztz + 1)21n o2flozazt (N.B. here n should not be re­
placed by n + 1). 

If one now calculates the operators Sj' one obtains the 
same Pauli-spin matrices, except for a different value of n: 

n = 1 now represents s =!, n = 2 represents s = 1, etc., in 
accordance with (SI)2 + (S2)2 + (S3)2 = lfz2 n(n + 1)1. 
Moreover, for n = 1 (¢?S = !¢?A = !fz) the operators asso­
ciated toS] are all equal to (fz2/12)1. 

The differences in the third application are all due to the 
differences as described for application I; the connection 
between Hv and Hh remains the same. 
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A generalized fiber bundle model in which the fibers are Hilbert spaces is studied. Unitary 
transformations are used to define a unitary isomorphism ("parallelism") among them. The 
Wey1 group is first used to "connect" the projective Hilbert spaces (ray spaces) and to 
introduce a one-form connection that defines which coset at a point y is parallel to a given 
coset at another point x. Then, the central extension of the Weyl group by U( 1), is studied in 
order to introduce the most general mapping between the elements of these cosets. This leads 
to a two-form connection and makes the model a good candidate for a fiber bundle approach to 
string theories. 

I. INTRODUCTION 

Gauge theory in physics is similar to fiber bundle theory 
in geometry. At each point of the base manifold (space­
time) we have a fiber isomorphic to a group G. The connec­
tion is a one-form which defines an isomorphism ("parallel­
ism") between the G at a point x and the G at a different 
point y. The one-form connection and the corresponding 
two-form curvature are interpreted in physics as the poten­
tial and the gauge field. In this paper we study a more general 
fiber bundle type of model. We consider Hilbert spaces as 
fibers and introduce unitary transformations in order to de­
fine a unitary isomorphism ("parallelism") among them. 

Our model is the generalized version of scalar electrody­
namics (e.g., Ref. 1) which includes not only the ± e 
charges but also all the higher charges ± 2e, ± 3e, etc. The 
wavefunctionist,6(x,O), where Ois a coordinate for the U( 1) 
gauge group. The electric charge is treated in a quantum 
mechanical way (like the momentum). The charge operator 
is q = ie a(J and the e plays the role of Planck's constant for 
the 0 dimension. Periodicity in 0 (t,6 (x,O + 21T) = t,6 (x,O») 
gives a discrete charge spectrum. We regard the t,6(x,O) as a 
collection of wave functions t,6x (0) at the various points x of 
four-dimensional space-time. At each point x we introduce a 
Hilbert space 

Hx = {complex periodic functions of O}. 
The unitary transformations will be used to "connect" (i.e., 
to define a unitary isomorphism between) the Hilbert spaces 
at the various points x. The group of unitary transformations 
isz 

G = {expUaq)exp(iNO)expUy)}. (1) 
We start with the projective Hilbert spaces PHx (or ray 

spaces in Weyl's terminology). In PH the coset{exp(iy) 
X 10) I arbitrary y, fixed O} represents one element. Kets 
with different quantum phase represent the same element. 
The group of unitary transformations for this space is 
W = G IU(1)'(U(1)' = {exp(iy)}) and is known as Weyl 
group of quantum canonical transformations. z The U ( 1 )' 
represents the "quantum phase" and is the center of the 
group G. We call it U ( 1 )' in order to distinguish it from the 
original U ( 1) group, which is in our model the 0 dimension. 

Local Weyl transformations will lead to the potential 

a) Present address: Fachbereich Physik, Universitiit Marburg, Mainzer 
Gasse 33, D-3550 Marburg, West Germany. 

operatorA~ q. The coset II = {exp(iy) 10) larbitraryy}atx, 
is now parallel to the coset I z = {exp(iy) 10 
+ f~(c) A~ 8x~) I arbitrary y} at y. This expresses the well­
known fact that parallel transport along a curve C changes 
the U ( 1 ) phase by the path-dependent quantity 
f~(c) A~ 8x~. Up to this point our model simply contains the 
structure of a standard gauge theory (a one-form connec­
tion). Since, however, the II and I z are cosets we can intro­
duce a mapping between the elements of II and the elements 
of I z. If we do that in the most general way, we are led to a 
new two-form connection (and the corresponding three­
form curvature). 

In order to introduce this mapping in the most general 
way, we explore all the groups G that can be constructed 
from a given Wand U ( 1 )'. The only constraints are that 
W = G IU( 1)' and thatU( 1)' is the centerofG. The subject 
of central extensions3.4 explores this problem. In general the 
group G will have the elements given in ( 1) with the multi­
plication rule 

glgz = {exp(ia l q)exp(iNIO)exp(iYI)} 

X {expUaz q)exp(iNzO)expUyz)} 

= exp{i(a l + az)q}exp{i(NI + Nz)O} 

Xexp{i(Yi + yz + u(al,NI;az,Nz»)}' (2) 

The u(a I,NI;az,Nz) is called a factor set and is restricted by 
the associativity requirement. 

Our basic assumption is that there is no preference to a 
particular extension and that we should try to construct a 
theory, covariant under transformations with any of the 
multiplication rules given in (2). The fundamental, for fiber 
bundle theory, concept of parallelism has been broadened in 
our model; at each point of space-time we introduce a whole 
class of groups G, all with the same elements but different 
multiplication rules. We then show that in order to define a 
mapping ("parallelism") between these multiplication rules 
at the various points of space-time, a two-form "connection" 
is required. If g(x) is an element of the group G, then 
g-I(x)a~ g(x) depends on the multiplication rule, i.e., on 
the extension. For a given g(x) and under a transformation 
from one extension into another 

g-I a~ g_g-t a~ g + iAw 

The A~ is a quantity that we will calculate. This transforma-
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tion of the extension introduces loop gauge transformations5 

and consequently a two-form potentialAl-'v and a three-form 
gauge field/l-'vA' In this sense we have a particular type of a 
string model. Our strings are simply tubes of magnetic flux. 
This is the original but a very particular interpretation and 
application of string theory. Another interpretation (follow­
ing Ref. 6) uses the lower modes of the infinite spectrum, 
which necessarily exists in every string theory, to describe all 
the existing physical particles and therefore unify all the 
physical theories. Our model contains of course an infinite 
spectrum but it is an infinite spectrum of electric and mag­
netic charges. 

The standard fiber bundle theory (i.e., the standard lo­
cal gauge theory) is too restrictive and cannot accommodate 
quantized monopoles and quantized magnetic strings. The 
Bianchi identity al-' * /I-'V = 0 does not allow magnetic 
sources. Magnetic monopoles 7 are introduced as line singu­
larities in space-time. They create a nontrivial topology 
which is able to accommodate many cohomology classes of 
/I-'v' With this argument we get the standard Dirac7 currents 

JI-'V = f D(x-y){yl-'(r,lT),yV(r,lT)}drdlT, (3) 

'f dyl-'(r) al-' JI-'V = J v = D(X - y) dr, 
dr 

(4) 

which are semiclassical. The string follows one particular 
world surface yl-'( r,lT) and not all the surfaces as quantum 
physics would require. TheJl-'v is given in (3) in terms of this 
particular surface y I-' ( r,lT) and not in terms of a wave func­
tion. The magnetic monopole is also semiclassical and it fol­
lows only one world line (yl-'(r) =yl-'(r,lT = 0») in space­
time and not all the world lines as quantum physics would 
require. The magnetic current of Eq. (4) is given in terms of 
a D function of the position and not in terms of a monopole 
wave function. 

The quantization of string theory is currently under de­
velopment and is discussed from various points of view. One 
approach is the Polyakov8 functional integration over sur­
faces. Another more recent approach9 is based on BRST 
(Becchi-Rouet-Stora-Tyutin) invariance. The connection 
of this approach with Connes' noncommutative geometry 
has been discussed in Ref. 10. A fiber bundle type of ap­
proach to string theory is desirable for theoretical and practi­
cal reasons. It will state clearly and explicitly its symmetry 
content; this should be the starting point of the theory, but 
historically it was developed in a different way and its sym­
metry content is rather unclear. It will also show how from 
fundamental assumptions we are led to the physics of string 
theory, in analogy with gauge theories and gravity. For 
mathematicians it will open new directions to explore. Here 
we study a generalization of fiber bundles which uses Hilbert 
spaces as fibers and which leads to the two-form connection 
and the two-form current that characterize string theories. 
We show that the currents JI-'V and J ~ have not the semiclas­
sical form of Eqs. (3) and (4) but that they are expressed in 
terms of the field ¢(x,(). Therefore we claim that our model 
is a good candidate for a fiber bundle approach to string 
theories. It is quite clear that the aspects of quantized string 
that we discuss here are quite different from those in Ref. 8 
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or those in Ref. 9. At this stage it is not explicitly clear the 
connection among them; this is a more difficult task. 

We conclude this section by sketching the relation 
between our work and Ref. 11 which also played an impor­
tant role in the development of the subject. The later is on 
SU(N) gauge theories but it is known12 that there is a rela­
tion between string theories and the SU(N) (N --+ (0) gauge 
theory. Let us discretize our () position space, by taking N 
points uniformly distributed in the () dimension. We have in 
this case quantum mechanics on a discrete position space of 
N points (Ref. 2, Schwinger, p. 63, Weyl, § IV.14). The 
momentum space is discrete and contains N momenta, i.e., 
we have N charges, Ie, ... , Ne (defined mod N). The quan­
tum phase is in this case an element of ZN' The wave func­
tion becomes ¢(x,K), K = 1, ... , N, and the Hilbert spaceHx 
is finite (N) dimensional. The group of unitary transforma­
tions is U(N) and the Weyl group U(N) IZN' From a math­
ematical point of view this model is similar to the U(N) 
gauge theory. In Ref. 11, the quantum mechanical algebra 
that is appropriate for this case, 

VIU k = UkVI exp{i(kl)/N}, k,l integers, 

U N =VN =I, 

has been used, to introduce general pseudoperiodic bound­
ary conditions in a finite box. A finite number of different 
classes have been found. Our model is in the N --+ 00 limit 
(Ref. 2, Schwinger, p. 259, Weyl, § IV.15). We use the stan­
dard quantum mechanical algebra for a circle position space. 
Our momentum space is discrete and infinite and our quan­
tum mechanical phase is an element of the group U ( 1 ) '. The 
extensions of Wby U (1)' introduce a similar effect with the 
nontrivial boundary conditions in Ref. 11. Indeed, we study 
H 2( W, U ( 1 ) ') in Sec. II and we find an infinite number of 
classes. 

We finally mention Ref. 13 where obstruction to group 
extension (which is related3 to H 3

) has been used in the 
study of magnetic monopoles. The associativity and conse­
quently the Jacobi and Bianchi constraints are violated. In 
our paper we respect associativity and we explore 
H2=Z2IB2. 

II. EXTENSIONS AND COHOMOLOGY OF THE WEYL 
GROUP 

The Weyl group for a circle position space is2 W 
= G IU(1)', 

G = {exp(iaq)exp(iNO)exp(iy)}, 

U(1)' = {exp(iy)}, q = ie ae, N integer. 

Here, W is an Abelian group with elements the cosets 

w) = w(N),a) = {exp(ia)q)exp(iN10) 

(5) 

X exp(iy) Iy arbitrary}, (6) 

w(N1,a1 )w(N2,a2 ) = w(N) + N 2,a) + a 2 ). 

We are going to search for all the nontrivial ways of 
reconstructing G from a certain W = G I U ( 1)' and U ( 1 )'. 
This problem is known in the mathematical literature as 
group extension.3

,4 Here we are only interested in extensions 
where the U(1)' is the center ofG(central extensions). We 
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usethenotationgt = wt exp(irl) for an element ofG, where 
WI is an element of Wand exp{irl) an element ofU( 1 )'. We 
also use the notation gl = expUa,q)expUNIO)expUrl) 
keeping in mind that the expUalq)expUN,O) is the coset of 
Eq. (6). Another notation used in the literature is (w1,exp 
irl) where it is clear thatthe WI expUrt) is not a product in 
the ordinary sense. The most general way to define multipli­
cation between two elements of G is 

glgz = (wt exp irt) (wz exp ir2) 

= WtW2 exp i(rl + r2 + U(WI'W2»), (7) 

whichwehavealreadypresentedinEq. (2). Theu(w1,wz) is 
called a factor set and is an arbitrary real function restricted 
(i) by the associativity rule, which implies 

u(wt,w2) + u(wtWZ'w3) = u(wt,wzw3) + U(WZ,W3); 

(8) 

and (ii) by u(l,w) = u(w,l) = 0, where 1 is the unit ele­
ment of the group W, i.e., the coset w(a =0, N=O). We 
can have even more general multiplication rules, but here we 
only study the limited case of central extensions. The func­
tion u(wt,w2) is a two-cocycle. The definition oftwo-cocycle 
is3 

OU = u(wt,w2) + u(WtW2,W3 ) - u(wt>WZw3) 

- U(W2,W3) = 0, (9) 

and is precisely the associativity requirement (8); 0 is the 
coboundary operator and 02 = O. We call Z 2( W, U ( 1 )') the 
group of two-cocycles. 

Let r( w) be an arbitrary function with r( W = 1) 
= r(a = 0, N = 0) = O. The u(wt,w2) = r(wt ) + r(wz) 
- r(wtwz) obeys the requirements (i) and (ii) and is a spe­

cial case of a two-cocycle. In fact it is by definition a two­
coboundary 

Or = r(wt ) + r(wz) - r(wtwz). (10) 

We call B Z( W, U ( 1 )') the group of two-coboundaries. 
The two-cohomology group is HZ(W,U(1)') 
= ZZ(W,U(1)')/B 2(W,U(1)'). Each factor set u(Wt,w2) 
[defined up to r(w) + r(w2) - r(wlwZ)] characterizes a 
two-cohomology class. 

The commutator of two elements of the group G is now 

[gt,gz] =gl- t g2- Igtg2 = exp[iA (wt,wz)], 
(11 ) 

A(wt,w2) = -A(wz,wl ) = u(Wt,wz) - u(w2,wt )· 

For central extensions3 

[glgZ,g3] = [gl,g31 [g2,g3], 

therefore 

A (WtW2'W3) =A(w),w3 ) +A(W2,W3)' 

which we rewrite as 

A(Nt + NZ,al +az;N3,a3) 

=A(Nt,at;N3 ,a3) +A(N2,a2;N3,a3)' 

(12) 

From this and the relation A(w,1) =A(1,w) = 0 we con­
clude that A (w t ,w2 ) is a mUltiple of (N)a2 - Npl), 

(13) 
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We see that we get the "expected" result e(N)a2 

- Npt) with an extra factor m. For a noncompact dimen­
sion 8, the m can be any real number. This result is known in 
the literature (e.g., Ref. 4). In our case 8 is a compact dimen­
sion and we require that for at = 21T', Nt = 0, a 2 = 0, 
N2 = 1, the [gl,g2] = I-A (W1,W2) = 21T'M (M integer). 
We get the relation em = M. This is the Dirac quantization 
condition in our model. 

We have proved that the commutator of two elements of 
the group Gis 

[exp(iajq)exp(iN)O)exp(irt), 

exp(ia~)exp(iN20)exp(irz)] 
= exp[i(em)(a2Nt atNz)], em = M. (14) 

Taking into account that a two-coboundary is symmetric in 
WI' Wz [Eq. (10) 1 we conclude that each m characterizes a 
cohomology class. This class contains all the extensions with 
factor sets 

u(w1,wz) = me(Ntaz - Nzat ) + r(at,Nt) + r(az.Nz) 

- r(at + az,N1 + N z). (15) 

Therefore the H Z( W, U ( I)') is at least equal to the set ofinte­
gers Z. It remains to be explored if there are symmetric fac­
tor sets u(wt,wz) = U(W2,W1) that are not two-cobound­
aries. 

Using Eq. (14) we can easily prove 

exp( -iNO)qexpUNO) =q- (em)N. (16) 

The unit element m = OofHZ(W,U( 1 )') contains all the 
extensions with factor sets the two-coboundaries [elements 
ofB Z(W,U( 1)')]. In this case the commutator [Eq. (14)] is 
equal to 1. 

We should point out that the problem of central exten­
sion of the group Wby the U ( 1)' is equivalent to the problem 
of projective representations of the group W. A projective 
representation is defined as the ordinary representation with 
an extra phase factor 

P(Wl )P(W2) = exp[iu(wt>wz) ]P(wtwz). 

Assume now that the elements of the group G depend on 
x and that they are independent of 8. In other words, the 
a(x), rex) are functions ofx and independent of8. TheNis 
of course an integer independent of x, 8. Assume also that 
the factor set u(x,w1(x), wz(x») is a two-coboundary that 
depends explicitly on x. We expect that the derivative of 
g(x) will depend on the mUltiplication rule that we choose. 
We calculate the 

-I()a () _ l' g-t(x)g(x +~) - 1 (17) g x pgx - 1m , 
.:l.x,,-O ~p 

where 

g(x) expUaq)exp(iNO)expUr), 

g-t(x) = exp( - iaq)exp( - iNO) 

Xexp{ - i[r + u( - a, - N;a,N) J}, 
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g(x + ax) = exp[i(a + l5a)q] 

X expUNB)exp [i(r + I5r)], 
(18) 

g-I(X)g(X + ax) = expUl5aq) 

xexp i[15r - u( - a, - N;a,N) 

+ u( - a, - N;a + l5a,N)]. 

The u is a two-coboundary and, according to (10), 

u( - a, - N;a,N) = r( - a, - N) + r(a,N), 
(19) 

u( - a, - N;a + l5a,N) 

= r( - a, - N) + r(a + l5a,N) - r(l5a,O) 

= r( - a, - N) + [r(a,N) + l5a aa r(a,N) + ... ] 

- [l5a aa r(O,O) + ... ]. 
The r(a = 0, N = 0) = 0 but the aa r(a,N) at the point 
a = 0, N = 0 is not necessarily zero. Therefore 

g-I(X)g(X + ax) 

= expUl5aq) 

X exp i[ 15r + l5a(aa r(a,N) - aa r(O,O») + ... ] 
(20) 

and from Eq. (17) we conclude 

g-l(x)a", g(x) = i a", aq + i(a", r + /3 a", a), (21) 

/3 = aa r(a,N) - aa r(O,O). (22) 

The terms (a", a)q, a", r are familiar but we also have an 
"extra" term /3 a", a due to the nontrivial multiplication 
rule. If r(a (x), N) does not depend explicitly on x the /3 a", a 
is an exact one-form, i.e., 

/3 a", a = a", r(a(x), N) - a", r(a(x) = 0, N = 0). 

The interesting case is when /3 a", a is not an exact form and 
the exterior differentiation gives a nonzero result. From 
(21) we can easily see that 

a", (g-l av g) - av(g-l a", g) 

=a",U/3av a) -avU/3a", a) 

=i[a /3a a-a /3a a]=.i a(/3,a) (23) 
'" v v '" a(x'" ,xV) 

This is by definition an exact two-form and therefore is 
closed, i.e., 

L a a( /3,a) = o. 
eyel P a(x"',x") 

(23') 

The g, g-l are not independent and we expect that 
(a", g-l)(av g) - (av g-l)(a", g) = O. We can prove this 
explicitly, using (21) for g-1 a", g and a similar equation for 
(a", g-l)g. Therefore (23) gives 

-lea a ] -lea a a a) . a(/3,a) g "', v g=.g '" v - v '" g = I 
a(x"',xV

) 

(24) 

This result is not zero if r and therefore /3 depend explicitly 
onx. As a result of the x dependence of the nontrivial multi­
plication rule we cannot interchange the order of differenti-
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ation. It is known (e.g., Ref. 14) that when the [a""av ] acts 
on path-dependent quantities, we get a nonzero result which 
is the curvature. Here we see that a similar thing happens for 
path-independent quantities, if we use a nontrivial multipli­
cation rule. The /3 a", a, a( /3,a)/a (x'" ,xV) can be under­
stood as "connection" and "curvature" hidden in the nontri­
vial multiplication rule. We explain now in what sense the 
terms "connection" and "curvature" are used here. At a 
point x of space-time we have a group G, which has been 
constructed from Wand U ( 1 )'. However, G is not the trivial 
Wx U(1)' but a "twisted" one in the sense ofEq. (7). The 
"connection" /3 a", a is a "correction" to theg- l a", gdue to 
the fact that the multiplication rule is x dependent. 

For given a(x), rex), Nand for a transformation from 
an extension with factor set U(W I ,W2 ) = r(wl ) + r(w2 ) 

- r(w lw2 ) into another extension with factor set u + U I 
=u+rl(wl ) +rl (w2 ) -rl (wlw2 ), 

g-l a", g~g-l a", g + il5/3 a", a, 

-1 [a ,a ] ~ -1 [a ,a] + i a(I5/3,a) , (25) 
g '" v g g '" v g a(x'" ,xV) 

15/3=aa r 1(a,N) -aa r 1(0,0). 

We call this extension transformation or loop gauge 
transformation. The second terminology will become clear if 
we reexpress these results using the path-dependent 

G(x,C) =g(x)exp [ -i i:J/3a", aI5X",] 

= exp[iaq] exp [iNO ]exp i[r - i:J /3 a", a I5x", ], 

(26) 
where C is a path in the four-dimensional space-time and the 
integration is taken along C, from a reference point 0 up to x. 
The G(x,C) is an extension-dependent quantity because /3, 
which is given in (22), is an extension-dependent quantity. 

For given a(x), rex), Nand for a transformation from 
an extension u into another u + u l, 

G(x,C) ~G(x,c)exp[ - i LX 15/3 a", a I5x", ], 

(27) 
15/3 = aa 71 (a,N) - aa r l (0,0). 

We call (27) an extension transformation or loop gauge 
transformation. Now, 

G-I(x,C)a", G(x,C) =i(a", a)q+i(a", r), (28) 

G -I(X,C) [a!"av ]G(x,C) = 0, (29) 

i.e., the G -1 (x, C) a!, G(x,C) is invariant under exten­
sion transformations. The path-dependent term exp 
[ - i f(c) /3 a!, a I5x",] has canceled the effect of the nontri­
vial multiplication rule. 

The definition of area differentiation for path-depen­
dent quantities is well known (e.g., Ref. 14). We apply it to 
Eq. (26) and we get 

G -1(X,C) _15_ G(x,C) = i a( {3,a) . (30) 
l5u!'v a(x'" ,xV) 

This is a different way of expressing the result ofEq. (24). 
We consider now general factor sets in Z2(W,U(1)'). 

Equation (18) is still valid, but u is now given by Eq. (15) 
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and therefore Eq. (19) has an extra term - N( em )oa in the 
right-hand side. Consequently Eq. (21) will have an extra 
term - iN(em)a,. a on the right-hand side. This term can 
be understood as a result of the noncommutativity between 
(a,. a)q and exp(iNf}) [Eq. (16)]. In the extensions with 
factor sets in B 2( W, U ( 1 )') that we studied before, the m = 0 
and this term is absent. For given a(x), y(x), N and for a 
transformation from an extension in a class m l , 

(T = eml(Nla2 - N2al) + T(NI,a l ) + T(N2,a2) 

-T(NI +N2,al +a2) 

into the corresponding extension (i.e., with the same func­
tion T) in the class m 2 

(T = em2(Nla2 - N 2a l ) + T(NI,a l ) + T(N2,a2) 

- T(NI + N2,al + a2)' 

the g-I a,. g--+g-I a,. g - iNe(m l - m 2)a,. a, where e(m l 
- m2 ) is an integer. We see here the special role the non­

commutativity between q and 8 plays in our model. The val­
ue of m defines the strength of this noncommutativity [Eq. 
( 14) ] and by going from a class m I into a different class m 2 

we have a U ( 1 )' gauge transformation. 

III. LOOP GAUGE THEORY AND EXTENSIONS WITH 
FACTOR SET IN 82(W,U(1)') 

We introduce I the complex wave function ¢(x,e), 
where e is a coordinate for the U (1) gauge group. We need 
of course I a length scale L for U (1) and we put L = 1. The 
electric charge operator is q = ie a () . 

Consider now the Weyl transformations Wacting on 
the wave function ¢(x,e) defined up to a phase factor. We 
are working, at the moment, with the cosets 

{exp(iy)¢(x,e) I arbitrary y}. 

Reference 4 explains in detail how we define continuity 
and derivatives in this case. We work with representatives of 
the cosets and at the end we multiply the result with an arbi­
trary phase factor exp(iy). 

We introduce local Weyl transformations, by taking 
a (x) to be a function of x and N an integer independent of x. 
The W is an Abelian group [Eq. (6)] and the exp(iN8) 
commutes with the exp(iaq) in the sense that the commuta­
tor is the unit element of W, i.e., the coset {exp(iy) I arbitrary 
y}. Therefore the exp(iN8) plays no role at this stage. 

We define now the covariant derivative 

D,. = a,. - iAA, 
which transforms like 

exp( - iaq)D,. exp(iaq) --+D,., 

A,. --+A,. + a,. a. 

(31) 

(32) 

Here the exp(iaq) denotes the coset ofEq. (6) with an arbi­
trary integer N. Covariant derivative of this type has been 
used before (e.g., Ref. 1). Note that the potential (connec­
tion) is an operator A,.q. TheA,. (x) and a(x) depend only 
on x and are independent of e. This is a known restriction in 
the five-dimensional theories associated with the require­
ment that translations in the internal dimension should not 
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change the length of the projection of a curve in the four­
dimensional space-time (Chap. 17 of Ref. 15). 

We also introduce the gauge field (curvature) operator 

[D,.,Dv] = -if,.Ji, /,.v = a,. Av -avA,., (33) 

which obeys the Bianchi identity 

I [D,., [Dv,Dp]] = {I a,. /vp} q = O. (34) 
cycl cycl 

Let C = x ,. ( T) be a path in R4. We introduce the wave 
function (defined up to a phase factor) 

exp[ - i f:l A,. dxA ]¢(x,e) 

= ¢( x,e + f:l A,. dX,.) . 

= ~ ¢N(X)exp[ iN(e + e f:l A,. dX,.)] . (35) 

The integration is taken along C from a reference point 0 up 
to the pointx. This is the path-dependent gauge-independent 
Mandelstam wave function 14 for our model. The operator 
exp [ - i S(clA,. dX,. q] is the loop operatorfor our scheme. 
Particularly interesting is the case of closed loops Cxx which 
have x as origin and as end point. The wave function is 
¢ (x,e + e S cxxA,. dx,.) and depends on the point x and on 
the loop Cxx ' 

So far we have used the group W of transformations and 
the wave function was defined up to a phase factor [element 
of U (1 )']. The connection A,. q defines "parallelism" 
between cosets. For example, the coset {exp(iy) le)x larbi­
trary y} at the point x, is "parallel" to the coset 

{exp(iy) I e + ICl A,. OX,.) y I arbitrary y} 
at the pointy. We will now go further and define "parallel­
ism" between the elements of the coset at x and the elements 
of the coset aty. The extensions of Wby U(1)' are needed 
here. We will introduce a theory covariant under transfor­
mations in any of these extensions. 

It is easy to introduce covariant derivative for transfor­
mations in the trivial «(T = 0) extension only. In this case the 
extension is simply WXU(1)'. The g-I a,. g = i(ap. a)q 
+ i a,. yand the covariant derivative is 

D,. = a,. - iA,.q - ir,., 
A,. --+A,. + a,. a, 

r,. --+r,. + a,. y. 
(36) 

For a giveng(x), consider now a transformation from 
the trivial extension (T = 0 into an extension (T with the factor 
set a two-coboundary [element of B2(W,U( 1 )')]. Note that 
in this case m = 0 and [Eq. (16)] exp( - iN8)q exp(iN8) 
=q. We now use Eq. (25) to get 

g-I D,. g--+g-ID,. g + i/3 a,. a, (37) 

g-I[D,D ]g--+g-I[D,D ]g+i a(/3,a) (38) 
,. v ,. v a(x",x") 

The D,. is given in Eq. (36) and can no longer be called 
covariant derivative. The value ofthe quantity g-ID,. g de­
pends on the multiplication rule, i.e., on the extension. Simi-
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lady the g-1 [D iJ-' D v ]g also depends on the extension. We 
call (37) and (3 8) loop gauge transfonnations or extension 
transfonnations. 

We introduce now a "potential in loop space" AiJ-v(x) 
which for given g(x) and under transfonnation from the 
extension u into u + u 1 transforms like 

A -A + a(D/3,a) , 
iJ-V iJ-V a(xiJ-,xV) (39) 

where D/3 is given in Eq. (25). We now define the 

niJ-V = [DiJ- ,Dv] iAiJ-v = [aiJ- ,av ] - iFiJ-vq 

-i[(aiJ-rv avriJ-)+AiJ-v] 

=DiJ-v-iFiJ-vq i(aiJ-rv-avriJ-) (40) 

(41) 

The g-1 (x) niJ-vg(x) is covariant under transfonnations of 
the extension (loop gauge transfonnations). 

The gauge field (in loop space) isS 

FiJ-VA = 2: aiJ- AvA. 
eyel 

(42) 

and is invariant under loop gauge transfonnations [Eq. 
(23) , ]. Its dual is 

~iJ- = EiJ-vpu Fvpu = EiJ-vpU av Apu = a ~ AiJ-Y' (43) 

Equation (42) has important geometrical content and is 
called Cartan structural equation in the loop space. 

They obey the Bianchi identity (in loop space) 

EiJ-vpu aiJ- Fvpu = 0 or aiJ- ~iJ- = o. (44) 

Note also that 

Epupv (ap ~v - av ~iJ-) = a i Apu + aA. ap AuA. 

+aA. auAA.p' (45) 

We can rewrite (43) and (44) as 

ap *.npv = Epvpu aiJ- .npu = ~v, 
ay (ap *.npv ) = a" ~v = O. 

(46) 

(47) 

In the quantity .npv we have the gauge field Fpv and the 
potential in loop space Apv. Consequently Eq. (46) is a com­
bination of the Bianchi identity (34) and the structural Eqs. 
( 42) and (43). Equation ( 47) expresses the Bianchi identity 
in loop space. 

We can introduce the potential in loop space Apv' 
throughEq. (30). InEq. (27) wehaveseenhowtheG(x,C) 
transforms under an extension transfonnation (loop gauge 
transfonnation). From Eq. (30) it is clear that a covariant 
area differentiation is 

(48) 

D/3 is given in (27). 
We now introduce a surface dependent but loop-gauge 

independent wave function. For a closed loop Cxx with ori­
gin and end point at x, 
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exp [i Lex-< Apv dup" ] ~ ( X,e + e Lx-< Ap dXp) 

= exp [i i Apv dupv + i f Ap dxp q] ~(x/}) 
SC

xx 
Jcxx 

= exp [L
e
= i(Apy + /;." q)dupv ] ~(x,e), (49) 

where SC
xx 

is a surface with boundary Cxx ' This wave func­
tion depends on the surface SCx-< with boundary Cxx ' 

For a closed path Cxx , the Weyl group that we used at 
the beginning of this section led to the result that the coset 
{e"'!B > I arbitrary r} is parallel to the coset {e'YIO 
+ Sc" Ap DXiJ-> I arbitrary r}. Now we have defined a map­
ping between the elements of these cosets and the ket E'YI ° > 
is parallel to the 

For open paths, we can write a similar result using a surface 
between our curve and a reference curve, usually taken at 
infinity. 

IV. THE ACTION 

We study now an example of a Lagrangian in which the 
above ideas can be applied. We separate the action in five 
parts. The tenns SI and Ss are not invariant under loop 
gauge transfonnations and the loop current JiJ-" is not con­
served. The strings are open and the end points, which are 
described with the currentJ ~ = a p J"iJ-' are magnetic mono­
poles. We will see that the magnetic current J ~ corresponds 
to the group U ( 1 )' and is coupled to the potential r p' The 
r p cannot be absorbed by the A pv' because our action is not 
invariant under loop gauge transfonnations. 

Another consequence of this noninvariance of the ac­
tion is that we need to specify a particular loop gauge, for 
which our Lagrangian is written. If we want to change loop 
gauge we need to add extra tenns in the Lagrangian. We fix 
the loop gauge by using the multiplication rule with factor 
set u = N 1a 2 - N2al [Eq. (15) with em = 1, T 0]. In this 
particular loop gauge the multiplication rule is very simple. 

The first part of the action is 

SI = ~ J d8d4XIDiJ- ~12, 
(50) 

8 is considered as a dimensionless variable. A length L is 
required in the 8 dimension I and it has been taken equal to 1. 

The second part of the action describes the coupling 
betweenAiJ-v and the source Jpv ' Equation (41) suggests that 
at least one possibility is the tenn 

S2 =; J d8d 4x(Dpv ~)*(Dpv ~), 
(51) 

Dpv = [ap,av ] - iApv' 

which in the loop gauge that we have chosen becomes 

S2=~1 J dOd4XA2pvl~12. (51') 
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We introduce here a term with higher-order derivatives to 
describe the source of the AlLv ' Higher-order derivatives are 
usually undesirable in renormalizable models. However, La­
grangians like ours are usually considered as effective La­
grangians, for a deeper model where the Higgs mechanism 
and Nielsen-Olesen 16 strings occur. In this context, we sug­
gest that (51) is a possibility for a source term. 

The third part is the action for the FILl' field 

I J 2 d 4 
S3 = - 4' F ILl' X. (52) 

The fourth part is the action for the FILVA and is well 
known to be5 

S4 = - k2 Jd 4X J.-};IL 2 = !::J:....Jd 4X F 2
ILVA ' (53) 

2 12 

The constants kl and k2 are necessary for dimensional rea­
sons [k l ,k2 - (mass)-2]. 

The fifth part is a mass term for the AILv field 

S5 = - ~ J [AILv + (aIL rv - av r IL )]2 d 4x. (54) 

The action has the general form 

s= J L I (A)d 4xdO+ J L 2(A)d 4x, 

and variation gives the equations of motion 

J 
aLI dO aL2 -a J aLI do-a aL2 =0. 
aA + aA IL a(alL A) IL a(alL A) 

(55) 

Variation with respect to AILv gives the equation 

ap FpILv = ap 2 AILv + ap aIL Avp + ap av AplL 

= - €ILVKA (ak };A - aA };k) 

= (l/k2) [ -JILl' +AILv + (aIL rv -av r IL )], 

(56) 

with 

JILl' = klAILv J dO ItP(x,O) 12 (57) 

in our particular loop gauge. 
Variation with respect to r IL gives the equation 

aIL [AILv + (aIL rv -av r IL )] =J~ 

J~ =i J dO [tP(DIL 1,6)* -tP*(DIL 1,6)], (58) 

DIL = aIL - iAILq - ir IL' 

The J ~ corresponds to the U ( I )' group and it would have 
been zero if our Lagrangian was invariant under loop gauge 
transformations. However, the terms SI and S5 break loop 
gauge invariance and the J ~ is not zero. 

We differentiate Eq. (56) and we get 

aIL JILl' = aIL [AILv + (av rv -av r IL )]· (59) 

From Eqs. (58) and (59) we see that we need to prove 

aIL JILl' = J~. (60) 

We have already explained the physical meaning of this 
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equation. The loop current is not conserved and the strings 
are open with magnetic monopoles at the end points. The J ~ 
is the magnetic current. 

In order to prove this equation we consider a loop gauge 
transformation from our particular loop gauge into another 
one infinitesimally near and we calculate {jL, 

and 

tP-+exP[i I:) {jAIL {jxIL ]1,6, 

aIL tP-+exP[i I:) {jAIL {jXIL ] (aIL + i {jAIL )1,6, 

[aIL,av]tP-+exP[i I:) {jAIL {jxIL ]{[aIL,av ] 

+ i(alL {jAv - av {jAIL) }tP, 

{jL = J ~ {jAIL + JILl' (av {jAIL - aIL {jAv) 

= (J ~ - aIL JILl' ){jAv - av (JILl' {jAIL)' 

We get Eq. (60) and {jL = -av(JILv {jAIL)' Of course, in 
our model {jL = - av (JILl' {jAIL) #0. 

We multiply Eq. (56) by €ILVPU and differentiate to get 
[ use also Eqs. (43) and (44) ] 

(61) 

These equations are known5 and the only modification in our 
model is that the J ~ and JILl' are given by Eqs. (57) and (58) 
and not by Eqs. (3) and (4). 

Variation with respect to AIL gives 

DIL = aIL - iAA - irIL , 

av J" = O. 

(62) 

(63) 

(64) 

The JIL is the electric current which can also be considered as 
the (/l,O) component of the energy-momentum tensor in 
the five-dimensional (XIL,O) space. 

We should point out that a real field tP(x,O) is sufficient 
to describe the electric charges 

tP(x,O) = L tPN(x)exp(iNO) + tP~(x)exp( - iNO). 
N 

The 1,61 (x), 1,61 * (x) describe the ± Ie, tP2(X), 1,62* (x), ± 2e, 
etc. The complex field 1,6 (x,O) has double degrees offreedom 
and describes both electric and magnetic charges. 

Variation with respect to 1,6, 1,6* in the five-dimensional 
(XIL,O) space and in the particular loop gauge 7 = 0 gives 

DIL 2ifJ +A 2ILV ifJ = 0, (65) 

DIL 21,6* +A 2ILV ifJ* = O. (66) 

TheA 2 ILl' 1,6 describes the effect of the "Bohm-Aharanov me­
dium" on the field ifJ (in this particular loop gauge). 

Following Ref. I we can include in the Lagrangian a 
mass term 
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S6 = J lao ¢1 2 
d

4
x df) 

= ~N2 J (I¢NI 2+ 1¢_NI 2)d 4x. (67) 

This term gives higher masses [_O(N2)] to higher charges 
and therefore offers an explanation for their nonobservabi­
lity in the experiments. This term alters Eqs. (65) and (66) 
to 

D,.. 2¢ + A 2,..y ¢ + ao 
2 ¢ = 0, 

D,.. 2¢* +A 2,..y ¢* +a/¢* = o. 
(68) 

v. CONCLUSIONS 

Electric current is associated with a U ( 1) symmetry 
and magnetic current is also associated with a U ( 1 )' symme­
try. It is a nontrivial problem, to combine the two U ( I) 
groups in a theory with electric and magnetic charges. In 
standard electrodynamics without magnetic charges, paral­
lel transport along a closed curve C changes the U ( I) phase 
by e fe AI-' {)xl-' = e SE/"'y {)O',..y; this is magnetic flux 
through the loop C produced by electric charges and de­
scribed by the potential A,... Magnetic strings and magnetic 
monopoles are in some sense "extra objects" which have to 
be introduced in a way consistent with the above picture. 
The Dirac-Wu-Yang approach exploits the fact that U( 1) 
= R IZ; it introduces tubes of magnetic flux 21TN Ie, which 

change the phase by 21TN and leave unchanged the quantity 
exp{ie fA,.. {)xl-' + i21TN}. 

In this paper we treat the eiO 
E U ( I ) phase quantum me­

chanically. Parallel transport along a curve C transforms the 
coset Ix = {eirlf)leirEU(1)'} into the coset Iy = {eirlf) 
+ f~ A,..8x,..) leir E U( I )'}. We then ask the question, how 
should we combine the U ( 1 )' with the Weyl group in order 
to interpret the U ( 1)' as a group of magnetic charges? We 
explore various ways as extensions of the Weyl group by 
U ( I )' and we use them to study the most general mapping 
between the elements of Ix andIy . We find that theg- I a,.. g 
is an extension-dependent quantity and that a change of the 
extension leads to a loop gauge transformation and conse­
quently to the potentials and currents that describe magnetic 
strings and charges (two-form potential, two-form current 
and three-form gauge field). So the answer to the above 
question is that we should require covariance under a change 
of the extension. 

The currents J,..y and J ~ are not the semiclassical cur­
rents of Eqs. (3) and (4) but are given in (57) and (58) in 
terms of the wave function ¢(x,f). An important point, 
which we have not discussed, is the e--+O semiclassical (for 
the f) dimension) limit. The operators q and 0 become c 
numbers and the U(1)', which played an important role in 
our arguments, shrinks into a point. In this limit the currents 
(57) and (58) should reduce to (3) and (4). 

Finally we should mention the work on quantum me­
chanics in nontrivial topology, 17 which has been inspired by 
the Bohm-Aharanov experiment and which is a beautiful 
prototype for the ideas involved in the topological objects. In 
the Bohm-Aharanov experiment we have a solenoid (singu-
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larity) that is a macroscopic classical object (which follows 
only one world surface in space-time) and that creates a 
multiply connected space. We should generalize these ideas 
and study the "Bohm-Aharanov medium" where the tube of 
magnetic flux follows all the surfaces in space-time. In this 
paper we have presented a geometrical model for the Bohm­
Aharanov medium. 
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The d-dimentional space-continuous time-discrete Markovian random walk with a distribution 
of step lengths, which behaves like x - (a + d) with a > 0 for large x, is studied. By studying the 
density-density correlation function of these walks, it is determined under what conditions the 
walks are fractal and when they are nonfractal. An ensemble average of walks is considered 
and the lower entropy dimension D of the set of stopovers of the walks in this ensemble is 
calculated, and D = min{2,a,d} is found. It is also found that the fractal nature of the walks is 
related to a finite value of the mean first passage time. The crossover of the correlation 
function from the fractal to nonfractal regimes is studied in detail. Finally, it is conjectured 
that these results for the lower entropy dimension apply to a wide class of symmetric Markov 
processes. 

I. INTRODUCTION 
The morphology of random fractals has recently be­

come of considerable interest. One of the primary motiva­
tions for this interest has been the central role that these 
morphologies appear to play in a variety of kinetic growth 
processes. Among major questions to be understood in these 
processes are the questions of what conditions are necessary 
and sufficient for fractal growth to occur, and how the cross­
over to nonfractal growth regimes takes place. Unfortunate­
ly, even relatively simple, moderately realistic growth mod­
els are sufficiently complicated to render analytic progress 
toward understanding these questions difficult. Under these 
circumstances, it is therefore useful to study a much simpler 
process which exhibits both fractal and nonfractal growth 
and in which one can make analytic progress both in charac­
terizing the nature of the fractal object generated in the frac­
tal regime, and in studying the crossover between the fractal 
and nonfractal regions. To this end, we will study the process 
of Levy flights, which, in a certain sense, exhibit crossover 
from fractal to nonfractal growth as the step-length expo­
nent of the walk is varied. Although the Hausdorff dimen­
sion of the stopovers of a Levy flight is always zero, the lower 
entropy dimension 1 (LED) for the process is nontrivial and 
corresponds to our intuitive motion of a "mass dimension." 
This dimension, defined for an ensemble average of walks 
(see below) will be used to distinguish between fractal and 
nonfractal regimes of the walk. Aside from their utility as 
analog growth processes, Levy flights are also of interest in 
their own right. Some work on the subject has been done by 
Mandelbrot,2 and on the related subject of Weierstrassian 
random walks by Hughes, Montroll, and Shlesinger and 
Montroll and Shlesinger.3 Furthermore, after the work re­
ported in the present paper was completed, we became aware 
of the work of Hioe4 in which a number of our results are 
obtained in the context of a lattice version of Levy flights. 

The structure of the rest of this paper is as follows: First, 
we shall introduce some preliminary notions including a de­
finition of the LED. Then we shall relate this dimension to 
the density-density corelation function, after which we shall 
calculate the asymptotic behavior of the density-density 
correlation function for the processes of interest. We shall 

end up with an expression for the LED of the stopovers of the 
Levy flight defined over a certain ensemble, as well as obtain­
ing a relationship between the fractal nature of the Levy 
flight and the mean first passage time. We will also be able to 
study in detail the crossover between the fractal and nonfrac­
tal regions of the walk as we vary the step-length exponent. 
We will conclude with several comments and speculations. 

The process we will study, a discrete-time continuous­
space Levy flight, is a Markovian random walk process con­
trolled by the probability function Pen + 1,xln,y)dx dy 
which is the conditional probability for the walker to be in 
the region x + dx at time step n + 1, if he was in the region 
y + dy at time n. Here x and yare points in a continuous d­
dimensional space, dx=.~x, dy=.dd y , and n is an integer. 
We restrict ourselves to Pen + 1,xln,y) = I(x - y), and we 
will be particularly concerned with cases in which 
l(x-y)_lx-yl-(a+d) for large Ix-yl. The Levy 
flight is thus a random walk with a variable step length 
whose size distribution is determined by I(x - y). To inter­
pret the Levy flight as a "growth process," we imagine plac­
ing a particle at the end point of every step. Among the quan­
tities we will discuss is the lower entropy dimension (LED), 
D, of the collection of these end points or stopovers defined 
by averaging over a suitable ensemble of walks. This D is a 
measure of how N(L), the average number of particles con­
tained in a nonempty region of linear dimension L, scales 
with L: i.e., N(L) - L D(L) and is thus consistent, for this 
process, with our intuitive notion of a mass dimension. If 
D(L) is independent of L over some range then the system 
has a well-defined LED over that range. 

Before proceeding with the calculation properly, it is 
useful to carefully define the quantities in which we shall be 
interested and to clearly state how averages are to be under­
stood. Consider then the Levy flight defined by 

Pn(x) = fdY/(X-y)Pn-l(y), (1) 

where Pn (x) is the probability density for the nth step to 
land on point X. We start our process at time n = 0 at point 
x = 0, so that in terms of the conditional probability defined 
above, 
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Pn (x) =P(n,xIO,O). (2) 

Now, suppose we have generated a single sample of a Levy 
flight with a total of m steps. Let Pm (x)dx be the number of 
stopovers contained in the region dx about the point x. The 
density-density correlation function is then 

C;"(r;x) =Pm(x+r)Pm(x). (3) 

This quantity can be integrated over r to obtain 

N'(L;x) = 1L ddr C;" (r;x), (4) 

which is the number of points contained in the region of 
linear dimension L weighted by Pm (x), the number of part i­
cles at x. Finally, we may average this quantity over a num­
ber of such m-step Levy flights and over all starting points x 
to obtain 
N(L) =(N'(L;x» 

= (lL 

ddr C;., (r;x») 

= (l
L 

d~ Pm (x + r)Pm (X») 

= SoL ddr(Pm (X + r)Pm (X» 

= 1L ddr(C;"(r;x» = 1L ddr Cm (r), (5) 

where ( ) means averaging over the ensemble of samples. 
An explicit procedure for performing this average will be 
explained below. As we shall see, as a result of our averaging 
procedure, N(L) and Cm (r) will be independent of x. In any 
case, the x dependence for large m would be trivial since the 
process is translationally invariant. Therefore, N(L), the 
average number of particles contained in a region of linear 
dimension L, having a behavior like N(L) -L D is equiva­
lent to Cm (r), the average density-density correlation func­
tion behaving like Cm (r) _rD- d

• 

II. THE AVERAGE DENSITY-DENSITY CORRELATION 
FUNCTION 

We now want to calculate the average density-density 
correlation function for the processes in which we are inter­
ested. The result of this calcualtion will be an expression for 
the LED of the Levy flight averaged over a suitable ensem­
ble. We will also be able to relate the fractal nature of the 
Levy flight to its mean first passage time, and we will be able 
to study in some detail the crossover from a fractal to non­
fractal structure for the walk as we vary the step-length ex­
ponent. Unless explicitly stated otherwise in the sequel, 
when we refer to properties of the Levy flight, it should be 
understood that these statements refer to quantities aver­
aged over the ensemble of sample flights, the construction of 
which we now explain. 

To do this, we begin by defining a modified correlation 
function, 

Cm (rlj,x) = (Pm (x + r)Pm (x»(j,xl' 

where ( ) (j,X) means averaging over those systems in the 
ensemble in which thejth particle (i.e., thejth vertex ofthe 
given path) is between x and x + dx. Then 
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m 

Cm (rlj,x) = I 'PU,r + xlj,X), 
1=1 

(6) 

where the prime on the sum means I =r= j. This is just the aver­
age particle density at the point r + x ifthejth particle is at 
the point x. Averaging over x, we have the correlation func­
tion averaged over an ensemble of samples in which the posi­
tion of the jth particle is taken as one end point of the correla­
tion function: i.e., 

(7) 

UsingEq. (1) it is clear that P(l,xlm,y) = PI _ m (x - y) for 
I>m, so that 

j-I m-j 

Cm (rlj) = IPI(r) + I PI(r). (8) 
1= 1 1= 1 

Finally, if we randomly choose one particle in the object as 
the origin for calculating the correlation function, it is equal­
ly likely to be any of the particles, so that 

t m m ( I_I) 
Cm (r) = m/f,oCm (rJj) = 21~1 1-=-;: PI(r). (9) 

We now want to take m -+ 00 in this expression. First we 
show that Cm (r) and ~i= IPI (r) diverge and converge to­
gether as m -+ 00. To see this, note that if C m (r) diverges as 
m .... 00, then ~i= IPI(r) also diverges since, recalling that 
PI(r»O, it follows from Eq. (9) that ~i= lPI(r»~Cm (r). 
Furthermore, we can prove that if ~ i:. I PI (r) diverges as 
m-+ 00, then so does Cm (r) as follows: If~i= IPl (r) -+ 00, as 
m - 00, then for a given r there exists, for any L, an M such 
that ~i= I PI (r) >L. This means that for m > 2M, 

Cm (r) > 21~1 (1 - ~)PI (r) 

>2f(1-t.f"\PI (r»2f(t- M)P1(r) 
1=1 -;;;) 1=1 2M 

>21..L =L. 
2 

Therefore, for large enough m, Cm (r) is larger than any 
preassigned number L, and so diverges as m ..... 00. 

Finally we note that if Cm (r) converges we have 
00 

C(r) = lim Cm(r) =2IPI (r). 
m=O 1=1 

( 10) 

The right-hand side of Eq. (10) is twice the mean first pas­
sage time for this random walk. 

Now we use a Fourier transform to rewrite Eq. (10) as 

C(r) = 2 1 fdk j(~) e - Lk ... , 

(21T)dI2 1 - f(k) 
(11 ) 

where 

j(k) = 1 fdrf(r)e''k·r 
(21T)dl2 

is the d-dimensional Fourier transform of fer). We have 
used P/(k) =jl(k). If we consider only those processes 
which are independent of the angular variables, Eq. (11) is 
reduced to a form of Hankel transform, 
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C(r) =r-(d-I)I2('" dk f(~) 
Jo I-f(k) 

Xk (d- 1)/2(kr) 1/2J(d _ 2)12 (kr), (11') 

where r Irl, k = Ikl. 
Let us now compute C(r) and the LED for Levy flights. 

We consider walks for which the kernel in Eq. (1) has the 
form 

n 

Ji d", b -a/ (r) -r- £.- ir , 
i=O 

(12) 

for large r and some integer n > 0 (a = ~ is included as a 
special case). 

It is easy to show that (see Appendix A) 

f(k) = I-f3kA+o(kA) as k-+O, (13) 

where A = min{2,a}. Notice thatf(O) = 1, otherwise the 
P" (x) cannot be interpreted as probabilities. 

Using (13) in (11) it is not difficult to determine the 
necessary and sufficient conditions for the convergence of 
C(r). We find that C(r) converges (a) for d>3 and any 
a> 0, (b) for d = 2 and a < 2, and (c) for d = 1 and a < 1. 
Using (13) in (11), we see that for these values of d and a, 
C(r) -r- (d-A) asr-+~, and since C(r) _,-D-d,D = A for 
these values of d and a. By Eq. (10), the mean first passage 
time is also finite for these vlaues of d and a. 

For values of d and a for which C(r) is divergent, we 
need tostudyCm (r) in them- ~ limit a little more careful­
ly. This is done in some detail in Appendix B. Here we 
report the results of this calculation. We find that for (d,a) 
such that C(r) diverges, limm _ co Cm (0) -->~, but 
limm _ co [Cm (0) - Cm (r)] is a finite function of r. There­
fore, it is also possible to extract for this case a value of the 
LED by rescaling the correlation function by its value at the 
ongm. Defining Cm (r) = Cm (r)/Cm (0), we find 
limm _ 00 Cm (r) = 1, and so the LED in this case is D = d. 
This is the case in which the LED of the trail of points left by 
a typical sample of the Levy flight passages has the naive 
dimension of space, and is, by Eq. (10), also the case in 
which the mean first passage time diverges. The value of the 
LED for all of these cases, for both divergent and convergent 
values of C(r) can be summarized by the formula 
D = min{2,a,d}. Notice that we can mimic those cases in 
which f(r) falls faster than a power as r- ~ by setting 
a = ~. We then find the usual Gaussian result for short 
range random walks, namely D = 2 for d>2, and D = 1 for 
d= 1. 

III. THE CROSSOVER REGIME BETWEEN FRACTAL 
AND NON FRACTAL 

The structure of a typical sample of the Levy flight pro­
cess, as we can infer from the results of an ensemble average, 
are markedly different in the fractal and nonfractal regimes. 
Since, to our knowledge, this is one of the only analytically 
tractable systems to exhibit this crossover, it is of consider­
able value to explicitly display the behavior of the correla­
tion function in the crossover regime. This is done in Appen-
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dix C. Here we wish to point out some features of this 
crossover and comment on the qualitative differences in the 
behavior of a typical Levy flight in the fra~tal and nonfractal 
regimes. First, we want to make it clear that there are really 
three qualitatively different types of behavior possible for the 
Levy flight: (i) For D < d <2 and for D < 2 and d> 3 the Levy 
flight is fractal-like and self-similar and the mean first pas­
sage time is finite. (ii) For D = d<2 the Levy flight is non­
fractal and space filling and the mean first passage time is 
infinite. (iii) For D = 2 and d>3 the Levy flight is not space 
filling, but neither is it fractal. (This case also corresponds to 
the usual short-range finite step length random walk above 
two dimensions.) Because the walk is not space filling the 
mean first passage time is finite in this case, also. 

The dynamics for case (i) differs markedly from the 
dynamics for cases (ii) and (iii). In cases (ii) and (iii) in 
which the step length distribution,J(r), falls relatively ra­
pidly, there will be no very large jumps and the stopovers will 
tend to congregate near the origin of the walk with the distri­
bution of steps forming a Gaussian-like distribution which 
grows smoothly in width (and for d<2, in height) at time 
goes by. For d = 1 and 2 the phase space is restricted enough 
so that these dynamics will cause Cm (0) to diverge as m - ~ 

causing the mean first passage time to be infinite. For d>J 
there are enough random walk paths to prevent Cm (0) from 
diverging as m - ~, and so the mean first passage time is 
finite. If, on the other hand, f(r) does not fall rapidly 
enough, as is the situation in case (i), the dynamics is very 
different. In this case very large jumps will be possible, and 
the whole space will be sampled, although not densely. In­
deed, in computer simulations of fractal Levy flights it is 
observed that the fractal structure is generated by the walker 
spending some time in a given region of space, then taking a 
single very large step to a far distant region, spending some 
time there, and repeating the process in a scale invariant 
way. This dynamics differs markedly from the smoothly 
spreading Gaussian distribution of cases (ii) and (iii). In 
terms of the density-density correlation function, we show 
in Appendix B that for d = 1,2, if we set a = d - E, then for 
small positive €, C(r) - (1!€)r- E

• Thus C(r) -+ ~ as€-O+ 
and [C(r) - C(O)] -In r for large rand € = 0, a behavior 
reminiscent of simple crossover effects in critical phenome­
na. This paradigm is worth keeping in mind as one studies 
more realistic and complex growth processes with fractal­
nonfractal crossover. 

IV. SUMMARY 

In this paper we have analyzed the structure of Levy 
flights in the continuum. Using the lower entropy dimension 
as a criterion, we have found that the set of stopover points 
can exhibit both fractal and nonfractal behavior depending 
on the value of d, the number of dimensions in which the 
walk is embedded, and a, the power with which the jump 
distribution falls off asymptotically. We were also to exhibit 
in detail the behavior of an ensemble average Levy flights at 
the fractal-nonfractal crossover point. We showed further­
more that if the mean first passage time diverges, the LED is 
equal to d, and the typical Levy flight (understood as a rep­
resentative of our ensemble) is not fractal-like. If the mean 
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first passage time is finite, then the typical Levy flight will 
not be space filling and will generally be fractal unless d>3 
and a>2, in which case the dimension of the walk will be 
D = 2, just as for the ordinary random walk with fixed, finite 
step length. 

We have analyzed the Levy flight for the specific step 
size distribution of Eq. (to). However, a careful examina­
tion of the derivation of our results clearly suggests an inter­
esting generalization. We believe that the expression for the 
lower entropy dimension of the stopovers of this random 
walk, D = min{2,a,d}, will be correct for any symmetric 
distribution/(r) where a is defined by 

The random Levy flight we have studied has a very rich 
structure, but, using the techniques of this paper, is amena­
ble to considerable analysis. Such models should prove to be 
simple but useful archetypes in the study of fractal kinetic 
growth processes. 
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APPENDIX A: LEADING BEHAVIOR OF i(k) FOR SMALL 
k 

In this Appendix we show that for 
n 

/(r)_r-dIb"r- ai
; an >a" 1 > ... >ao=a>O, 

;=0 

100 

dr l' - (1 + a + i) (l - cos rky) 

bo:;60 for large 1', we have 

j(k) = I-Pk A +o(k A
), as k ..... O, 

where A = min{2,a}. 
Sketch o/proof: Without loss of generality, let us consid­

er the case/(r) = 1'- (d+a):Ii"=oc/r- 1 for a>O, rlarge. By 
using the integral representation of Jv(x) for d>2 we have 

j(k) = c L'" dr /(r)1"'-'LdY ( 1 - y2)(d- 3)/2COS kyr, 

(Al) 
where c is a normalization constant. Equation (AI) can be 
rewritten as 

j(k) = 1 - c LdY(1 - r) (d - 3)/2 

X {f" dr /(1')1"'-'(1 - cos kyr)}. (A2) 

Let us first concentrate on the integral, 

loo dr /(1')1"'-1(1 - cos kyr) 

in (A2). We divide the integral into two parts by some large 
number R above which the expansion offer) around l' = 00 

is valid, then expand the integrands properly, we have 

f"dr/(r)1"'-I(l-coskyr) 

= i (ky)21[ (Rdr( -l~:t'(r) ~i+d-I] 
;= I Jo (21)1 

Define 

e.(R) = (Rdr ( - 1)1(1') ~j+d-I 
, Jo (U)! ' 

(A3) 

then it is easy to see el (R )'s are finite for any R for 00 > R>O. 
Next we divide the integral in the second summation into 
two parts by (l/ky)( > R), then expand (1 - cos rky) in 
the first part and rescale the integral variable in the second 
part, and then we have 

= _ (R drr-(1+a+ll(1-cosrky) + (00 drr-(1+a+I)(1-cosrky) 
Jl/ky Jl/ky 

00 (I
v

+
1 iR i"" = - I -, (ky)2) drr- o + a+ I)+2i + (ky)-(a+l) drr-O+a+ll(1-cosr) 

1= I (2j)! l/ky . 1 

00 .(-IY+1[ R2j-(l+a+il+1 (ky )-2i +O+Q+/l-l] 
= - I (ky)2J - -'--=--'------

j=1 (2j)! 2j- (l +a+i) + 1 2j- (1 +a+i) + I 

"" = - I (ky)2jgj (R,i) + (ky) (a+i)h;, (A4) 
i=1 
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where 
. ( _ l)i + 1 R 2i - (1 + a + i) + I 

g .(RI)= , 
}' (q)! 2j - (1 + a + i) + 1 

and 

eo (_ l)i+ I 1 

hi = i~1 (2j)! 2j - (1 + a + i) + 1 

+ 1"" dr r - (1 + a + i) (1 - cos r). 

There could be a In(ky) term for a = integer in the above 
procedure, but it will not be the leading term, so it will not 
affect our derivation. 

Now we go back to (A3), and we found 

fO dr f(r),P-I(1 - cos rky) 

= itl (ky )2i [ei (R) - jtogi(Rj)Ci ] 

00 

+ LCihi(ky)-(a+i). 
;=0 

Then we see 

](k) = 1-Citlk2i{[ei(R) - jtogi(Rj)Ci ] 

X ll(1_y2)(d-3)/2y2idY} 

(AS) 

- cf k - (a+i)[cihill (1 - y2)(d-3)/2y2i dY ]. 
1=0 0 

Sinceco#O 

00 (_ 1Y+ I 
ho= L ., 

i= I (2J). 
1 #0. 

2j-a 

(A6) 

The leading term in the second summation is in order of 
k - a. The leading term in the first summation is k 2i for some 
integer i> O. If a > 2, from the probability theory we know 
that the second monent exists, therefore, 
](k) = 1-f3k2+o(k2). From all the above procedures, 
we have shown for d;;. 2, 

j(k) = 1 - f3k A + O(kA) with A = min{2,a} and f3 #0. 

The prooffor d = 1 is very similar (and also simpler). 

APPENDIX B: FINITENESS OF C(O)-C(r) 

In this Appendix we show that if 
C(r) = limm _ 00 Cm (r) diverges, then limm _ eo [Cm (0) 

- Cm (r)] is a finite function of r so that 
limm _ oo Cm (r) = 1, where Cm (r) = Cm (r)/Cm (0). 

The Fourier transform of Cm (r) may be written 

[
_Hm ] Hm ]m+ I] 

=2f----
2
-+-- , 

HI m HI HI 
(B1) 

where Hm (k) == 1 - [J(k) 1m. 
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We need to examine the cases d = 1 and d = 2 separate-
ly. 

(a) Ford = 1, 

Cm (0) - Cm (r) - leo dk [1 - cos(kr) 1 

X f----+--. { 
- H m ] H m jm + I } 

HI m Hi HI 

(B2) 

Recalling that](k) < 1 for k > 0 and](O) = 1, it is clear that 
for m - 00 only the first term in the curly brackets survives, 
so 

C(O) - C(r) _100 

dk(l - cos(kr»)](k). (B3) 
o HI 

For k - 0, the right-hand side of (B3) behaves like 
So(K 2IK A )dk and so is convergent. For k- 00 the right­
hand side of (B3) is also convergent, having the behavior 
soo](k) (1 - cos kr)dk. Therefore C(O) - C(r) is a finite 
function of r. 

(b) For D = 2; after integrating over the angular de­
grees of freedom, 

C(O) - C(r) _loo
k dk](k) 

o HI 

x[f(1-y2)-1/2(1-COS(kry»)dY ]. 

(B4) 

For k-O the right-hand side of (B4) has the behavior 
So(K 3IK A)dk, which is convergent, and for k- 00, the 
right-hand side of (B4) behaves like 

foak dkj(k) [f (1 - y)-1/2(1- COS(kry»)dY], 

which is also convergent. Therefore C(O) - C(r) is a finite 
function of r in this case also. 

APPENDIX C: LEADING BEHAVIOR OF C(r) IN 
CROSSOVER REGIME 

In this Appendix we study the crossover between the 
fractal and nonfractal regimes by examining the leading be­
havior of C( r) for large r and values of a close to the critical 
crossover value. 

(i) d = 1. Here the critical value of a is a = 1. Let 
a = I-E. 

(a) E,O. In this case we know from the results of Ap­
pendix A that limm _ oo Cm (r) = 00 and C(r)/C(O) = 1, 
which we interpret as implying nonfractal behavior with the 
LEDD=d= 1. 

(b)E>O. 

C(r) = lim Cm (r) = 100 

](~) cos(kr)dk 
m-eo 0 1 - f(k) 

_ _ El oo 
(71r) 1- Eji_( I ) cos 7 d - r _ 7 r 7. 

o 1 - I( rlr) rl - E 

(e1) 

We now want to show that the leading behavior of the 
integrals as r- 00 is a constant proportional to liE. To do 
this we note that 
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~(rl-+-r)I_-£ i(t)=I(!) 
1 - i( rlr) r - r 

is bounded and that 

1· cos r 0 Im--= . 
1"-00 7 1-£ 

From this we can show that 

lim roo I (!) c~~ r dr = r'" [limI (!)] c~~: dr, 
r_ ooJo r r £ Jo r- 00 r r 

(e2) 

(e3) 

(e4) 

and, since I (0) is a finite constant, the integral in (e4) has 
the behavior 

r<X>[limI(!)] co~r dr- roo co~r dr-..l. 
)0 r_ 00 r rl £ )0 rl £ E 

The leading behavior of C(r) for r large and E> 0 is thus 

C(r) _ (lIE)r- £. 

Note that as E-O for large r, 

C(r)-(1/e)[l-Elnr] = (liE) -lnr. 

Here we see explicitly that as e - 0 + , C (r) consists of a diver­
gent piece plus a finite function of r, which at the crossover 
point is proportional to In r. 

(ii) d = 2. The derivation of the behavior of C (r) in this 
case is quite similar to the one-dimensional case. Defining 
a = 2 - E, we have, as before, nonfractal behavior with the 
LED D = d = 2 for E<O. For E> 0 we can write 
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C(r) = rook dk . i(~) t (1 _ y2) 1/2 cos(rky)dy 
Jo 1 - f(k) Jo 

As before 

(rlr) i(!) 
1 - i(rlr) r 

is bounded, and 

lim Jo(r) = 0, 
r-oo r l -£ 

so that 

lim roo dr (r/~)2 - £ i(!)Jo( r) 
r-ooJo 1 - f(rlr) r r l

-£ 

= roo dr[ lim (r/~)2 - £ i(!)] Jo( r) _..l. 
Jo r-ool-f(rlr) r rl

-£ e 

(e5) 

Therefore for small positive E, the leading behavior of C(r) 
for large r is 

C(r) - (lIE)r- £. 

lB. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francis­
co, 1983), p. 359, and references therein. 

2B. Mandelbrot, see Ref. 1, p. 288f1'. 
3B. D. Huges, E. W. Montroll, and M. F. Shlesinger, J. Stat. Phys. 28, III 
( 1982); E. W. Montroll and M. F. Shlesinger, in Nonequilibrium Phenom­
ena II' From Stochastics to Hydrodynamics, edited by J. L. Lebowitz and 
E. W. Montroll (North-Holland, Amsterdam, 1984), p. 1. 

·F. T. Hioe, in Random Walks and Their Application in the Physical and 
Biological Sciences, AlP Conf. Proc. No. 109, edited by M. F. Shlesinger 
and B. J. West (American Institute of Physics, New York, 1984), p. 85. 
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The Hamiltonian of the three-dimensional hydrogen atom is reduced, in parabolic coordinates, 
to the Hamiltonians of two bidimensional harmonic oscillators, by doing several space-time 
transformations, separating the movement along the three parabolic directions (t,17,f/J) , and 
introducing two auxiliary angular variables t/J and t/J', O,t/J, t/J' ,21T. The Green's function is 
developed into partial Green's functions, and expressed in terms of two Green's functions that 
describe the movements along both the t and 17 axes. Introducing auxiliary Hamiltonians 
allows one to calculate the Green's function in the configurational space, via the phase-space 
evolution function of the two-dimensional harmonic oscillator. The auxiliary variables t/J and 
t/J' are eliminated by projection. The thus-obtained Green's function, save for a multiplicating 
factor, coincides with that calculated following the path-integral formalism. 

I. WEYL FORMALISM 

The Weyl correspondence (1927), as denoted by 
A +-+-a (p,q) , relates any operator 

A = J a(u,v)e- CiIIi)(Qu + Pv) du dv 

of a Hilbert space to a phase-space function 1 

a(p,q) = J a(u,v)e-Ci11i)(qU+PV)dudv, 

the Heisenberg uncertainty principle, which is mathemat­
ically due to the noncommutativity of the observables, in the 
Hilbert space, being expressed in the Weyl formalism, by the 
Wigner distribution function, or quasi probability , not every­
where positive, associated with the states of a physical sys­
tem.2 Two interesting formulations of Weyl's ide3;s have 
been proposed, by Kastler3 and by Bayen el a/. 4 In its most 
developed formulations, this theory is an alternative to 
Schrodinger wave mechanics, Heisenberg matrix mechan­
ics, or Feynman functional mechanics. 

Gracia-Bondias has recently calculated the hydrogen 
atom spectrum and the Green's function in the configura­
tional space, by making use of the well-known Kustaan­
heimo-Stiefel transformation, which has already been em­
ployed in celestial mechanics. His phase-space Green's 
function is that of the unconstrained four-dimensional har­
monic oscillator. 

Our aim is to calculate the hydrogen-atom spectrum 
I 

A· B+-+-a(p,q) *b(p,q) 

=a(p,q)exp {~{~~-~~}} b(p,q) 
2i ap aq aq ap 

and its Green's function, in parabolic coordinates.6 These 
physical coordinates are useful especially when the system 
has a prevailing direction, for instance, the electric field di­
rection in the Stark effect. 7 

By performing several space-time transformations, se­
parating the parabolic variables in the Hamiltonian, and in­
troducing the auxiliary variables t/J and t/J', it is possible to 
determine the H -atom spectrum from that of the two-dimen­
sional harmonic oscillator (Sec. II) . The generalized 
Green's function is obtained as the Fourier transform of the 
evolution function (Sec. III): 

g(E) = - ~ L'" dleiEtlli~ ( - ~ Hw 1 ), (1) 

with ~(- (ilfz)Hwt)."...U = exp{ - (ilfz)tH}. Hw."...H. 
Here 

~ - - IH = 1 - - H 1 + - - - H *H + ... ( i) i I ( il)2 
fz w fz w 2 fz w w 

is a solution of the following equation: 

By taking into account the association between the product 
of the two operators A and B, 

A +-+-a (p,q), B."...b(p,q), 

and a phase-space function defined by 

(
ifz),+s+l+m+k+n ( _ )s+m+n a,+s+l+m+k+na a,+s+l+m+k+nb 

,.&.m 2 r!s!l!m!k!n! a'xa'px ayampy akzanpz apx aSxapy amyakpz anz' 
(2a) 

k.n 
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in a six-dimensional space, we express the Green's function 
in terms of Green's functions that describe the movement 
along the three axes. 

The evolution function is related to the propagator K by 
the following equation: 

K(q/,q/;t) = 1 fdnpexp {i! (q/_qj)} 
(21rli)n Tl 

Xff --H t ( i )1 Ii W q = (qf+ q,)/2 ' 
(2b) 

where 2n is the phase-space dimension. 

II. SPECTRUM OF THE THREE-DIMENSIONAL H ATOM 

In Cartesian coordinates, the classical H-atom Hamilto­
nian is written as follows: 

Hel = (l12M){p; +p; +p;}-alr, r=X2+y2+z2, 

(3) 

M being the mass of the electron, and p = (p" ,Py ,pz) and 
q = (x,y,z) satisfying the Hamilton equations 

dp aHel dq aHel 
-= --- and -=--. (4) 
dt aq dt ap 
It is obviously impossible to calculate the H-atom spec­

trum from Eq. (3), because of the occurrence of the Cou­
lombian term, which is indefinitely derivable and gives thus 
an infinite-order differential equation or an insolvable inte­
grodifferential equation for the evolution function. 

It is possible to find a coordinate change that transforms 
the Hamiltonian (3) into that of an harmonic oscillator, the 
evolution function of which can be calculated and is known.4 

We employ the space-time transformations defined in Refs. 
6 and 7. 

In parabolic coordinates, 

x = (S'YJ) 1/2 cos ¢>, 

Y = (S'YJ) 1/2 sin ¢>, O"-S,'YJ < 00, 

z = ~(S - 'YJ), 0<.¢><.21f', 

the Hamiltonian [Eq. (3)] is written as follows: 

H 2 {2f:- 2} P~ 2a 
el = M(s+'YJ) Ps':> +Pv'YJ + 2MS'YJ - S+'YJ' (5) 

A. First time transformation (q,p,t) .... (q,p,s) 

By means of the "time" transformation 

dt res) s(s) + 'YJ(s) 
-=--= , 
ds 2 4 

(6) 

the Hamilton equations, which describe the evolution of 
p= (Ps'Pv,p,p) and q= (s,'YJ,¢» in the coordinate system 
(q,p,t), become 

dp dp ds aHel dp r aHel 
-=-'-= --- or -= ----, 
dt ds dt aq ds 2 aq 

dq dq ds aHel dq r aHeI 
-=-'-=-- or -=---, 
dt ds dt ap ds 2 ap 

in the coordinate system (q,p,s). 
The transformation (6) thus appears not entirely ca­

nonical. However, if 
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E=l.Mr2 (t) _~=l.Mr2(s)_4 __ ~ 
2 r 2 res) r 

is the energy of the system and Hel =E, there can be defined 
a pseudo-Hamiltonian K = (rI2)(Hcl - E) which is nil, 
in the weak sense of Dirac, and which keeps the Hamilton 
equations unchanged: 

dp = _.!.... aHel = -~(.!....(Hcl-E»)= -~K, 
ds 2aq aq2 aq 

dq =.!.... aHel =~(.!....(H -E»)=~K. 
ds 2ap ap2 ci ap 

Thus this pseudo-Hamiltonian K, determining the move­
ment in the coordinate system (q,p,s), is 

(7) 

The canonical variables p and q, occurring in (7), satisfy the 
Hamilton equations. The "time" transformation eliminates 
the denominator term (S + 1]) of (5), in introducing a new 
classical pseudopotential - (E 14) (S + 1]), and in making 
al2 act as a pseudoenergy. 

B. Separation of the movements 

The angular variable ¢> is cyclic, thus dp", Ids 0, and 
P,p = Po,p is a constant of movement. 

Theequationp,p =/z =xPy -yp",allowstheconstant 
Po,p to be calculated in the quantum case4

: 

Spectrum{p,p} = Spectrum{lz} = mli, 

where m = 0, ± 1, ± 2, ± 3, .... 
Then the pseudo-Hamiltonian is the sum of two pseudo­

Hamiltonians Ks and K v: 

K = Ks + Kv - a/2;:::0, (8) 

with 

p;x fz2m 2 E 
JY" = 2M + 8Mx - 4 x , x = (S,1])· (9) 

These equations separate the movements along the posi­
tive directions sand 1]. 

The quantum eigenvalue lim can replace the generalized 
momentum p",; we let Ii -+ 0 and m -- 00 as lim = const 

The pseudo-Hamiltonian (9) describes the movement 
of a particle having a variable mass M lx, in two pseudopo­
tentials: the Coulombian potential fz2m 2/8Mx (Ii-+O, with 
lim = const), and the potential - Exl4 of an electric field 
with the intensity E 14. It will be shown that every pseudo­
Hamiltonian K" is a constant of the movement. The evolu­
tion of Kx is indeed described by (x = S,'YJ) , 

dJY" { } --= K 7t'" =0 ds x' s.TJ'PI?P~ , 

the Poisson brackets being understood in the weak sense of 
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Dirac. Then, Ks =::.PI' KrJ =::.P2' and, taking (S) into ac­
count, 

( 10) 

Because the pseudo-Hamiltonians Ks and KrJ contain 
some Coulombian terms, both constants PI andP2 cannot be 
calculated now. It is clear that the pseudo-Hamiltonians K s 
and KrJ govern the movements along the axes Sand T], re­
spectively: 

dx aK a(Ks + KrJ - a/2) aKx 
-=--= =--, 
ds apx apx apx 

apx aK a(Ks + KrJ - a/2) aKx 
-= ---= - = ---, 
ds ax ax ax 

x = (S,T]) and Px = (ps'PrJ )· 

c. Second time transformation (q,p,s)-+{q,p,6) 

The time transformation 

ds 1 
dO = x(O) , 

i.e., 

ds 1 -=--, 
d02 T](02) 

(11) 

aims at making constant the variable massM /x in the kinetic 
terms ofEq. (9 j. This time transformation amounts to intro­
ducing, according to the procedure described in Sec. II A, 
two new pseudo-Hamiltonians, K; (S'Ps,OI) and 
K~ (T],PrJ,02)' nil in the weak sense of Dirac: 

K; = (l/S)(Ks -PI) =KI -E/4~0, 

K~ = (l/T])(KrJ -P2) =K2 -E/4~0, 

where 

K j = p; + ff-m
2 

_ pj ~ E , 
2M SMx2 

X 4 

11-+0, m-+ 00, lim = const, 

x = (S,T]), Px = (ps'PrJ)' i = (1,2). 

(12a) 

(12b) 

(13) 

The K j being the new lIamiltonians governing the 
movements, the Hamilton equations 

dS =~ aKs =~(~(Ks -PI») 
dO Saps aps s 

_ a (K E)_ aKI 

- aps I - 4" - aps ' 

aps = -~ aKs = -~(~(Ks -PI») 
ao s as as s 

= - :s(K1- !)= - aZ'1 

govern the movement along the positive axis S, in the coordi­
nate system (S,p s ,(1). Similar equations are obtained for the 
movement along the axis T], in tlJe coordinate system 
(T],PrJ,02)' by changing (S'Ps,OI,Ks,Ktl31) into 
(T],PrJ,02,KrJ ,K2J32)· 

Thus the transformation (11) makes the masses con­
stant in the kinetic terms of (13), but it results in the occur-
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rence of two new Coulombian potentials Pj/x, i = (1,2), 
x = (S,T]), in Eq. (13). The potential ff-m2/SMx, which is 
Coulombian in (9), becomes centrifugal in ( 13 ). The occur­
rence of Coulombian terms in (13) makes it impossible to 
use this equation in order to determine the constants PI 
(i = 1,2). . 

D. Third transformation 

The transformation (s'Ps) -+ (u,Pu), defined by 

S = u2 and Ps = Pu/2u, 

changes the Hamiltonian KI (13) into 

K. =~+ ff-m 2 _P.~E 
SMu2 SMu4 u2 4 

(
lim lim = const) . 
~_o 

m-oo 

(14) 

(15) 

The movement equations ofEq. (15) are, in the coordinate 
system (u,Pu,O.), 

du aK. -=--
dO. apu 

In Eq. (15), the kinetic term has still a variable mass 4Mu2. 
It can be made constant following the usual procedure, by 
introducing a new time transformation (O.-+r), which is 
defined by 

dO. _ 4 2( ) -- u r. 
dr 

It provides a nil pseudo-Hamiltonian 

K; =4~(K.-E/4) =K.-4f3.~O; 
or the pseudo-Hamiltonian 

(16) 

K. =p~/2M + ff-m 2/2Mu2 - Eu2~4f3., (17) 

(with the usual limit rules for 112m2
), which governs the 

movement along the positive axis u in the system (u,Pu ,r): 

du = aKI and dp" = _ aKI . 

dr apu dr au 

By doing the same space-time transformation in the case of 
the movement along the axis T], 

T]=v2, p =Pv, d02 =4v2(r'), 
rJ 2v dr' 

the Hamiltonian K2 and the pseudo-Hamiltonian K2 are 
obtained: 

K2=~+ ff-m 2 
_P._E 

SMv2 SMv4 v2 - 4 ' 
2 J'..2 2 

K Pv rrm E 2 AQ 2=-+--2 - v ~"'P2' 
2M 2Mv 

112m2 being the constraint to the usual limit rules. 

(1S) 

(19) 

The pseudo-Hamiltonians KI and K2 describe the two­
dimensional isotropic harmonic oscillator (E < 0), by set­
ting 

p~ = P", = lim in Eq. (17), 

P~ = P",. = lim in Eq. (19), 
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with lim fun = const. 
Ii-O 

m-OO 

Then 

(20a) 

with 

U2=X2+ y2, X=ucos¢, Y=usin¢, 

and 

(20b) 

with 

v2 = X,2 + y'2, X' = V cos ¢', Y' = v sin ¢'. 

These equations allow the constants PI and P2 to be calculat­
ed4 in the quantum case: 

4PI =Ii[ - 2EIM]1/2[NI +! +N2 + U, 
(N1,N2 ) = 0,1,2,3, ... , 00, 

with the condition 

and 

Spectrum{p.p} = fun = Ii(NI - N2); 

4{J2 = Ii[ - 2E 1M] 1/2(N3 + ! + N4 + !), 
(N3,N4 ) = 0,1,2, ... ,00, 

with the condition 

Spectrum{p",} = lim = Ii(N3 - N4). 
Accounting for Eq. (10), this gives us 

En = _Ma2/2~n2, 

n = n l + n2 + Iml + 1 = 1,2,3, ... ,00, 

(21a) 

(21b) 

(n l ,n2) = 0,1,2,3, ... ,00, m = 0, ± 1, ± 2, ... , 

(22) 

which is the well-known H-atom spectrum. 

III. GREEN'S FUNCTION OF THE HYDROGEN ATOM 

The Hamiltonian operator corresponding to (5) is writ-
ten 

A. ~ 1 a 
H = - 2M .[g aa.[g~ ap - 7' 

and as functions of the momentspa = (lili)g-1/4 aag+ l/4, 
conjugate to the qa' 

H = (1I2M)g-1Ipa.[gg"PPpg- 1/4 - air, 

whereby the quadratic differential space element is 

d~ = s + ", [ ds 2 + d",2] + ",s #? 
4 s ", 

As a result of the time transformation (6), a new, nil pseudo­
Hamiltonian, is obtained: 
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~ = (lI2M)Pa.[gg"PPp +.[g( - air - E) = o. 
By redefining a Hilbert space by the scalar product without 
measure 

(¢11¢2> = f ¢t¢2 ds d", dt/J, 

which amounts to changingPa into - iii aa in the aforesaid 
Hamiltonian, the Weyl transform can be obtained: 

~~Jl1'w = ~Pa*.[g~*pp +.[g( - ~ - E) 

= 2~ {Ps*s*Ps +P"l*"'*P"l +P.p*s4;",'" *p.p} 

a E 
-2-"4(s+",) 

= _l_{pg + p2",} + p~ (1- + 1-) 
2M '1 8MS'" 

a E 
----(S+",) =0. (23) 

2 4 
The Weyl-transformed Jl1' w thus coincides with the classical 
expression Jl1' [Eq. (7) J. The generalized Green's function 
is obtained from Eq. (1), in the space-time system (p,q,s), 
by setting 

G(E) = ~L'" dte+iEtlhW( - ~Hwt) 

= - ~i"" dSW( - ~ Jl1"S). 

A. Decomposition Into partial generalized Green's 
functions and separation of the movements 

(24) 

The variable t/J being cyclic, its conjugated momentum 
P.p is constant: 

. dp.p 
1'7= - [Jl1'*P.p -P.p*Jl1'] =0. 

As a result,p.p can only have discrete values. 
By using Eqs. (1) and (2b) in order to separate the 

angular movement from other movements by means of inte­
gration over P.p, the expression (24) becomes 

G( A. A..'E) = --=..!.. ~ eUllilP4>(.pr.p;l . J+oo d 
'!'f''!'n Ii _ co 21rli 

xiOO 

ds w( - ~JIt""'S). (25) 

where JY'" is expression (8) without the conditions Ii-O 
and m- 00. The purely quantum potential (~m2/8M) 
X (lis + 11",) is thus introduced, and the independence of 
'C from t/J is taken into account. 

AsJl1's*Jl1'''l = Jl1'''l*Jl1's = Jl1'sJl1'''l,withli=j;:Oandm 
an integer, then 
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If( ~i~.s)=e;asI2ftlf( - ~K"S)lf( - ~K'1's). 
Each evolution function If( - ilfIKx 's) is also the Fourier 
transform of a pseudo-Green's function: 

If( - ~KxS) = ;1T f-+",'" d/3i e- ifJ,slftg;(/3;). 

This allows (25) to be written as follows: 

G(tPf'tPi;E) = i 3 Y im(~,- ~,l r'" ds e;asl2ft 
(21T) Ii m= - 00 Jo 

X {[f-+: d/31 e - (l/ftll1,sg; (/31) ] 

X [f _+0000 d/32 e (ilftll1,sg; (/32) ]}. 

The integration with respect to s leads one to write 

G(tP tP" E ) = --=-.!.... \-'" im(~,- 'M 
I' " (21T)3 m ~ 00 

xf+ oof+ 00 d/31 d/32 g;(/31)g;(/32) , 
- '" - 00 al2 - /31 - /32 + iO 

and, taking into account the analyticity of the g;'s, 

G(tPf'tP;;E) = _1_2 Y eim('h- ~,l 
(21T) m= - 00 

(26) 

We thus succeeded in expressing the function G( tPI'tP; ;E) as 
a function of two monodimensional pseudo-Green's func­
tionsg;, depending on the variables sand 1'/, respectively. 

B. Green's function of the hydrogen atom 

In the space-time systems (S,p,;Ol) and (1'/,p'1;02) re­
sulting from the transformation (11), an evolution function If can be associated with each g; (/3; ) : 

g;(/3;) = -; roodO;lf(-iK;wOj), ;=(1,2), 
Ii Jo 

(27) 
"'-

where K;w is the Weyl transform of the operator K;, 

K;-K;w = _1_ • p~x • _1_ + IJ2m
2 

_ /3; _ E 
.JX 2M .JX 8Mx2 X 4 

= p~ +~(m2-1) _/3; _ E 
2M 8Mx2 x 4 

=K;w -EI4=0, x= (s,1'/), Px = (p,,p'1). 

Furthermore 

i = (1,2), 

differs from the classical expression (13), only by the pure 
quantum correction - IJ2 18Mx2, which is independent from 
the potential and only depends upon the transformation 
(11); butK;w coincides with (13) atthelimitli-O,m- 00, 

while lim = const. 
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Let 

g;(/3;) = - ~ Loo dO; e;E8,.1<U1lf ( - ~KiWOi) 

= _.l.... r'" dO. eiE8,.14ftlf( _ .l....jJP. 0.), (28) IiJo I Ii IWI 

where jJP;w is the Weyl transform of the operator~; which 
is obtained by the punctual transformations ( 14) , 
(S,P,;Ol) - (U,Pu;OI)' ~d (1'/,P'1;02) - (V,Pv;02)' 

For example, for K 1w we get 

~1-jJPIW = _1_(Pu) • (Pu) + 1i
2
(m

2 
- 1) _ /31 

8M U U 8Mu4 u2 

_ P; 1i
2 (2 3 ) /31 E 

- BMu2 + 8Mu4 m -"'4 - u2 ="'4' 
which is different from the classical expression ( 15) only by 
the quantum correction - 31J2 132Mu4, but coincides with 
(15) atthe limit Ii-0, m -+ 00 , lim = const. 

The time transformation (U,PU;OI)-(U,Pu.r) has no 
influence upon (28), 

g;(/31) = - ~ Loo d1' e;(4/i1lP'1'lf( - ~ Klw1') , 

where 

K lw =_I_u .p!.u +~(m2_~) _Eu2 
2M u2 2Mu2 4 

= P; +~(m2-.!)-EU2=4fJl 
2M 2Mu2 4 ' 

and is again different from (15) by a quantum correction 
-1J2/8Mu2

, but coincides with (15) when Ii-O, m-oo, 
lim = const. 

Finally, Eq. (26) becomes 

xiOO 

d1'e(4ililll1,1'lf( - ~KIW1') 

X i'" d1" e(4;lillP.1"lf( - ~K2W1")}. (29) 

By integrating with respect to PI' /32' and 1", 

Now passing into the configuration space by integrating 
with respectto Pu and Pv [u and v vary from - 00 to + 00, 

whereby the movement is limited by an infinite barrier when 
(u,v) <OJ, 
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· + 00 lOO { 1 f + 00 G(u v A. U. v. A.. 'E) = _ _ 1_ ~ eim("'f- "'/) dT e2ia1"lfl __ dp e(ilfl)p.(Uf- U,) 
"1'V'" ., ,'V'" 8~2 ~ 2-Z. u 

1T7r" m = - 00 0 717l - 00 

(31) 

Following (2b) 

_l_J+ood (iP';f1)(Uf-U')a=>(_~K )/ =P( .. ) 'Pu e (!) IwT U"U"T , 
21r1i - 00 Ii u = (Uf+ u,)/2 

where P(Uf,Ui;T) is the propagator, which is written in the Feynman path integral formalisms as follows: 

P(U"Ui;T) = f ~U(CT)~pu(CT)exp(~[ dCT(PuU-Klw») 

= f ~U(CT)~Pu (CT)exp[ ~ [ dCT ~uU - ~ - :U2( m
2 

- ~) + Eu
2
)] . 

Introducing an auxiliary Hamiltonian9 (p~ -1J2 /4 )/2Mu2, where r/I is an auxiliary angular variable (O<r/I<21T), allows the 
projection method 10 to be used: 

P(Uf,Ui;T) = (ufui ) 1/2l21T dr/lf /m"'lp(Uf,r/lf,uOO;T) , 

where 

P(Uf,r/lf'UoO;T) = 1 1/2f~(U,r/I)~(Pu,p",)exp(!i"T dCT(PuU+P",ip-Hosc ») 
(ufui ) TI 0 

= f ~ Xg y~ Px~ pyexp( ~ [ dCT(PxX + py Y - Hose) ) , 

H osc being the classical "Hamiltonian" [Eq. (20a) ] . Naturally P can be related to the evolution function of the bidimensional 
harmonic oscillator 

-PC A. 0) 1 f+oof+ood d (ilfl)[PX(Xf-X,)+PY(Yf-y,)Ia=>( iH )/ (32) uf'V'f'uo ;T = 2 Px pye (!) - - osc T 
(21r1i) - 00 - 00 Ii x= (Xf +X,)/2, y= (Yf+ Y,)/2 

with4 

(
i) 1 {2i It)T} ~ - -Hose T = 2 exp - -Hose tan - , 
Ii cos (It)T!2) w 2 

and E = -! Mlt)2<;.O. 
Integrating with respect topx andpy, developingPinto 

partial propagators, and integrating with respect to r/lf lead 
us to write 

-i (U
f

Ui )1/2 
P(Uf;Ui;T) = --Mlt) --'.'----

Ii sm(lt)T) 

Xexp {;Ii Mlt)(u; + U;)COt(lt)T)} 

( 
iMlt)UfUi ) 

XIm , 
Ii sin (It)T) 

where I m is the modified Bessel function. II 

By reintroducing the initial variables t = u2
, 17 = v2

, the 
H-atom Green's function finally becomes 

iM2lt)2 £-J:. 1/4 ~OO eim("'f-"") 
G(rf,ri;E) = 81ri? (:'oP i17f17i) m =~ 00 

i

oo dTe2ia"TlflI (- iMlt)(ttS'i)1/2) 

X 0 sin2(lt)T) m Ii sin (It)T) 

Xl (-IMlt)(17f 17i)1/2) 
m Ii sin(lt)T) 

xexp{ i~: (t, + ti + 17f + 17i ) cot (It)T) }. 
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I 
It coincides, save for the factor 4 (tfti 17f17i ) 1/4, with the re-
sult obtained by means of the functional formalism. 6 This 
factor is due to the time transformations {}I--+T, {}Z-+T' [Eq. 
(16)], and was ignored in Eq. (29). 

The identityl2 

+00 L eim"'Im (z)Im (Zl) = Io[ (r + Z,2 - 2zz' cos t/» 1/2] 
m= - 00 

allows the Green's function [Eq. (32)] to be written in a 
compact form,5.7 after changing It)--+ilt). 

IV. CONCLUSION 

We obtained the H-atom spectrum by classical transfor­
mations of the Hamiltonian, which lead to the classical 
Hamiltonians of two bidimensional harmonic oscillators, 
with well known spectra and evolution functions, in the 
phase space [the Kepler problem with SU (2) ® SU (2) sym­
metry]. 

It seems difficult to obtain the Green's function in the 
phase space only as a function of physical coordinates, like 
the parabolic coordinates, if one avoids the Kustaanheimo­
Stiefel transformation. 

Thus, before doing the Weyl transformation, we have 
written in the Hilbert space the Hamiltonian operators ob­
tained from different time-space transformations of the 
Schrodinger equation. 

The Weyl transformations of these Hamiltonians enable 
us to obtain the evolution functions. 
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The Green's function was obtained by a Fourier expan­
sion [Eq. (26)]: 

G( A. A."E) = _i _ " im('/>f- ¢>;) 

'f'1''f''' (217')2 ~ 

f+oOf+oO ( 
X _ eo _ 00 dPt dP2 {j ~ 

X~(PI)~(P2)' 

where the Dirac distribution takes Eq. (10) into account, 
and ft;(Pd and ~({32) are the pseudo-Green's functions 
corresponding to the projected harmonic oscillator Hamil­
tonians [(20a) and (20b)]. The intimate relationS between 
the Weyl formalism and the Feynman path integral formal­
ism, particularly with respect to the Coulombian problem, 
should be noted.5,9 It would be interesting to get the spec­
trum of the H atom in the case of spherical coordinates. 
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A family of the Morse oscillators with certain quantized coupling constants are described as 
composite objects in the framework of the SO ( 4,2) dynamical group scheme. Although a 
single Morse oscillator can be solved by the subgroup SO(2,1) ofSO( 4,2), this SO(2,1) is not 
the spectrum generating group, the set of all energy levels is given by the representation of 
another particular one-parameter subgroup of SO ( 4,2), which is the dynamical group of a 
single Morse oscillator. The continuous spectra of this oscillator and other variations of the 
Morse potential are also discussed by making an analytic continuation from the Morse 
potential well to the Morse barrier. 

I. INTRODUCTION 

Recently, some interest has been revived in the Morse 
potential problem from both the physical application and 
the calculational technique points of view. 1-6 In particular, 
the SO(2,1) algebraic approach has been successfully ap­
plied to the study of the Morse oscillator model for molecu­
lar and nuclear anharmonic vibrations. I

-
3 Although the al­

gebraic method has proved powerful for many quantum 
problems,7-9 there is no general procedure for constructing a 
necessary algebra. It is certainly desirable to have a scheme 
within which a class of problems, ifnot all, can be treated in a 
unified manner. A possible candidate for such a general 
scheme is the one based on the SOC 4,2) dynamical group.7,10 
In this paper, we reexamine the Morse problem in one di­
mension in the context of the SO ( 4,2) scheme. 

The Hamiltonian of the Morse system is given by 

H = (l/2m)p2 +Ae- 2ax -Be-aX, (1.1 ) 

where a is a positive constant. For the standard Morse oscil­
lator, II the constants A and B are positive and related by 
2A = B. In our discussion, we include the nonpositive real 
values of A and B for generality and for other possible appli­
cations. In the coordinate representation, the Schrodinger 
equation, H 1'1') = E 1'1'), is written as 

[£ _ 2mA e-2t + 2mB e- t + 2mE ]'1'(5) = 0, 
ds 2 a2 a2 a2 

( 1.2) 

where we have set fz = 1 and 5 = ax. Usually, this equation is 
solved for the energy eigenvalues and the corresponding 
wave functions. 

However, in this paper, we treat the Morse oscillator as 
a composite system obeying a wave equation based on the 
dynamical group SOC 4,2).7 A large number of relativistic 
and nonrelativistic quantum systems belong to this general 
framework. 8 In Sec. II, we discuss the SO(4,2) scheme for 
the Morse system, and show that the basic equation of the 
SO(4,2) scheme can be reduced in a particular representa­
tion to the Schrodinger equation for a family of Morse sys-

tems (1.2). In Sec. III, we obtain algebraically the discrete 
and continuous energy spectrum of the Morse oscillator 
(A > 0). We also find the energy eigenfunctions from the 
basic equation in special representations. Sections IV and V 
cover the Morse barriers with A < ° and A = 0, solutions for 
which are related to those of the oscillator case (A > 0) by tilt 
transformations. Some basic and necessary information of 
the dynamical group SOC 4,2) and its most degenerate uni­
tary irreducible representation are put together in the Ap­
pendix. Throughout the paper, we denote the special orthog­
onal group in N dimensions by SO(N) and its associated 
algebra by so(N). 

II. SO(4,2) SCHEME FOR THE MORSE SYSTEM 

The Morse oscillator is a composite system that, we as­
sume, obeys the wave equation 7 

WI'I') =0, (2.1) 

with a relativistically covariant wave operator 

W=aIP"'r", +a2p2+ a3P 2S+PS+r, (2.2) 

constructed on the carrier space of SO(4,2) ® T(3,1). In 
(2.2), r", (J.l = 0, 1, 2, 3) and S are 5 of 16 operators in the 
algebra of SO ( 4,2), P", are the generators of the space-time 
translation T(3,1), and p 2 = Pp.P' = M2 is the invariant 
mass squared. We characterize the system by selecting the 
parameters of (2.2) to be 

a l = [(a2/2m) +A JIM, a2 =a3 =0, 

p= (a2/2m) -A, r= -B. 
(2.3) 

In the rest frame where P", = (M, 0, 0, 0), the wave 
equation (2.1) takes the form 

[(a2/2m + A)ro + (a2/2m -A)S - B) 1'1') = 0. 
(2.4) 

The physical state in a moving frame can be obtained by 
boosting the rest frame solution. However, confining our 
interest in a nonrelativistic Morse system, we consider the 
choice (2.3) as a characterization of the system in the nonre-
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lativistic limit. For a relativistic Morse oscillator, we would 
have to make a different selection of parameters. In (2.3) the 
parameter a 1 depends on the invariant mass of the whole 
Morse system. A similar situation occurs in other composite 
systems.s 

To find the rest frame solution of (2.4) we perform the 
tilt transformation, 

(2.5) 

The tilt angle () may be fixed appropriately to specify the 
group state I~). The tilt operator T, and other two opera­
tors, r 0 and S, form the so (2, I) subalgebra of so ( 4,2), 

[ro,s] = iT, [T,ro] = is, [S,T] = -ITo. (2.6) 

The group states I ~) are chosen to be the basis states of the 
most degenerate unitary irreducible representation of 
SO ( 4,2). With respect to the subgroup SO ( 2, I ), they are the 
eigenstates of the Casimir operator Q 2 = r~ - S 2 - T 2, 

Q 21~) = lP(lP + 1) I~), (2.7) 

and are simultaneously eigenstates of a linear combination of 
r 0 and S, which is to be specified by a particular choice of the 
tilted angle (), 

e-i/JTWei/JTI~) =0, (2.8) 

or 

[(a2/2m )e/J + Ae - /J)ro 

+(a2/2m)e/J-Ae-/J)S-B]t~) =0. (2.9) 

In the S--representation given by (AI7) and (AIS) in 
the Appendix, we can express (2.9) as 

[ 
d2 2mAk2 -2/J -2s 2mBk -/J -s ----- e e +-- e e 

dS- 2 a2 a2 

- (lP + ~ r]~(S-) = 0. (2.10) 

This equation coincides with the Schrodinger equation ( 1.2) 
for the Morse problem provided that the following identifi­
cations are made: 

(2.11 ) 

and 

E= -(;~)(lP+ ~r= -(;~)[lP(lP+1)+ ~]. 
(2.12) 

Thus we see that finding a solution of (2.9) under conditions 
(2.11) and (2.12) amounts to solving the Schrodinger equa­
tion of (1.2). 

In previous applications of the SO ( 4,2) scheme, the 
generators of the so (2,1) subalgebra are related to the ener­
gy operator, and a fixed value of the parameter jl, i.e., a fixed 
single representation of so(2,l) contains all the energy lev­
els. In contrast, for the Morse system, we reverse the above 
procedure. First, we fix the eigenvalue of an appropriate 
SO(2,1) operator through the wave equation (2.9) and let 
the energy dependent parameter jl, i.e., the Casimir operator 
ofSO(2,1), vary. This procedure allows us to obtain a com­
plete description of the Morse system in one dimension in­
cluding bound and scattering states. Here, 

jl2 = _ lP(lP + 1) = (2mE la2
) + 1. (2.13) 
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The eigenvalue of r 0 is now fixed by geometry of the 
Morse potential, whereas the energy E is related to the eigen­
values of the Casimir operator ofSO(2, 1). Hence we see that 
for each physical state we use a different representation of 
SO (2,1). In other words, we consider a family of representa­
tions Ttp of SO(2,1) and take one state from each corre­
sponding to a fixed value of r o' Therefore, SO (2,1 ) is not the 
spectral generating group of the system. The energy levels of 
a given Morse oscillator form a representation of a subgroup 
ofSO(4,2) commuting with r o, which is in general SO(4). 
Since the energy spectrum is nondegenerate for the one-di­
mensional case, we have only a one-parameter subgroup of 
SO (4), i.e., the one generated by L34> which lowers and 
raises lP by one unit for a fixed value of L 12' This accounts for 
the finite number of bound states. Furthermore, we see that, 
for the Morse oscillator in three dimensions, the full SOC 4) 
representation will be the underlying Hilbert space of states. 

III. THE MORSE OSCILLATOR (A >0, 8>0) 

To discuss the Morse oscillator (A> 0, B> 0) in the 
SOC 4,2) scheme, we start with the basic wave equation (2.9) 
tilted in the rest frame, and condition (2.13). Choosing the 
tilt angle () in (2.9) to be 

() = ~ln(2mA la2
), 

we reduce (2.9) into the form 

[(2a 2A Im)1/2ro - B] t~) = o. 

(3.1 ) 

(3.2) 

Of course, (3.2) is free of representation, so that it can be 
handled in any representation. However, it is important to 
notice that solutions in different representations are not all 
physically equivalent. 

The compact operator ro in (3.2) can be diagonalized 
as7,9 

(3.3 ) 

where the discrete eigenvalue n is either bounded below 

D+(lP):n= -lP +s (lP< -p, (3.4) 

or bounded above 

D-(lP):n=lP- s (lP< -!), (3.5) 

with s = 0, 1,2, ... , as shown in (A24) and (A25). On the 
basis, however, the dynamical equation (3.2) fixes the eigen­
value of r 0 to be 

n = B(mI2a2A) 112. (3.6) 

This is a point fixed in the homogeneous space SO (2,1 ) Ir o' 

We see from (3,6) that n is fixed. Then for a fixed energy E, 
lP is fixed. Hence by (3.4 ) s is fixed. Thus, as we stated above, 
we have one physical state in each representation of 
SO(2,1). 

If B > 0, i.e., if n > 0, then the D + (lP) representation 
(3.4) is appropriate, but the D - (lP) representation (3.5) is 
not. Using (3.4) and (3.6) in (2.12), we obtain the discrete 
energy spectrum for the bound states in the Morse potential 
(see Fig. 1), 

Es = - .!!!.....[B (~)1I2 _ (s + ...!.)]2 (3.7) 
2m 2a2A 2' 
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Vex) 

1 
Princip. series 

----~~---r~~------~----~x 

A>O, B>O 

FIG. 'I. The Morse oscillator with A > 0 and B> 0: The principal contin­
uous series is for scattering states and the discrete series for bound states. 

where 

s=0,1,2, ... <B(m/2a2A)1/2_!. 

In particular, setting B = 2A in (3.7) yields the standard 
result, 

(3.8) 

with 

s = 0, 1,2, ... < (2mA /a2) 1/2 -!. 
The scattering states of the Morse oscillator (A > 0, 

B> 0) correspond to the continuous values of tp in the prin­
cipal series of representation (A27), 

Dp(tp):tp= -!+iu (ureal), (3.9) 

thus belonging to the continuous energy spectrum, 

E = a2~/2m. (3.10) 

For this oscillator, there is no continuum corresponding to 
the value of tp in the supplementary series (A28). Again for 
each energy we have a different representation ofSO(2,1). 

For B < 0, i.e., for n < 0, the D + (tp) representation 
(3.4) is not applicable, but the D - (tp) representation (3.5) 
would appear consistent. The D - (tp) series, however, leads 
us to the discrete energy spectrum 

E; = - (a2/2m)[ -B(m/2a2A)1/2- (S+!)]2, 

s = 0, 1,2, ... < - B(m/2a2A) 1/2. 

This is physically undesirable since the Morse system with 
B < ° does not have a potential well in which the system is 
bound (see Fig. 2). In fact, there are no finite eigenfunctions 
belonging to the discrete spectrum E ;. All allowed states of 
this Morse system (A > 0, B < 0) correspond, like the scat­
tering states of the Morse oscillator (A > 0, B> 0), to the 
values of tp in the principal series (3.9), carrying the same 
continuous energy spectrum as (3.10). The limiting case 
where B = 0 can also be included in the continuous spec­
trum belonging to the principal series (3.9). 
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Vex) 

I 
Princip. series 

______________ -+ ______________ _._ x 

A ~ 0, B < ° 
FIG. 2. The Morse barrier with A;;.O and B < 0: Only the principal series is 
involved for the positive energy continuum. 

To find the energy eigenfunctions, we employ r 0 in the 
R-representation (AI4) to reduce (3.3) to the Whittaker 
equation l2 

[~ _ (tp + p2 -! +.!!.. -1-]<I>(R) = 0 (3.11) 
dR 2 R 2 R 4 ' 

whose solutions are given in terms of the Whittaker func­
tions or the confluent hypergeometric functions. 13 For the 
bound states with tp = s - n (B> 0), we choose a solution 
regular at R = O. Transforming the R variable back into the 
x variable, we obtain the wave function 

or 

<l>s (x) = Mn,n _ s- 112 (2ke - ax) (3.12) 

<l>s(x) = (2k)n-s e -(n-s)ax 

Xexp( - ke-ax)F( -S, 2n - ns;2ke- ax ), 

(3.13 ) 

where n =B(m/2a2A)1/2 as fixed by (3.5) and 

k = (2mA /a2) 112, (3.14) 

as chosen by (3.1) via (2.11). For the continuous energy 
states with tp = -! + iu (0' rea}), the finite solution in the 
valid range of x is 

<l>E (x) = Wn,i<7 (2ke - ax), (3.15) 

where 0' = (2mE /a2 )1/2 and n are given by (3.6) withB~O. 
For B < 0, if one insists on using the D - (tp) discrete series, 
one can get from (3.12), by setting tp = n + s, 

<l>E' (R) = M n, ± (n + s+ 112) (R). 

However, these solutions are divergent at either R = 0 or 
R = 00, which we consider unphysical. 

Alternatively, usingthep-representation (A20), we can 
write (3.2) as a differential equation of the Infeld-Hull 
type,9 

[~ + ~ + C2P2 + c3 ]<I>(P) = 0, (3.16) 
dp2 p2 
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with 

c1 = - 4('17 + !)2 + 1 = (SmEla2
) + 1, 

C2 = - 4k 2 = - SmA la2
, 

C3 = Sk(mB 2/2a2A)I/2 = 5mB la2
• 

(3.17) 

(3.1S) 

( 3.19) 

The discrete energy spectrum (3.6) can immediately be ob­
tained from the formula ofWyboume,9 

(3.20) 

For the continuous spectrum, we have to go back to (2.12) 
with (3.9). The corresponding energy eigenfunctions (3.12) 
and (3.15) follow via the solutions of (3.16) 

<I>(x) =pI/2<1>(p), (3.21) 

withp = exp( - !ax). 

In comparison with the usual radial wave equation, we 
notice that in the R-variable equation (3.11), the energy 
appears as an "angular momentum" and n as a "coupling 
constant." The coupling constant, being quantized, repre­
sents a family of Morse oscillators. We may say that SO(2, 1) 
is the dynamical group of states of a family of different 
Morse oscillators belonging to the same energy E, whereas 
the dynamical group of a given single oscillator is the group 
SO ( 3 ). Thus, even for a one-dimensional system, the larger 
group 80(4,2) seems to be necessary, which contains both 
the above SOC 3) and SO(2, 1) groups. 

At this point, it may be relevant to remark that the 
Morse oscillator can also be treated exactly by path integra­
tion.4 This is due to the fact that the Morse oscillator is re­
ducible to the Infeld-Hull form, which has been known to be 
path integrable. 14 

IV. THE MORSE BARRIER (A <0) 

The Morse system (2.9) withA > 0 and B > 0 has bound 
states and scattering states. However, if A > 0 and B < 0 or if 
A < 0, there are no bound states. In the case where A < 0 (see 
Figs. 3 and 4), the choice of the tilt angle (3.1) is irrelevant. 

Vex) 

1 
Princip. series 

x 

A<O, B<O 
FIG. 3. The Morse barrier with A < 0 and B < 0: The principal series is for 
the positive energy continuum and the supplementary series for the negative 
continuum. 
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Thus, instead, we choose 

0= pn( - 2mA la2
), 

reducing (2.9) into 

[( - 2a2A Im) 1/2S - B) 1<1» = O. 

(4.1 ) 

(4.2) 

8inceS is a noncompact operator, its diagonalization yields a 
continuous eigenvalue7 

(4.3) 

where - 00 < v < 00. On the 1 <I> v) basis, (4.2) fixes the val­
ue ofvto be 

v=B( _ml2a2A)1/2, (4.4) 

which is a point on the real projective line 80(2,l)lS. No 
real discrete spectrum of '17 corresponds to this case. The 
positive and negative energy continua belong, respectively, 
to the principal series of representation (A27), 

'17= -~+iu (ureal), (4.5) 

and the supplementary series (A2S), 

'17 = real. (4.6) 

However, a complex discrete spectrum may also be obtained 
by considering the D + ('17) discrete series of representation 
with n ..... iv in (3.4). The complex energy thus obtained is 

Es = (a2/2m)[B( _ml2a2A)1/2 + i(s + !)J2, 

s=O, 1, ... , (4.7) 

and this corresponds to the discrete tunneling ofthe positive 
energy continuum into the potential hill. Besides multiple 
reflections inside the hill, the trapped waves with energy giv­
en by 1m Es would escape outside of the hill. 

In theR-representation (A15), the tilted equation (4.2) 
can be expressed as 

[~ - '17('17 + 1) + ~ + ..!..] <I> (R ) = 0 (4.S) 
dR 2 R2 R 4 ' 

with v = B( - m12a2A) 1/2. IfwesetR' = - iR, then (4.S) 

Vex) 

1 
Princip. series 

x 

A ~ 0, B > 0 

FIG. 4. The Morse barrier with A <0 and B> 0: The principal series is for 
the positive continuum and the supplementary series for the negative con· 
tinuum. 
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becomes 

[~_ (<p+P2-A +~-~]ct>(R') =0 
dR '2 R ,2 R ' 4 ' 

(4.9) 

which is identical in form with the Whittaker equation 
(3.11). Since we have definedR = 2ke- ax withk = (2mA / 
a2)1/2 in (3.11), we have to recognize that 
R' = - iR = (- 8mA /a2)1/2e- ax is now a real variable 
ranging from zero (x-+ 00) to infinity (x-+ - 00). For the 
positive energy continuum, regardless of whether B~O, the 
solution is of the form 

ct>(x) = CMiv.ia(2k'e-ax) + C'Miv._ia(2k'e-ax), 
(4.10) 

and for the negative energy continuum 

ct>(x) = CMiv.a (2k'e - ax) + C 'Miv. _ a (2k 'e - ax), 
(4.11 ) 

where 

v = B (2a~ 1)112, 

u = C:I;: ly/2, k' = C:I~ 1)112. 
The constants C and C' have to be appropriately chosen to 
meet the boundary conditions. 

V. THE MORSE BARRIER (A =0) 

In the case where A = 0 (see Figs. 2 and 4), the basic 
equation (2.4) or the tilted equation (2.9) with () = 0 takes 
the form 

(5.1) 

Although () may be kept arbitrary, we can set () = 0 without 
loss of generality. The continuous eigenvalue A of the non­
compact operator r 0 + S is fixed by (5.1) to be 

A = 2mB /a2. (5.2) 

Again, as in the case of A < 0, if B> 0, the principal and 
supplementary series of representation correspond to the 
positive and negative energy continua, respectively. For 
B < 0, there are no negative energy states. 

In the p-representation, (5.1) can be written as 

[!£:... _ 4(2<p + 1)2 - 1 + 8mB]ct>(p) = 0, (5.3) 
dp2 4p2 a2 

by setting k = 1 in (A20) and (A21). A solution of (5.3) is 
given in terms of cylindrical functions, 

ct>(p) =pl/2Z2'P+ I (2k "p), (5.4) 

wherek" = (2mB /a2) 112. Thus, we obtain thepositiveener­
gy solution 

ct>(x) = e - (l/4)ax [CJ2ia (2k "e - (l/2)ax) 

+ C'N2ia (2k" e - (1I2)ax)], 

and the negative energy solution 
ct>(x) = e - (1I4)ax [CJ2a (2k "e - (l/2)ax) 

(5.5) 

+C'N2a(2k"e-1I2ax)], (5.6) 

where u = (2m1E l/a2
) 112.' Clearly, the constant 

k" = (2mB /a2) 1/2 is real ifB > o and imaginary ifB <0. For 
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B < 0, the negative energy solution (5.6) must vanish in or­
der to remain finite for the entire range of x. Thus, there is no 
negative energy continuum. 

VI. FINAL REMARK 

We see that for different ranges of the parameters A, B, 
and energy E one has to use different representations of 
SO (2,1) and to make different SO (2,1) generators diagonal 
(see Figs. 1-4). It is known that also in the H atom we use 
two replicas of the SO ( 4,2) representations, one for the dis­
crete spectrum and one for the continuous spectrum in 
which different generators are diagonalized. For the one­
dimensional Morse oscillator the full extent of the SO ( 4,2) 
does not come into play because we transformed the system 
(2.1) into the rest frame. It will come in when the three­
dimensional and moving system is considered. 

APPENDIX: REALIZATIONS OF THE GENERATORS OF 
SO(2,1) C SO( 4,2) 

Here we briefly describe some properties of the most 
degenerate representation of SO ( 4,2) and provide some 
physical realizations of the SO (2,1) generators relevant to 
the discussions in the text.7,12.13 

The 15 operators LAB of the dynamical group SO( 4,2) 
form the Lie algebra so(4,2) 

[LAB' LCD] 

=i(gADLBC -gAcLBD +gBCLAD -gBDLAC)' (AI) 

where A,B = 1,2, ... ,6, gil = g22 = g33 = g44 = - g55 
= - g66 = - 1 and gAB = 0 for A #B. The algebra 

so( 4,2) contains the angular momentum vector L(L23, L 31 , 
L I2 ), the Lenz-Runge vector A(L14,L24,L34)' the Lorentz 
boost vector M(LI5,L25,L35)' the current vector 
r(LI6,L26.L36)' and the remaining three operators 
r 0 = L 56, S = L 46, and T = L 45, which form the subalgebra 
so(2,1). Here, r" (r,ro) is a Lorentz four-vector and Tis a 
Lorentz scalar. 

In general, the basis of a unitary irreducible representa­
tion is labeled by the eigenvalues of the nine invariant opera­
tors. However, we confine ourselves to the most degenerate 
unitary irreducible representation whose basis i& character­
ized by the eigenvalues of only four operators. To realize the 
generators of SO ( 4,2), six real variables are needed in gen­
eral, whereas only four are sufficient in the degenerate repre­
sentation. If polar coordinate variables (r,(),cjJ,t/J) are used, 
the radial variable r and the other angular variables can be 
separated in realizing the operators. Let us set 
(r,(),cjJ,t/JIct» = ct>(r)Dm 110 «(),cjJ,t/J) with 

L2Dmllo«(),cjJ,t/J) =1(1+ l)Dm
I
IJ(),cjJ,t/J), (A2) 

L 12Dm
I
IJ(),cjJ,t/J) = mDmIIJ(),cjJ,t/J), (A3) 

LoDm 110 «(),cjJ,t/J) = loDm 1/0 «(),cjJ,t/J) , (A4) 

where 

[Lo, LAB] = 0; 10 = 0,1,2, ... , or !, ~, ~, ... ; 
1 = 1/01,1/01 + 1, 1/01 + 2, ... ,N; 
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and 

m = - I, - 1+ 1, ... ,1 - 1,1. 

The Morse system in one dimension may be characterized by 
I = 0 and hence described by the representation with 10 = O. 
If the compact operator r 0 is diagonalized with the eigenval­
ue n, then the upper limit N of I is n - 1. On the other hand, if 
a noncompact operator of so(2,1) is diagonalized with a 
continuous eigenvalue, then N is infinity. Now we are able to 
represent the generators of SO(2,1) in terms of the radial 
variable r alone and treat them as operators acting on ~ (r). 
For example, 

1 [ d
2 

2 d l(l + 1) ] ro~(r) =-r --- -+ + 1 ~(r), 
2 d~ r dr ~ 

(A5) 

S~(r) =-r -----+ -1 ~(r), 1[ d
2 

2d 1(/+1) ] 
2 d~ r dr ~ 

(A6) 

1'I>(r) = - i[r :r + 1 ]~(r). (A7) 

It is easy to show from (A5)-(A7) that 

Q2~(r) = 1(/ + l)~(r), (A8) 

where Q2 = r~ S2 - T2 is the Casimir operator of 
SO(2,1). Clearly the eigenvalue qJ(qJ + 1) of Q 2 coincides 
with that of L 2, 

qJ(qJ + 1) = 1(/ + 1). (A9) 

Therefore we can write (A5), (A6), and (A7) as 

r6r)~(r) 

~r[ _!!.:...._l:...!!.-+ qJ(qJ+ 1) + 1]~(r), 
2 d~ r dr ~ 

(AI0) 

s(r)~(r) 

= ~r[ -!!.:.... _ l:...!!.- + qJ(qJ + 1) _ 1]~(r), 
2 d~ r dr ~ 

(All) 

T(r)~(r) = - i[r :r + 1 ]~(r), 
satisfying 

(A12) 

Q 2~(r) = qJ(qJ + 1 )~(r). (AI3) 

The realization of the generators is by no means unique. 
We can change variables and operands successively to obtain 
various representations. To this end, in each step, we con­
struct the generators L (Y) ESO (2,1) in such a way that 
L(x) ~(x) =/(y)L(Y) ~(y) when ~(x) =/(Y) ~(y) under 
themappingx-y. First,let~(r) =R -l~(R) withR = 2r 
(0 < R < 00 ). Then, we have in the R -representation, 

r(R)~(R) = [ _ R~ + qJ(qJ + 1) + ~R ]~(R) 
o dR 2 R 4 ' 

(AI4) 

S (R)~(R) = [ - R~ + qJ(qJ + 1) - 41 R ]~(R), 
dR 2 R 

(At5) 
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T(R)~(R) = - iR ~~(R). (A16) 
dR 

Next, let ~(R) R 1/2 ~(s), with R = 2ke - s 
( - 00 <s < 00). Then, in the s-representation, 

r6s)~(S) =...!..es [ - ~ + qJ(qJ + 1) 
2k ds 2 

+ ! +k2e-2s]~(S)' (AI7) 

s (s)~(s) =...!..es [ - ~ + qJ(qJ + 1) 
2k ds 2 

+ ! -k 2e- 2s ]~(s), (AI8) 

T(s)~(s) = i[~ - ~]~(s). (A19) 
ds 2 

Furthermore, letting ~(s) = pI/2~(p) with P = e - 112s 

(0 <p < 00 ), we have the p-representation 

rif)~(p) 

=_l_[_!!.:....+ (4qJ+ 1)(4qJ+3) +4k 2 2]~( ) 
8k dp2 4p2 P P , 

(A20) 

S(P)~(p) 

=_1_[ _!!.:....+ (4qJ+ 1)(4qJ+3) -4k 2 2]~( ) 
8k dp2 4p2 P P , 

T(P)~(p) = - ~i[2p~ + l]~(P)' 
4 dp 

(A21) 

(A22) 

Suppose the SO(4,2) symmetry is broken so that the 
eigenvalue of Q 2 is shifted by 

qJ(qJ + 1) = l(l + 1) - p,2. (A23) 

Certainly, r 0' S, and T, realized with this shifted eigenvalue 
(A23), do not satisfy the so(4,2) algebra (AI). Neverthe­
less, they still form an so (2,1) algebra. Therefore the realiza­
tions ofthe SO(2,1) generators with qJ, (AlO)-(A22) are 
useful in dealing with the case of symmetry breaking. The 
parameter p,2 in (A23) indicates the degree of the symmetry 
breaking ofSO(4,2) to SO(3) ® SO(2,l). 

There are four types of unitary irreducible representa­
tions of 80(2, 1): (i) positive discrete series D + (qJ), 

n = - qJ, - qJ + 1, - qJ + 2, ... , 

qJ real and negative; (A24) 
(ii) negative discrete series D - (qJ ), 

n = qJ, qJ - 1, qJ 2, ... , qJ real and negative; (A25) 
(iii) supplementary continuous series Ds (qJ), 

- 1 + IEol <qJ< - IEol, IEol <~, 

n = Eo, Eo ± 1, Eo ± 2, ... ; (A26) 
and (iv) principal continuous series Dp (qJ), 

qJ = - ~ + iO', 0' real. (A27) 

In the above representations, n is the eigenvalue of r o' In the 
broken symmetry case (A23), the supplementary series 
need to be modified as 

(qJ +~)2«~_IEoI2)2_p,2. (A28) 
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An important class of 6j symbols for the groups SP (2N), SO (2N), and SO (2N + 1) with one 
nontrivial mUltiplicity index is investigated. An appropriate choice of a basis in the multiplicity 
space is made and the so-called canonical form for 6j symbols is obtained. Their expressions 
depending on the roots of an Nth-order equation and explicit expressions for some simple class 
of representations are obtained. 

I. INTRODUCTION 

The problem of finding matrix elements of generators 
for simple classical algebras B N + I, C N + I' and D N + 1 with 
reduction on subalgebras BN , CN' and DN is important for 
applications of mathematical methods. The branching rules 
for the above reduction are known. 1,2 The appropriate sets of 
the so-called missing label operators are found. 3

•
4 Applying 

the generalized Wigner-Eckart theorem to commutation re­
lations between the generators, one obtains equations for re­
duced matrix elements. In this approach the 6j symbols for 
chosen subgroups occurring in the above system should be 
calculated. An important subclass of these 6j symbols is 
found in the present work. In Sec. II the general remarks on 
our class of 6j symbols are made, and the symmetry proper­
ties of 3j symbols entering into 6j are discussed. In Sec. III we 
show that 6j symbols may be found from the unitarity prop­
erties if some reasonable basis in the multiplicity space is 
chosen. In Sec. IV their general expression depending on the 
roots of Nth-order equations is obtained. In Sec. V singular 
cases connected with reduction of the dimension of the mul­
tiplicity space are discussed. Also, we have found explicit 
expressions for a simple class of representations (see Sec. 
VI). 

The same class of 6j symbols for the SV (N) group may 
be considered, and we hope that our approach may be ex­
tended also to this group. 

II. GENERAL REMARKS ON THE INVESTIGATED 6j 
SYMBOLS 

The class of 6j symbols to be treated in this paper shortly 
denoted by t,b ( n ) aa is of the form 

{
l* 1 A} 

t,b(n)aa = t,b(n,n~)a = n n n~ "A" (2.1 ) 

where the symbols n's (n = (n l,n2, ... ,nN») label a unitary 
irreducible representation (VIR) belonging to groups 
SP(2N), SO(2N), or SO(2N + 1) and n* is the complex 
conjugate representation. The representation 
(nl,n2, ... ,np ,0,0, ... ,0) is written shortly (nl,n2, ... ,np ) and 
we sometimes omit the parentheses in our notation if the 
meaning of the label is obvious, as in example (2.1). The A 
representation is one of (0), (11), (2), and the A is the mul­
tiplicity index, so, in the Kronecker product of representa­
tions n X A, the n representation may be found more than 

once. Other multiplicity indices do not occur in our symbols, 
so we use dots in their place. Here, we use the same definition 
and the notation of 6j symbols as in Ref. 5. In expression 
(2.1) index in the left-hand side is fixed from the n~ repre­
sentation in the following way: 

n~ = (nl,n2,· .. ,nlal_1 ,n1al + €a,n 1al + 1 , ... ,nN) , 
(2.2a) 

where €a = 1( -1) if the a>O (a<O). For the case 
SO(2N) one more n~ representation should be added, 

n~ = (nl,n2, ... ,nN). (2.2b) 

Hence the range a is ± 1, ± 2, ... , ± N,(O), respectively, for 
cases SP (2N), SOC 2N), (SO (2N + 1») and the reduction of 
a's must be done if some n~ is not an allowed label for the 
studied group [see (2.5a)-(2.5e) and text below]. Let us 
introduce the notation 

A+ = (1,1), A_ = (2,0), Ao = (0) , 

for groups SO(2N) and SO(2N + I) or 

A+ = (2,0), A_ = (1,1), Ao= (0), 

(2.3a) 

(2.3b) 

for the SP(2N) group [here A+ is an adjoint representation 
for all cases]. The case of the SOC 4) group is rather peculiar. 
In this case the three-dimensional representations ( 1,1) and 
(1, - 1) are used instead of the A+ = (1,1) + (1, - 1) and 
some modifications of expressions to be obtained here 
should be done. 

The dimensions of the multiplicity space referred to tri­
ads {n,n*,A±} are denoted by d ± . All symbols of our 
class may be written if one uses index a instead of 
A± A ± ,Ao, where 

a =A+, for A = A+, (2.4a) 
a = - 1 , for A = Ao , (2.4b) 
a= -A_-l, for A=A_, (2.4c) 

for cases SP(2N) and SO(2N). For the SO(2N + 1) group 
(2.4a) and (2.4b) coincide, but if nN #~ (see Sec. V) then 
(2.4c) should be changed: a = - 2, - 3, ... , - d_,O. 

In what follows we will understand t,b (n) aa as a square 
matrix, the dimension of which depends on n. For that rea­
son we introduce I>a symbols 

I> = {I, 
a 0, 

if na > na + 1 , 

if na = na + 1 , 
(2.5a) 
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where a = 1,2, ... ,N - 1 [or a = 1,2, ... ,N - 2 for the 
SO(2N) group] 

{
I, ifnN>O, 

8N = . 
0, If nN =0, 

for the SP(2N) and SO(2N + 1) 
SO(2N) group we have 

(2.5b) 

groups, and for the 

{
I, if n N_ I > InNI, 

8N _ I = . 
0, If nN _ I = ±nN , 

(2.5c) 

{
I, if nN _ I > 0, 

8N = . 
0, If n N_ I =0. 

(2.5d) 

For the SO(2N + 1) group we use 

80 = {
I, ifnN#O,!, 

o , otherwise. 
(2.5e) 

Now we may introduce Aa symbols indicating rows of 
. I 

D=DA = 1, 

if a> 1 , 
ifa= -1, 

tP ( n ) ao that are equal to zero and should be removed, 

Al = 1, A_I = 81, Ao = 8N - 80 , 

Aa =8a _ l , A_a =8a , for a=2,3, ... ,N. 

The dimensions d + ,d _ introduced above are 
N 

d+ = L 8a , (2.6a) 
a=1 
N-I 

d_ = L 8a +80 , (2.6b) 
a=1 

These formulas will be proved in Sec. V. 
The unitarity conditon for our 6j symbols may be writ-

ten 

o 

L DaDAJ(n):AJ(n)ab = 80b , (2.7b) 
a 

{

!(2/ + 1-7])(2/+ 1), 

o • ! (21 + 1 _ 37])( 21 + 1) , if a = 0 or a< - 2 , 

(2.8a) 
(2.8b) 
(2.8c) 

where DM is the dimension ofUIR M and D o~ is denoted by 
Da. We have 

{

N, for SP(2N) , 

1 = N - 1, for SO(2N) , 

N - ! ' for SO(2N + 1) , 

{
I, 

7]= 
-1, 

for SP(2N), 

for SO(2N) ,SO(2N + 1) . 
The following three classes of 3j symbols occur in 6j: 

(a) (n,o,n*)mOm' , 
(b) (n,A± ,n*)A m m m , 

± I 2 3 

(c) (n,1,n~·)mlm2m3 . 
The symbols of class (a) are proportional to the ele­

ments of the metrics tensor 

(n)mm' = (n)mm'j* = (Do )1/2(n,0,n*)mOm" 

that is used to raise and lower m index in the usual way, 

F(n)m = (n)mm'F(n*)m' , 

F(n)m =F(n*)m'(n*)m'm . 

All representations for groups SP(2N), SO(2N + 1), and 
SO( 4N) are self-complex-adjoint, but for the group 
SO(4N + 2) we have 

(nl,n2,· .. ,nN_I,nN)*= (nl,n2,· .. ,nN_I,-nN)· 
It is possible for all classes to use real 3j coefficients that 

have very simple symmetry properties: 

( n p (1) nP(2) n p (3» 
, , Amp(l)mp (2)mp (J) 

= (_1)Sp([(}'l+[(}21+[(}'])(n l n 2 n 3) . (2.9) 
, , Amlm2mJ 

Here S P = 1 for odd and S P = 0 for even permutations P 

[n] = ~ L ( - 1);+ In; , 

for the SP (2N) group and 

[n] = In21, 

613 J. Math. Phys., Vol. 28, No.3, March 1987 

(2.lOa) 

(2. lOb) 

I 
fortheSO(2N) andSO(2N + 1) groups (N)2). Forcoeffi-
cients of class (c), relations (2.9) may be obtained if appro­
priate phase conventions are chosen. The same is true for 
classes (a) and (b) if n is not equivalent to n* [the 
SO(4N + 2) caseifnN #0], butifn=n* the requirements 
(2.9) are not trivial6 and should be proved. We do not touch 
upon this question in this paper [here the plethysm rela­
tions7 (n) ® {p}, for {p} = {2},{1l} must be investigat­
ed]. We obtain the following symmetry relations for 6j sym­
bols if all entering 3j symbols fulfill conditions (2.9): 

{nl n 2 !h} {n2 n l n3} 
CUI CU2 CU3 A,A,A,Ao = cut cuT cu· 3 A2AIAJAo 

= {n2 n3 nl} -
CU2 cu3 cu I A,A,A ,AD 

(2.11a) 

{nl n 2 n3} {nT CU2 cu~} 
CUI CU2 CU3 A,A,A,Ao = cuT n 2 n· 3 AoA,A,A, 

= {~: cu· n.} 2 

cu: A,A ,AoA, 
-

nt 
(2.11b) 

{
nl n2 n3} * 
CUI cu2 cu3 A,A,A,Ao 

{
nT nt n~}A'A,A'AO 

cuT cut cuf 

(2.11c) 
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The multiplicity metric tensor G(O,O*,A~ ) [see (2.11c) 
and (2.1)] is unitary,5 and symmetric for the above case. 
Here it does not depend on theorder{O,O*,A~}. The one­
dimensional metric tensors corresponding to the triads 
{l*,l,A±} and {O*,l,O~} are chosen to be equal to 1, 
hence, we may omit the three dots [see (2.1)] connected 
with ordinary 3j symbols. Taking into account that A ~ are 
equivalent to A ± and (2.11a)-(2.11c), we may rewrite the 
unitarity conditon (2.7b) in the form 

(2.12) 
a 

Matrix ¢ (0) to be obtained in Sec. IV is real, hence compar­
ing (2. 7b) and (2.12) we find that the tensor G is a unit 
tensor 

G(O,O*,Aa )ab = {jab' (2.13) 

In the next section the definition of the tensor operators 
(2.14) T(Om and the generalized Wigner-Eckart 
theorems will be used (2.15): 

[A(A+)m"T(Om2 ] 

= L (rm'IA(A+)m,lrm 2 )T(Om' , 
m' 

= L (OI)m,mi(Or0203)Am,m,m3 
Ami 

(2,14) 

(2.15 ) 

whereA (A + ) m are generators of the investigated group. Ex­
pressions (2.15) are manifestly invariant under any unitary 
transformations acting in the multiplicity space, but for 
T( 0) m = A (A+ ) m it is more reasonable to do the choice 

(2.16) 

This condition is invariant with respect to U(d + - 1) trans­
formations which do not touch the index A = 1. These trans­
formations will be used in the next section. The function Cn 
is an eigenvalue of the second-order Casimir operator, and 
we have 

N 

Cn =2x L (lU~ -.fa), 
a=1 

where 

ga =/+ I-a. 

III. BASIC ASSUMPTIONS OF THE PRESENTED 
APPROACH 

(2.17) 

(2.18a) 

(2.18b) 

In this section we find one (a = 1) column for the ¢ (0) 

matrix and some simple relations. This permits us to calcu­
late the whole matrix. 

If we take definition (2.14) for r = (1) between states 
(O*ml and IO*m') and we make assumption (2.16), after 
rather simple calculations we obtain 

I12{l* 1 A+} 
(CnDn) 0 ° O~ .. I' 

1/2{ 1 
+ (Cn:Pn~) O~ O~ 

1* 

( 
C )112 =Pa _(_1)_ 

I a D 
A+ 

Here (2.9), (2.15), and a simple tensor sum relation 

L F(o)mG(O)m 
m 

= ( - 1)[0] L F(O*)mG(o*)m 
m 

(3.1 ) 

has been applied, too. Taking into consideration that repre­
sentations (1) and (1 *) are equivalent for investigated 
groups, one finds a very similar expression to the well-known 
SO(3) formula 

¢(O)al = PINIt/J(O)al , (3.2a) 

P
a 

= ( - 1)[n] + [n~l + [Aa) + [(I)] , (3.2b) 

NI = 2X (CnDnC(i)D(i) )-1/2 = (CoDoDA+ )-1/2, 

(3.2c) 

t/J(O)al =aa/4(Cn +C(I) -Cn) =aa(/-lUa ) , 

(3.2d) 
where the following generalization of ( 2.18a) and (2.18b) is 
done: 

(3.3a) 

and for the SO(2N + 1) case the component lUO is included 

lUo = - ~. 

In the same way we obtain other 6j coefficients 

A± 
n 

A }A 
n + BI· 

-1/2 CA ± 
X(CODOCA±DA±) --2-

Let us introduce new symbols 

H~ = (CnDnDaDbDA )1/2F~, 
+ 

a 

(3.3b) 

(3.4 ) 

(3.5) 

(3.6) 

(3.7) 

The symbols F~ are a simple extension to a nonsimple reduc­
ible group of the so-called second kind 9j symbols, and they 
may be expressed by two 6j symbols, 

Fa = (_ 1)2[0] +2[(1)] a b 
{
A* A 

b 1 1 
A }A 
~ BI 

(3.6') 
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The 3j symbols entering into the first 6j symbol are ordinary, 
hence we omit the multiplicity indices and the indices A (B) 
in the second one depend on the a (b) [(2.4a)-(2.4c) and 
text below] . 

Lemma 1: Eigenvalues of the Hermitian H matrix are 
the tjI(!l)al coefficients. 

Lemma 2: (a) The following equations for the tjI ( !l ) aa 
are satisfied: 

(3.8) 

where Ua = (Ual,Ua2"",Ua2f+I-",) are eigenvectors of 
the H matrix or else the following is true. 

(b) The H matrix has the reducible form and here Eq. 
(3.8) touches only the index a, a occurring at the same 
block. 

Proposition 1: (a) If relations (2.16) are preserved and 
alloa symbols (2.5a)-(2.5e) are equal to 1, then the matrix 
H may be chosen in the so-called canonical form 

H=HD+G, (3.9a) 

where H D is the diagonal matrix and G is of the form 

G = L~ !]. (3.9b) 

Here all elements of the 0 matrix are equal to zero and the g 
is a square N X N-dimensional matrix for the SP(2N) and 
SO(2N) case 

g~[1' 
X 2 X3 

x~ l QI 0 
(3.9c) 

0 0 0 QN 

and g is an N X (N + 1 )-dimensional matrix for the 
SO(2N + I) case 

g~[1' 
X 2 X3 X N 

IT 
Q2 0 0 

0 0 0 QN 
(3.9d) 

For the diagonal elements of H we have 

Ha _ 0, if a = - 1 , 
a - !(2f + 1 -17), if a,;;;; - 2 [or a = 0 {

!(2f +l+ 17 ), ifa;;;.l, 

for the SO(2N + 1) case] . 
(3.10) 

Here the following order of index a is established: 
1,2, ... ,d+, - 1, - 2, ... , - d_,(O). 

(b) If some oa symbols are equal to zero, then the ele­
ments of H outside the range of a [see (2.6a) and (2.6b), 
(2.4a)-(2.4c) and the text below] vanish. 

The proof of Lemma I is very simple. Here we obtain the 
relation Tr(H") = l:a (tjlal)n immediately from the unitar­
ity relations (2.7a). Lemma 2 is derived from the relations 

(tjI(!l)al r = L (Hn)~tjI(!l)aa , 
a 

which are also obtained from the unitarity relations (2.7a). 
Prooffor Proposition 1: (a) The whole space related with 
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index a is decomposed into three subspaces .sf +,.sf o,.sf _ 
connected with three multiplicity spaces appropriate to the 
triads {!l,!l*,A+},{!l,!l*,Ao},{!l,!l*,A_} [see (2.4a)­
(2.4c)], and a more general multiplicity transformation is 
U+ (d+) X Uo( 1) X U- (d_). In fact, we may use only the 
U+(d+ -l)xU°(1)XU-(d_) transformation if rela­

tions (2.16) are preserved. Next, the diagonal blocks H ! ' 
Hg, H =, and H 0+' HO+ are obtained by using (3.4)­
(3.6b), (3.2a)-(3.2d), (2.17), (2.18a), and (2.18b). The 
off-diagonal blocks H 0- ,H 0_ are equal to zero from the gen­
eral properties of 3j coefficient. The appropriate choice for 
transformations U + (d + - I) and U - (d _) may be done, 

and the off-diagonal block H ~ according to (3.9c) or 
(3.9d} may be obtained. The proof of point b will be put off 
to Sec. V. 

IV. THE OFF-DIAGONAL ELEMENTS OF THE H MATRIX 
AND THE SOLUTION FOR THE 4»(0) MATRIX 

The dispersion equations for the H matrix may be writ­
ten in the form 

"waE[w] [2(w - wa ) ] 

IIqbE[q] [2w + 1 - qb] 

N(O) 41X 12 
= - 1 + L a , (4.1) 

a = I (2w + 1 - qa)(2w + 1 - q _ a) 

where the (2f + 1 -17)-dimensional set 

[w] = [W I,W2, ... ,WN,W_ I,W_2, ... ,W_N'(WO)] 

is defined by (2.18a) and (2.18b), (3.3a) and (3.3b) and we 
have 

ql = 2f + 1 , (4.2a) 

q-I = -17, (4.2b) 

qa = -q-a =2(Q~ +!>1/2' for a=2,3, ... ,N, 
(4.2c) 

qo = - 1 . (4.2d) 

Here qo(q-o=q-I = 1) is added only for the SO(2N + I). 
Comparing the residues for different poles of the function in 
the left- and right-hand sides of Eqs. (4.1), we receive two 
different expressions for all terms Xa = X(qa)' 
(Xa=X_a =X(q_a»); 

IXaI 2 = -~ II [2wa +l-qa] 
4 WaE[W] 

x( II [qb -qa])-I 
qoe[q] 

qb#q •• q _. 

(4.3a) 

except the case SO(2N + 1) when for a = - 1 we have 

IX_112 _ flXol2 = J.. ";= I (:Wa )2 . (4.3b) 
8 "b=2(qb-l) 

Similar modifications of (4.3a) should be done for the singu­
larcases, i.e., whenqa (fora = ± 2, ± 3, ... , ± N) takes val­
ues ql' q-l' or qo or when they are equal to each other. A 
more simple formula for Xl is derived if (2.17), (2.18a), 
(3.2a)-(3.2d), and (3.4)-(3.6b) are used: 

Xl = { (2f + ~ -17) atl (w~ -.fa) r12 

• 
(4.3c) 
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Next, comparing Xa with X _ a for 0 = 2,3, ... ,N we obtain 
the following equation for q: 

1- IT [(2tua + l-q)(2tu_ a + l- q )] 
a=1 (2tua + 1 +q)(2tu_ a + 1 +q) 

X {(ql + q)(q-I + q)/(ql - q)(q-l - q) , (4.4) 
- (ql + q)/(ql - q) , 

appropriate for the cases SP(2N), SO(2N) (up case), or 
SO(2N + 1) (down case). For the down case we get 2N - 2 
roots q2 = - q-2,···,qN = - q -N' likewise as for the up 
case when one unphysical root q = 0 should be removed. If 
qa = - q -a' 0 = 2,3, ... ,N, are found, then all elements of 
the H are known, hence the components of the vectors Ua 

may be calculated immediately and from (3.2a)-(3.2d), 
(3.7), (3.8), and (2.lOa) and (2.lOb) we obtain 

tP(l1)a-1 = P -1(Do (2f + 1 _7J»)-I12, (4.5a) 

tP(l1)aa = 7J4Qa {(2tua + 1)2 - q~}-IXatP(l1)al , 
(4.Sb) 

tP(l1)a-a = 2(2tua + 1 + 7J){(2tua + 1)2 _ q~}-I 

X (DA+ IDA_ )1/2XatP(11)al , (4.Sc) 

tP(l1)aO = {Wa + I}-IXo(DA IDA )1/2tP (11)al' 
+ -

(4.Sd) 

where the last component tP (11) aO only for the SO (2N + 1) 

case is included, and Qa = ~(q~ - 1)1/2 for 0 = 2,3, ... ,N 
[see (4.2c)]. The phase for factorsXa (0 = 2,3, ... ,N) maybe 
chosen [see (3. 9c ) ,and (3. 9d), and proof of Proposition I] 
so we may letXa = (IXaI2)1/2. 

Proposition 2: All roots of Eq. (S.3) are real and if 
2tup + l>ql>2tup + 1 + I then the positive roots values are 
bounded by inequalities 

2tua _ 1 - l>qa>2tua + I, for 0 = 2,3, ... ,p, 

2Wb + l>qb>2wb -I, for b=p+ I,p + 2, ... ,N, 

and qb tends to 2tub - I (q _ b .... 2tu _ b + 1) if 2tub _ 1 - I 
tends to 2tub + 1. 

From Proposition 2 follows that matrix elements 
tP (11) aa are real and that right-hand sides of the relations 
(4.3a) are positive. The above conclusions also remain true 
for singular cases. 

0, 

v. SINGULAR CASE FOR 6JSYMBOLS 

In this section we investigate all cases when Hand tP (11) 
matrices are not, in fact, (2f + I - 7J) dimensional. The full 
agreement of the results obtained below with rules (2.Sa)­
(2.Sd), (2.6a), and (2.6b) assumed by u,s in Sec. II is ob­
tained. 

Definition: We shall say that we have a singular case for 
the coefficients 6j if anyone of the following relations holds: 

2tu_ y + I = - (2tur+1 + 1), (S.la) 

2tu_ N +I=O, (S.lb) 

2tu_ N + i =q-l' 

2tu _ N + I = qo . 

(S.lc) 

(S.ld) 

The following representation leads to the singular cases A, 
B,C,D: 

(A) 11;=11;+1 , or if [for the SO(2N) group only] l1N _ I = -l1N , 

(B) (11) = (n l,n2, ... ,nN _ p O) , for the SO(2N + I) group, 

(CI) (0.) = (n l,n2, ... ,nN _ I ,0) , for the SP (2N) group, 

(C2a) (0.) = (n l,n2, ... ,nN _ p O) , for the SO(2N) group, 

(C2b) (0.) = (n l,n2, ... ,nN _ 2,0,0) , for the SO(2N) group, 

(D) (0.) = (n l,n2, ... ,nN _ I ,p, for the SO(2N + I) group. 

The separation of set [w] into two subsets should be done as 
follows: 

[w] ...... [w Ln fB [w]out , 

where [w]out = [w_y,Wy+l] for case A, 
[w]out = [w _ N,WO] (w _ N = Wo = -!) for case B, 
[w] out = [w _ N ] for cases CI, C2a, and D, 
[w]out = [W_N + I ,wN,w -N] for case C2b (here we simul­
taneously have case A with respect to the pair W _ N + 1 ,w N ). 

Note 1: If more than one pair of [w _ y,Wy+ 1 ] satisfying 
(S.IA) is found, or if (S.lb) or (S.lc) or (S.ld) is found 
simultaneously with (S.la), then all of the above compo­
nents should be included in [w] out . 

Now the following results are immediately found. 
( I) The expressions 2tu + I for all W belonging to 

[w lout are the roots ofEq. (4.4) for singular A, B, and all C 
cases. Hence for all cases the separation of [q] into two parts 
should be done (S.2a), and the elements [q]out are obtained 
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from (S.2b), where all WE[W ] out are used: 

[q] -+ [qLn fB [q]out , 

q=2tu+I. 

(S.2a) 

(S.2b) 

(2a) For cases A and BwehaveXN ( =X -N) = 0 (here 
the notation [q]out = [qN,q-N] is used). 

(2b) ForcaseDweobtainXo=O ([qlout = [qo])' 
(2c) For cases CI and C2a we have QN = 0 (here the 

notation [q] out = [q N] is used). For case C2b we obtain 
QN-I = 0, X N = 0 ([q]out = [qN-pqN,q -N p. 

(3) Except for case C2a we have tP (0.) al = 0 for all a 
such that WaE[W]out [see (2.Sa)-(2.Se) and the text be­
low]. 

(4) For all singular cases the sets [wLn,[qLn may be 
used in Eq. (4.3a) instead of [w] and [q] ifXb (qbE[q];n) is 
calculated. 

If the results of points (2) and (3) are substituted into 
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expressions (4.5b)-(4.5d), and also if Note 1 is taken into 
account, we obtain that the dimension of the square matrix 
t/> ( U) is reduced [except for case ( C2a) ). The range of index 
a may be chosen according to (2.6a) and (2.6b) and (2.4a)­
(2.4c) [see also the text below (2.4c)]. The range of the a 
index is reduced to such a that (t)a belongs to [(t) lin' 

to [(t)Ln' 
For the case (C2a) the range of a remains unchanged 

for all equations (4.5a )-( 4.5c) and the following modifica­
tion for components t/>(U)aN should be done (here 
QN =0): 

t/>(U)aN = (OaN -O_aN)(WA+Da ) 1/2. (5.3) 

Formula (5.3) is obtained from the unitarity requirements 
(2.Th) rather than from (4.Sb). It should be noticed for the 
above case that two eigenvalues of H, t{l( n) N I and 
t{l( n) _ N I , are equal and one of them belongs to the one­
dimensional block HZ [see Lemma 2 (b) ] . 

VI. SOLUTION FOR A SIMPLE CLASS OF 
REPRESENTATIONS 

In this section we find explicit expressions for the cases 

when (n) = (utul'). If the results of the previous sec­
tion will be applied, we obtain that [())] in contains only four 
[ or five for the SO (2N + 1) case, (t)o !] elements noted 
here: 

())a = ())~ + ~(Pa - 1) , 

())'± I = ± [UI + ~(PI + 2P2 + 0)] , 

())'±2 = ± [U2 + ~(P2 + S)] , 

(6.1 ) 

(6.2a) 

(6.2b) 

where 0 = 1,0, - 1, respectively, for cases SP(2N), 
SO(2N + 1), and SO(2N). The equation for q = q2 be­
comes quadratic, and the following formulas are found: 

(2wa + 1)2 - q~ 

= Pa (2w~ + Pa + 0) (2w~ - Pa 2p/3 - S) 

617 J. Math. Phys., Vol. 28, No.3, March 1987 

(6.3) 

(6.4 ) 

(6.5) 

x t = [PI P21N XH4«()); ,())~ )/S ] 1/2 , 

H4«()); ,())~ ) = [«())i + !N)2 - ())22] [ «()); 
(6.6) 

W)2 - ())22] , 
(6.7) 

Qf = HllBIS r /2
, (6.8) 

llB = ~ (N -~) iI {(2w~)2 - (Pa + 1)2} 
2 2 a=1 

+ ~ (N + 21) iI {(2w~)2 - (Pa 1)2}, (6.9) 
2 a=1 

Xf =xt[NJJ5(2w~)2 -p!}/llB f/2, (6.10) 

XB=![_l_ Il2 
{(2w,)2_(p +1)2}]1I2(QB)_I. 

o 4 2N 1 a a 2 + a=1 

(6.11) 

Index A in the above expressions is referred to the SP (2N) 
and SO(2N) cases and index B to the SO(2N + 1) case. In 
formula (6.3) we let ())il = ())~2, P/3 = P2 if a = ± 1, and 

,2 _,2 - l'f - + 2 ())/3 - ())I 'P/3 - PI a - _ . 
The above expressions should be substituted into (4. 5b) 

and (4.5c) orinto (4.5b)-(4.5d) for the SO(2N + 1) case. 
Also if (3.2a)-(3.2d) and (4.Sa) will be added, then we 
obtain all elements of the t/> ( U) matrix. 

'D. P. Zhelobenko, "Klassiceskije grupy. Spektralnyj analiz konecnomier­
nyh predstavlenij," U.M.N. XVII, No.1, 21 (1962). 

2V. Amarin, U. Dozzio, and C. Oleari, "Proof an algorithm ofthe brunch­
ing multiplicity SO(2N).-oSO(2N)XU(l)," I. Math. Phys. 25, 2140 
(1984). 

3 A. M. Bincer, "Missing label operators in the reduction 
Sp(2N)'.,.SP(2N - 2)xSP(2)," J. Math. Phys. 21, 61 (1980). 

4A. M. Bincer, "Missing label operators in the reduction 
O(p) ",-O(p - 2) XO(2)," J. Math, Phys. 24, 1695 (1983). 

sJ. R. Derome and W. T. Sharp, "Racach algebra for an arbitrary group," I. 
Math. Phys. 6, 1584 (1965). 

6J. R. Derome, "Symmetry properties of the 3j-symbols for an arbitrary 
group," I. Math. Phys. 1, 612 (1966). 

7B. Wyboune, Symmetry Principles and Atomic Spectroscopy (Wiley-Inter­
science, New York, 1910). 

sA. O. Barut and R. Raczka, Theory of Group Representations and Applica­
tions (Polish Scientific, Warsaw, 1911). 

Marcin Cerkaski 617 



                                                                                                                                    

SU(2) and SU(1, 1) time-ordering theorems and Bloch-type equations 
G. Dattoli and A. Torrea) 

ENEA, Dip. TIB-Divisione Fisica Applicata, C. R. E. Frascati, C. P. 65-00044 Frascati, Rome, Italy 

(Received 14 April 1986; accepted for publication 24 September 1986) 

Algebraic time-ordering techniques for SU (2) and SU ( 1,1) coherence preserving 
Hamiltonians are reviewed. The link with Bloch-type equations is pointed out and the 
extension of the method to higher groups is briefly discussed. 

I. INTRODUCTION 

The search for methods that allow the analytical treat­
ment of many problems in quantum optics is under active 
consideration. In fact, the numerical analysis of the dynami­
cal behavior of a quantum system undergoing a strong and 
time-dependent interaction may be expensive and it could 
miss, in some cases, the essential features of the problem. 
Analytical methods, whenever possible, can therefore offer a 
more appropriate solution, providing also a deeper under­
standing of the physics problem under study. 

We recall that exact solutions have indicated their pow­
erfulness by elucidating, e.g., the dynamic of three-level 
atoms 1 or by providing a more clear understanding of the 
physical features of two-level atoms interacting with sym­
metric pulses.2 These are just two examples that have effec­
tively shown how a clever mathematical formulation of a 
physics problem has been a precious tool to indicate new and 
previously unsuspected features and to prove the underlying 
connection to other seemingly unrelated fields. 

The usefulness of rigorous algebraic methods applied to 
the time-ordering problems has been emphasized by the 
present authors in a number of recently published papers. 3-6 

In particular, it has been shown that the analytical expres­
sion of the evolution operator can be obtained for Hamilto­
nians written as time-dependent linear combination of the 
generators of the SU(2) (Ref. 3) and SU(1,l) (Ref. 4) 
groups. 

Furthermore, the method has been applied to more 
complicated time-dependent Hamiltonians involving the 
SU(1,l) and Weyl-Heisenberg groups5 and later SU(3) 
(Ref. 6). 

The keynote of the above papers has been the redisco­
very, and the suitable rehandling, of the Wei-Norman alge­
braic method. 7 

It is, however, well known that the dynamic of a quan­
tum system ruled by a SU(2) or SU(1,l) Hamiltonian can 
be treated using, in the Heisenberg picture, a set of equations 
known as the torque Bloch equations. 8

,9 A natural question 
can be therefore the following: "Is it possible to recover a 
Bloch-type dynamic from the characteristic equations of the 
SU (2) and SU ( 1,1) time-ordering procedure?" 

In this paper we show that this is possible and we dwell 
on this aspect of the problem because it may allow a general­
ization of the ordering theorems, e.g., the SU (n) case, in a 
rather straightforward way. We will finally add some com-

a) ENEA guest. 

ments on the possibility of getting a "global" exact solution 
for the problem of SU (2) and SU ( 1,1) dynamics. By global 
exact solution we mean the analytical expression of the evo­
lution operator and a closed form of the wave functions de­
scribing the time behavior of SU (2) and SU ( 1,1) states. 

The paper consists of three sections. In Sec. II we show 
how Bloch-type equations can be derived from the charac­
teristic equations of the time-ordering procedure. In Sec. III 
we indicate under what conditions a full analytical expres­
sion of the evolution operator can be obtained and we also 
calculate the most general form of the wave functions for 
both SU (2) and SU ( 1,1 ) states. Finally in the Appendix we 
show how the characteristic functions of the ordering proce­
dure are linked to the average values of the SU (2) and 
SU ( 1,1) generators. 

II. TIME ORDERING AND LINK WITH THE BLOCH· TYPE 
DYNAMICS 

In Refs. 3 and 4 we have shown that the evolution opera­
tor for a quantum system driven by a Hamiltonian of the 
type 

n(t) = {();t)po + n*(t)F + - n(t)F _ (Ii = 1), 

(2.1) 

can be written as follows: 

U(t,to) =exp{[h(t) - ~ f {()(r)dr]Fo}. 

Xexp {g(t)F +} exp{/(t)F -}/. (2.2) 

The operators F obey the following rules of commutation: 
"" A A"""" ........ 

[Fo.F ± ] = ± 2F ± ' [F +,F _] = - tJFo, (2.3) 

and can be identified with the SU (2) or SU ( 1,1) generators 
according to whether tJ = ± 1 (see Ref. 10 forfurther com­
ments). The functions (() (t) and !l ( t) are nonsingular func­
tions of time, real and complex, respectively. Furthermore, 
the{()(t), n(t), n* (t), and h, g,j functions are linked by the 
system of differential equations 

h(t) = tJg(t)i(t) , 

g(t) = - in*(t)exp { - 2h(t) + i f {()(r)dr} 

_ h(t)g(t), (2.4) 

iU) =inU)exP{2h(t) -i L {()(r)dr} 

(h(to) =g(to) =/(to) =0). 
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It is well known that the above system can be solved once a 
single Riccati equation for h can be solved.7 It is more con­
venient, for the present purposes, to introduce the new func­
tions 

-h* . JiY'* = e ,JiY'*(to) = 1, JiY'*(to) = 0, 

:7 =/e- h
, :7(to) = 0, Y(to) = iOUo), 

(2.5) 

which, as immediately verified from (2.4), obey the follow­
ing second-order differential equations: 

j}P* + [( - 0*/0*) - iw]K* + 8101 2K* = 0, 

!7 + [( - 0/0) + iw]Y + 81012:7 = O. (2.6) 

Equations (2.6) have a very familiar form, for 8 = 1 they 
reproduce indeed the well-known equations for the two-level 
atom amplitude probabilities,8 while the 8 = - 1 case is en­
countered in the analysis of two photon processes.9 We can 
cast the motion equations of :7 and K* in the form of a 
Bloch-type torque equation by embedding these functions as 
follows: 

W = 1:712 - o1K12, 

U = y8[:7 K + :7*JiY'*], 

V= -iY8[:7K-:7*K*]. 

(2.7) 

Identifying (U, V, W) as the components of a vector ..,{( 6' we 
find 

..A6 = 06XJ(6' 

where 

0 6 == [283/2 Re 0,283
/
2 1m O,w] 

(2.8) 

(2.9) 

(where Re 0 and 1m 0 are, respectively, the real and imagi­
nary part of 0). A particularly interesting consequence is 
the following law of conservation: 

1:712 + 81KI2 = 8. (2.10) 

The physical meaning of the vector ..,{( 6 is clarified in the 
Appendix, where it is shown that 

A A A 

Wa: - (Fo> , U a: - «F +) - (F _) ), 

(2.11) 

A few comments are now in order. When 8 = 1, Eqs. (2.8) 
are the ordinary Bloch equations and describe a rotation in 
Euclidean space. When 8 = - 1, Eqs. (2.8) can be identi­
fied as the SU ( 1,1) Bloch equations introduced in Ref. 9 and 
can be understood as the rotation of the pseudovector J( _ J 

in a Lobatchevsky space. [To be more precise when 
8 = - 1, the motion equations are relevant to be an 0 (2,1 ) 
space structure.] Furthermore, the relation (2.10) states the 
conservation of the "norm" of the vector ..,{( 6' [It can be 
easily proved that the norm of J( 6 is linked to the average 
value of the Casimir invariants of both SU(2) and SUe 1,1) 
groups.] 

Let us now briefly discuss the relevance of the above 
results to derive time-ordering relations for higher-order 
groups. It has been shown that Bloch-type equations can be 
written for the SU (n) case too, under the form of a torque 
equation in a (n 2 

- 1 )-dimensional space. J It has also been 
proved that an ordering procedure of the type discussed in 
the paper can be exploited for the SU(3) group too.6 We 
make therefore the following conjecture: a one to one corre-

619 J. Math. Phys., Vol. 28, No.3, March 1987 

spondence may be found between the generalized Bloch vec­
tor components and a suitable combination of the:7 and K 
functions, entering the ordered form of the evolution opera­
tor for a SU(n) coherence preserving Hamiltonian. As a 
consequence, the' SU (n) K and :7 functions can be cast in 
the form of a torque equation in a (n2 

- 1 )-dimensional 
space. We have an indication that the conjecture is true for 
the SU ( 3) case. If proved true, in general the hypothesized 
correspondence may be a powerful tool in solving quite 
straightforwardly the time-ordering problems, or in general 
the disentangling problem, for the Hamiltonians linear com­
binations of SU (n) operators. 

III. EXACT SOLUTIONS 

We have already mentioned the possibility of obtaining 
what we have called a global exact solution for the problem 
under study. 

To this aim we should specify: (a) under what condi­
tions can Eqs. (2.6) be solved exactly, and (b) what is the 
form of the wave function of quantum states ruled by the 
Hamiltonian (2.1)? 

In view of the fact that the Eqs. (2.6) are similar to those 
encountered in studying two-level systems, we can clarify 
the first point by generalizing the technique developed by 
Bambini and Berman.2 The method consists in mapping 
Eqs. (2.6) onto the hypergeometric equation (i.e., 
Z(1 - Z)y" + [y - (a + /3 + 1)Z]y' - a/3y = 0), by 
means of a change of variables Z = Z (t). Thus getting [e.g., 
for the second ofEqs. (2.6)] 

:7" + d Idt In(Z Is? - i(fp - w) :7' + ~S2 :7 = o. 
Z Z2 

(3.1 ) 

(We assume a "chirped" pulse 0 = sei,p(t) and the prime 
means derivative with respect to z.) 

To map (2.1) onto the hypergeometric equation we 
must require that when t ranges from - 00 to + 00 the new 
variable Z ranges from 0 to 1, and furthermore 

8~ a/3 
Z 2 = - Z(1 - Z) , 

Z=Z(1-Z)[iw-ifp]l[y-!- (a+/3)Z] , (3.2) 

where a, /3, and yare the characteristic parameters of the 
hypergeometric equation. 

Since we are free to fix both the form of the frequency 
and of the chirping, we impose (see also Ref. 11) 

Z=Z(1-Z), 

i(w - fp) = y-! - (a +/3)z. 

Because w and tP are real functions we must impose 

y = i,u +!, a = U, /3 = i1J, 

which amounts to 

w-fp=,u-(A +1J)Z. 

(3.3) 

(3.4 ) 

(3.5) 

The quantity ~ IZ 2 is positive, therefore using the first equa­
tion of (3.2) and (3.4) two conditions follow: if 8 = - 1 
thenA1J <0 and if8 = 1 thenA1J >0. In both cases, however, 
from (3.2) and (3.3) we obtain 
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Z=asech2tI2, s= IA7711/2sech(t12), 

w -;p =/-l- (A + 77) [e'/(1 + e')] . 

Finally the solution of (3.1) can be written as 

Y /j = A 2FI [iA,i/-l,! + i/-l,et 1 (1 + et) ] 

+ B ret 1(1 + e')] (1/2 - ilL) 2FI riCA -/-l) 

(3.6) 

+V(77-/-l) + q-ij.t,etl(l +et)], (3.7) 

where A and B are constants and 2FJ ( • ) is the hypergeome­
tric function. Note that a similar solution can also be ob­
tained for K*. What is interesting in the above results is that 
the sech-type pulse and its generalization allow exact solu­
tions even for the SU ( 1,1) case. 

We now treat statement (b) and the main problem will 
be the search for a closed expression for the matrix elements 
of the evolution operator. 

We discuss separately the SU (2) and SU ( 1,1) cases. 
(a) SU(2): The wave function describing the evolution 

of states driven by a Hamiltonian of the type (2.1), where 
the P have been identified as the generators of the SU(2) 

A A A A A 

group (Fo = U 3, F + = J+, F _ = -J _), can be expressed 
as a linear superposition of angular momentum states 

J 

1'l1(t»= I Cm(t)IJ,m). (3.8) 
m= ~J 

The form of the time-dependent coefficients Cm depends on 
both the wave function initial values and on the "scattering 
matrix" S(t,to) through the relation 

J 

Cm (t) = I Sm.n (t,tO)Cm (to), (3.9) 
m~ -J 

A straightforward but tedious application of the angular mo­
mentum operators properties, yields for Sm.n the following 
expression (to = 0): 

Sm.n (t) = [C:::)(~ =::) fl2 exp{ - in L w( r)dr} 

XK- (n+m)[sgn(n _ m)IY!r> -n< 

Xexp{ix(n - m)hFJ[ -J - n<, 

J - n< + l;n> - n< + 1,IYI2
] 

[X = arg(Y), n> = max(m,n), n< = min(m,n)] . 
(3.11 ) 

Therefore once K and Yare analytically known the 
problem is completely solved. 

(b) SU ( 1,1): In this case the procedure is ~lmost simi­
lar to the previously described one. Once the F generators 
are recognized as those of the SU (1,1) group (Po = 2Ko, .......... A A. A 

F + = K +, F _ = - K _ ), the wave function describing the 
evolution of the quantum system ruled by the Hamiltonian 
( 2.1) can be expanded as 

00 

1'l1(t» = I Cn(t)ln,k), (3.12 ) 
n~O 

A 

whe.£e the states In,k ) diagonalize the compact gen~ator Ko 
as Koln,k)=(n+k)ln,k) and furthermore, K+ln,k) 
= [en + l)(n + 2k)]I/2In + l,k), K_ln,k) = [n(n 
+ 2k - 1)] 1/21n - l,k). Finally, k is the Bergman index 

specifying the eigenvalue of the Casimir invariant. 10 
The explicit form of the coefficients Cm (t) depends on 

the matrix element 
A 

Sm.n (t,to) = (n,k I U(t,to) Im,k ), (3.13 ) and the matrix elements Sm.n (t,to) are given by 

Sm.n (t,to) = (J,n I U(t,to) IJ,m). (3.10) which for to = 0 reads 
I 

Sm.n (t) = [c: )c: : ~~ = :) f12 exp{ - i(n + k) L w(t)dt } 

XK-(n+m+2k)[sgn(n - m)IY!r> -n< exp{ix(n - m)} 

X 2F1( - n<, - n< - 2k + l;n> - n< + 1; -IYI2
). (3.14) 

This last relation completes our short analysis of the exact 
solutions for SU (2) and SU ( 1,1) problems. 

Let us now summarize the results of the present paper. 
( 1) We have cast the characteristic equations of SU (2) 

and SUe 1,1) time-ordering in a Bloch-type form. 
(2) We have indicated the conditions under which the 

evolution operator can be calculated analytically. 
(3) We have written the expression of the "scattering 

matrix" for both SU(2) and SUe 1,1) state dynamics. 
Similar considerations relevant to the SU (3) group will be 
published elsewhere. 6 
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APPENDIX: EXPECTATION VALUES 

In this appendix we sketch the derivation of Eqs. (2.11). 
The evolution operator in the interaction picture takes the 
form 

Uint = exp{2hPo} exp{ g(t)P +} exp{!(t)P _}!, (AI) 

and the functions, h,J, andg are defined ~ the system (2.4). 
The average value of the operators Po, F +, and P _ can be 
evaluated by means of the dot product 

A r....... A 

(IU i;;t Fo. ± U1nt I), (A2) 

where ( I denotes the initial state assumed for sake of simpli­
city to be an eigenstate of the operator Po. 

The explicit expression of the evolution operator in the 
adopted representation and the commutation rules relevant 
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to the algebra involved provide us with the following rela­
tions between the components of the vector vii' /j and the 

A 

average values of the F generators: 
A A 

(Fo(t» = (1- ~fg)(Fo(O», 

(F+(t» = -l5fe- 2h (Fo(O», (A3) 

(F _ (t» = I5ge2h (1 -l5fg) (Fo(O», 
A A 

(Fo (0) ) denoting the initial average value of the operator Fo. 
By introducing the function 

f1 =geh
, (A4) 

which by means ofEqs. (2.4) can be immediately recognized 
as the conjugate of the Y one, defined by Eq. (2.5): 
f1 = Y*, we can recast the above relations as 

A A 

(Fo(t» = -I5W(Fo(O», 
A A A 

(F+) + (F_) = -iy'V(Fo(O», (AS) 
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A A A 

(F+) - (F_) = - y'I5U(Fo(O», 

and thus the relation (2.11) is proved. 
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The algebraic dynamics of systems with long-range (instantaneous) interactions requires an 
enlargement of the (quasi) local algebra which, in most relevant cases, includes variables at 
infinity that enter in an essential way in the time evolution of local variables. The mathematical 
structures emerging for the treatment oflong-range dynamics are investigated also in 
connection with spontaneous symmetry breaking. 

I. INTRODUCTION 

The algebraic treatment of quantum dynamical systems 
with short-range or local interactions has been the subject of 
many investigations and basic structures, like time evolution 
oflocal field algebras, the definition of symmetries, and their 
spontaneous breaking, have been clarified also in connection 
with the thermodynamical limit. I 

The situation is less under control in the case of long­
range interactions and in general when the finite volume dy­
namics a~ does not converge in norm, as V .... 00. The case in 
which a~ converges weakly and suitable conditions are sat­
isfied in a given representation of the field algebra has been 
discussed in literature. 2 The emphasis is on the conditions of 
a certain (uniform) convergence of the correlation functions 
and the algebraic structure is somewhat lost. A general alge­
braic framework based on a family of physical states and the 
associated weak topology has been suggested and discussed 
later by Sewell.3 From the point of view of the resulting gen­
eral mathematical structure our Sec. II can be regarded as a 
development of a number of problems which are behind 
Sewell's structure. In particular, the relation between the 
algebraic dynamics and the symmetries of the finite volume 
(or infrared cutoff) dynamics has not been discussed in the 
previous approaches. 2,3 Also the role played by the algebra 
of essential localization and its connection with the enlarge­
ment of the family of relevant states (see Sec. VI) has not 
been discussed in the previous approaches.2

,3 These ques­
tions are the main motivation for this paper also in connec­
tion with the phenomenon of symmetry breaking without 
Goldstone's modes. (A short account of the basic structures 
which characterize long-range dynamics with emphasis on 
the phenomenon of energy gap generation has been given in 
Ref. 4. Here the attention is on the mathematical aspects. ) 

The result of our analysis is that the algebraic dynamics 
of systems with long-range (instantaneous) interactions re­
quires an enlargement o/the (quasi) local algebra by includ­
ing limits with respect to a weak topology defined by a family 
of "relevant" states. 

The nontrivial structure of such family, especially in the 
presence of symmetries, gives rise to an algebra with a nontri­
vial center, which enters in an essential way in the dynamics. 

II. TIME EVOLUTION WITH LONG-RANGE 
INSTANTANEOUS INTERACTIONS 

In this section we discuss a general algebraic framework 
for describing systems with long-range instantaneous inter-

actions. The basic problem is to describe dynamical variables 
as elements of a suitable algebra f!JJ and states as positive 
linear functionals on such an algebra, in such a way that the 
time evolution is described by an automorphism group of f!JJ • 
From a constructive point of view, one starts with a net of 
Von Neumann algebras d v associated to the finite volumes 
V. Space translations ax are generally defined as automor­
phisms of the "local algebra" 

do=U d v · 
v 

The dynamics is defined in terms of finite volume dynamics 
a~ which act as one-parameter groups of automorphisms of 
do, or more generally of its norm closure d. Typically a t

v 
are generated by finite volume Hamiltonians H v affiliated to 
do; more generally a~ may describe the dynamics corre­
sponding to an interaction with an infrared cutoff V. Even­
tually, one has to take the limit V .... 00. 

For interactions with finite propagation speed, for any 
AEd 0' a~ (A) becomes independent of V, for V large 
enough, and it defines the time evolution at as an automor­
phism of do. More generally, for interactions with suffi­
ciently short range, a~ (A) converges in norm4 to an auto­
morphism group of d. For spin systems with two-body 
interaction, the potential must decay faster than 1 x 1-3 (Ref. 
5). 

In the case of long-range (instantaneous) interactions, in 
particular for spin systems with potentials decaying slower 
than Ixl- 3

, the finite volume dynamics a~ do not converge 
in norm and a weaker topology is needed. Physical consider­
ations would suggest that the expectation values of a t

v (A ) 

converge. The convergence for any state over the algebra d 
coincides with the weak convergence with respect to the dual 
d', and it defines at(A) as an element of d", the universal 
Von Neumann algebra of d. In all interesting cases, how­
ever, the time evolution for large V involves strongly delo­
calized variables, the expectation values of which converge 
only if the states are sufficiently regular at infinity. A de­
tailed discussion of (physically relevant) models which ex­
hibit such phenomena is deferred to subsequent papers. 
Typical examples are the BCS model,6,7 the Kibble modeV 
and a large class of mean field spin models.6 

As a matter offact, both for gauge theories and for many 
body nonrelativistic systems, simple physical considerations 
indicate that the definition of the algebra itself (of dynamical 
variables) makes implicit reference to a class of states. In 
both cases it is therefore natural to associate to a system an 
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algebra of dynamical variables and a class of states F, which 
are at the basis of the physical interpretation of such an alge­
bra. In this perspective, it is natural to require that a~ con­
verges weakly with respect to the above class of states. To 
make the above frame~ork more precise we consider a fam­
ily F of continuous linear functionals over d with the fol­
lowing properties: ( 1 ) Fis closed under linear combinations; 
(2) Fis norm closed and separating, i.e., t/J(A) = 0, Vt/JEF, 
implies A = 0; and (3) F is "stable under local operations" 
in the sense that ift/JEF, alsot/JAB (.) =t/J(A 'B), withA,BEd, 
belongs toF. The positive partF + of Fis thus a full folium as 
in Ref. 8. These states can be taken to be normal states when 
restricted to the Von Neumann algebras d y. We denote by 
'T F the weak topology defined by F on d" , the universal Von 
Neumann algebra of d; in particular 'TF is a weak topology 
fordCd". 

The resulting structure is characterized by the following 
propositions. 

Proposition 2.1: Let Fbe a family oflinear functionals on 
A with properties (1), (2), (3). Then there exists a central 
projector E of the universal Von Neumann algebra d" such 
that the elements t/J of F are characterized as 

t/J(.) = t/J(E'), t/JEd'. 
The closure 1 of d, with respect to the weak topology 
defined on d" by F, is a Von Neumann algebra isomorphic 
to the subalgebra Ed" Cd". The weak topology 'T F de­
fined by F on 1, coincides with the ultraweak topology 
defined on 1 by the subspace fft" F = E fft", fft" being the 
space of the universal representation of d. It also coincides 
with the weak topology defined on 1 by F + . As an abstract 
Von Neumann algebra 1 is characterized as the dual of the 
Banach space F and a linear functional on 1 belongs to F iff 
it is 'T F continuous. 

The elements of F are also characterized as the linear 
functionals of d' which are'TF continuous on d. 

Proposition 2.2: The limit limv_oo a~(A) exists in 1 
for any AEd, in the 'TF topology and it is 'TF continuous on 
d iff the lim v- 00 a~ t/J exists for any t/JEF, in the weak * 
topology induced by don d', and it belongs to F. 

Under the above conditions the mapping defined on d 
by 

a' = 'T F - lim a~ (2.1 ) 
V-oo 

has a unique 'Trcontinuous extension from d to 1, which 
preserves the sums, the multiplication by scalars, and the * 
operation. The extension is obtained by taking the transpose 
ofthe mapping t/J--+t/J'=limy a~ t/J. 

Proposition 2.3: The mapping a' defined by Eq. (2.1) is a 
morphism of 1 iff a~ converges on d in the ultrastrong 
topology defined by F on 1. 

Any of the following conditions guarantee that a' satis­
fies the properties of Proposition 2.2 and that it is a group of 
automorphisms of 1: (i) a~ converges ultrastrongly on d 
and weakly on 1, (ii) a~ converges in the norm topology 
on F, and (iii) there exists a C * subalgebra !!lJ of 1, !!lJ :::> d, 
such that for any BE!!lJ , the weak limit of a~ (B) exists uni­
formly on the compact sets ofF, defined by the weak * topol­
ogy induced by !!lJ on F, and it is weakly continuous. 

Proposition 2.4: Given a~ and d as above, the set of 
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families of linear functionals Fa with properties (1), (2), 
(3) of Proposition 2.1 and (4) for all tER the weak * limit of 
a~ exists on Fa uniformly on the compact sets of Fa' defined 
by (the topology induced on Fa by) the weak closure of d 
with respect to Fa' maps Fa into itself and satisfies the group 
law in t, has one and only one maximal F max' which contains 
all the families Fa. 

Condition (4) is equivalent to the convergence of 
a~ (A ), AEd, in the ultrastrong topology defined by Fa' to a 

-F 
group of automorphisms of d a (see Ref. 9, Theorem 5.7 
and Proposition 2.3 above). 

Propositions 2.1,2.2, and 2.3 show that, under very gen­
eral conditions, it is indeed possible to define an algebraic 
dynamics also in the presence of long-range interactions. 
The resulting picture is that, in this general case, the algebra 
of dynamical variables must be enlarged to include variables 
which are not localized. The relevant mathematical feature 
is that in the presence of long-range instantaneous interac­
tions the algebraic dynamics is defined on an algebra with a 
nontrivial center. This reflects the fact that the time evolu­
tion of initially localized variables involves infinitely deloca­
lized variables, which commute with d. Since do is dense in 
1, the center Z of 1 coincides with 1 n ( n v d ~ ) in fft" F 

and in this sense it consists of variables at infinity. 
Proof of Proposition 2.1.' The first statement is essentially 

Theorem 2.7, (iii), (Chap. III of Ref. 9) applied to the Von 
Neumann algebra d" and to its predual d'. 

To see that 1 is isomorphic to E d", we note that d 
with the 'T F topology is isomorphic to the subalgebra 
E dCd"; in fact the mapping A--+EA, AEd, preserves 
sums, products, * operation, and seminorms (V t/J E F, t/J(A) 
= t/J(EA») so that it is an injection since F separates points, 

and clearly it is surjective. Now if {Aa} is a 'T F convergent 
net of elements of d there will exist an elementAEd" (not 
necessarily unique since in general 'T F does not separate the 
points of d") such that V t/JEF 

t/J(Aa) --+t/J(A). 

By the characteristic property of F, 

t/J(Aa)--+t/J(A), Vt/JEF, 

iff 

Hence the 'T F closure of d can be identified with Ed" . 
By Theorem 2.4, Chap. III, of Ref. 9, the weak topology 

'TF defined by FonE d";:::;;1 coincides with the ultraweak 
topology defined on Ed" by fft" F = E fft", fft" being the 
universal representation of d. 

The dual ofthe Banach spaceFis contained in d" since 
any continuous linear functional on F can be extended to the 
whole d' by the Hahn-Banach theorem, because F is a lin­
ear closed subspace of d'. On the other hand, d" and 1 
coincide on Fsince t/J(A) = t/J(EA), V AEd", so that 1 is 
the dual of the Banach space F. 

By Theorem 4.2, Chap. III of Ref. 9, every t/JEF is a 
complex linear combination of elements of F + so that 
'TF + = 'TF • 

To prove the last statement of Proposition 2.1, we note 
that by definition of'T F the elements of Fare 'T F continuous. 
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Conversely, if t/Je.!lf' and it is 'TF continuous on .!If, we con­
w 

sider a net {Aa, Aae.!lf}, such that. given Be .!If. Aa ..... (1 

- E)Be.!lf". ThenAa ..... 0 in the'TF topology, since V X eF, 
w 

X(Aa) = X(EAa ) ..... X(E( 1 - E)B) = X(O) = 0, and there-

fore t/J(Aa) ..... O since t/J is 'TF continuous. Furthermore, as 
functionals of .!If'. t/J(Aa ) ..... t/J((1-E)B), so that 
t/J((1-E)B)=O,Le.,t/J(·) =t/J(E·). 

Proof of Proposition 2.2: If limv_ oo ar exists for any 
t/J e F in the weak • topology induced by .!If on .!If' and it 
belongs to F. then given any fixed element A e .!If 

t/J(a~(A») = (ar t/J)(A) ..... t/Jt(A), 
V-oo 

and since 

W(A)I<IIt/JIlIIA II 

[asaconsequenceoflt/J(a~(A))I<IIt/JIlIIA II]. t/Jt(A) defines 
a continuous linear functional on F. i.e.. an element 
at(A) eJt. Hence limv_ oo a~(A) exists in Jt in the 'TF 
topology. 

To see that at (A) is'TF continuous in A. A e .!If we note 
that t/J(at(A») = t/Jt(A) with t/J' e F and then Aa ..... A in.!lf 
implies at(Aa) ..... at(A) in the 'TF topology. 

Conversely, if limv_ oo a~(A) exists in Jt for any 
A E .!If in the 'T F topology and it is 'T F continuous on .!If, then 
V t/J E F. lim v_ 00 (ar t/J) =t/Jt exists in .!If' in the topology 
induced by .!If on .!If' (weak • topology) since .!If' is com­
plete with respect to the weak • topology (the dual of a Ban­
ach space is weakly complete). 

Now by assumption at is 'T F continuous, so that V t/J E F. 
t/J' is 'T F continuous on .!If and therefore by Proposition 2.1 
t/JtEF. 

To prove the last statement of Proposition 2.2 we note 
that .!If is 'T F dense in Jt and at is 'T F continuous on .!If so that 
there is a unique 'TF continuous extension of at from .!If to 
Jt: in fact 

implies 

t/J(at(Aa») = t/Jt(Aa) ..... t/Jt(A) =t/J(at(A»). 

which defines at(A) as a continuous linear functional on F, 
Le., an element of Jt (by Proposition 2.1). Since V t/J E F. 
t/Jt E F. at is 'T F continuous on Jt. The extended mapping at 
preserves the sums, the multiplication by scalars, and the • 
operation because these operations are 'T F continuous. 

Proof of Proposition 2.3: We start by proving the first 
statement. If a~ converges on .!If in the ultrastrong topology 
defined by F on Jt then, since the product is ultrastrongly 
continuous (Ref. 10. Chap. I, §3). 

a'(AB) = lima~(AB) = lima~(A)a~(B) 
v v 

By the 'T F continuity of the extension of at from .!If to Jt and 
the weak continuity of the product in each factor. separately. 
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the above equation extends to any A,B E Jt: ifAa ..... A E Jt, 
Ba ..... B E Jt, Aa, Ba E .!If. then 

at(A )at(B) = lim at(Aa )at(B) 
a 

= lim lim at(Aa )at(Bp) 
a p 

= lim a'(Aa B) = at(AB). 
a 

Thus at is a morphism of Jt. Conversely, if at is a morphism 
of Jt. at(A ·A) = (at(A»)· at(A) and therefore. for each 
t/J E !J't" F we have 

lIa~(A)t/J1I2 = (t/J.aHA ·)a~(A)t/J) 

= (t/J,a~(A ·A)t/J) ..... (t/J.at(A ·A)t/J) 

= (t/J.at(A ·)at(A)t/J) = Ilat(A)t/J1I2. 

On the other hand, a~ (A) t/J is a weakly convergent sequence 
of vectors and the convergence of the norms implies strong 
convergence. Since lIa~(A)11 = IIA II. the strong conver­
gence in !J't" F coincides with the ultrastrong convergence of 
a~(A) (Ref. 10. Chap. I, §3). 

We now prove that condition (i) implies that a~ satis­
fies the conditions of Proposition 2.2 and that at defined by 
Eq. (2.1) is a group ofautomorphisms of Jt. Sincea~ con­
verges weakly on Jt, V t/J E F. ar t/J is a weakly convergent 
sequence in the predual of Jt and therefore by Corollary 5.2, 
Chap. III of Ref. 9, ar converges to an element at E F; thus 
the conditions of Proposition 2.2 are satisfied. The ultra­
strong convergence of a~ on .!If together with the weak con­
tinuity of at on Jt implies that at is a morphism of Jt. To 
prove the group law we note that a convergent sequence 
together with its limit defines a compact set with respect to 
the topology by which it converges, and therefore the weak 
convergence of a~ on Jt implies that the sequence {ar t/J} 
together with at' t/J defines a compact set of Fwith respect to 
weak • topology induced by Jt on F. 

Now. V A E .!If, V t/J E F 

t/J(ataS(A») = lim lim t/J(a~, a~ (A») 
v V' 

= lim lim (ar· t/J)(aHA»), 
v V' 

and since a~ (A) is ultrastrongly convergent. the limit is uni­
form on the compact set of F with respect to the weak • 
topology induced by on F, so that the above limit as V ..... 00 is 
uniform in V' and therefore it is equal to 

lim (ar t/J )(a~ (A») = lim t/J(a~ a~ (A») 
v v 

= lim t/J(a~+ S(A») = t/J{a' + S(A»). 
v 

Hence, since F separates points of Jt. a'as = a t+ s on d. 
Furthermore. atas and at + S are both defined and 'T F contin­
uous on Jt (Proposition 2.2). and since they coincide on the 
'T F dense subalgebra .!If they coincide everywhere on Jt. 
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We now prove that condition (ii) guarantees that at is a 
group of automorphisms of 1. The properties of Proposi­
tion 2.2 are satisfied since the norm convergence of a~ im­
plies that the limit belongs to F. We now show that 
ata' at + s. In fact 

Ilat*as*t,6 - at + s*t,611 

II (at - a~)*as*t,6 + a~(aS - aj..)*t,6 

+ a~ a~ t,6 - a t+ s*t,611 <II (at - a~)*as*t,611 

+ lIa~(aS -aS
v )*t,611 + II (atv+s* _at +s*)t,611 

= lI(at-a~)*as*t,611 

+ II (as - aj..)*tPli + lI(a~+s a t+S)*t,6I1, 

and the right-hand side converges to zero as V -+ 00, by as­
sumption. 

We now have to show that at(AB) =at(A)at(B). In 
fact, 

VA,BEst', 

t,6(a'(A)B) = lim t,6(a~(A)B) 
v 

= lim (a~ tP)(A av-t(B») 
v 

= lim [( - a',p* + a~ t,6)(A av '(B») 
v 

+ (a'*t,6)(A av-'(B»)). 

On the other hand, II (a~ - a'*)t,611-0as V -+ 00 byassump­
tion and since A av-t(B) is a bounded sequence 
(IIA a v t(B)II<IIA 1IIIaV-t(B)11 = IIA II liB II), the first term 
in square brackets goes to zero as V -+ 00 and we get 

tP(at(A)B) = tP(at(A a - t(B»). 

The above equation extends to the case B E 1 by weak con­
tinuity, and therefore by taking B = at (C), C E 1, and us­
ing the group law, we get 

at(A)at(C) = at(AC). 

The extension to A E 1 follows from 1" F continuity. 
Convergence on d in the ultrastrong topology defined 

by F amounts to convergence of t,6(a~ (A) ), A E d uniformly 
for t,6 in any subset of F compact with respect to the weak 
topology u(F,1) defined by 1 on F (Theorem 5.7, Chap. 
III of Ref. 9). By condition (iii), the limit is uniform on 
compact sets of Fin the u(F,!%J) topology, with!%J c 1. It 
is therefore enough to show that every compact set with re­
spect to the u(F,1) topology is also u(F,!%J ) compact, i.e., 
that if any u(F,1) open covering of a set K has a finite 
subcovering, then the same occurs also for any u(F,!%J ) open 
covering of F. This follows because 1 :J !%J implies that 
u(F,vII) is finer than u(F,!%J) and therefore an open set with 
respect to u(F,!%J) is also u(F,JI) open; therefore a 
u(F,!%J) open covering is also a u(F,JI) open covering. 

To prove the group law as for condition (i) we show that 
V A E d, limy tP(a~. aj..(A») is uniform with respect to V'. 
In fact at;. together with its limit t,6t define a compact set with 
respect to the topology induced by !%J on F, since by assump-
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tion a~ (B) converges V B E !%J. Hence V A E d 

lim tP(a~. aj.. (A») = lim (a~, tP )(aj.. (A») 
v v 

converges uniformly with respect to V'. The argument is 
essentially the same as for condition (i): since at is assumed 
to be 1"F continuous on!%J :J d, it has a unique 1"F contin­
uous extension to JI (Proposition 2.2) and 

t,6(ata' (A») = lim t,6(at aj.. (A») 
v 

= lim lim tP(a~. aj.. (A») 
v V' 

where in the last but one equality we have used the unifor­
mity of the limit with respect to V'. The extension of the 
above equation to 1 follows from weak continuity. 

Proof of Proposition 2. 4: Let us consider a totally ordered 
. chain Fa, C Fa, C ... , then there exists a majorant element 

where the bar denotes the norm closure, which satisfies 
properties (1 )-( 4). In fact Fo is obviously closed under lin­
ear combinations and multiplications by scalars are norm 
continuous, property (1) follows. In a similar way one 
proves property (3) since the operation t,6 -+ t,6 AB = t,6 (A . B) , 
A, BEd is norm continuous. Property (2) is obvious. Prop­
erty (4) for Fo is equivalent to the strong convergence of 
a~ (A ) '1', V 'I' E JY' £0' V A E d with JY' £0 the subspace of 
the space JY'V'N of the universal representation of d, de­
fined by Proposition 2.1. Now, property (4) for each Fa 

J 

implies strong convergence of a~(A)'I', V 'I' in a dense sub-
space D = U a JY' F of JY' F. (the density of D in JY' F. foI-

I aj 0 0 

lows because if t,6 = II II-lim t,6n, tPn EFan, then its repre­
sentative vector <I> in JY' F. cannot be orthogonal to all JY' F ) 

o "n 
and therefore V 'I' E JY' £0 by norm boundedness of a~ (A). 

Thus, by Zorn's Lemma, there exist (several) maximal 
elements of the form F discussed above. We now show that 
given two such elements F I , F2 there exists a G which con­
tains both and therefore there is only one maximal element. 
In fact, let us put 

G=FI +F2 

(i.e., the norm closure of elements of the form tP = t,61 + t,62' 
t,61 EF;, i 1,2). Then G:J FI , i = 1,2 and properties (1)­
( 3) hold. To show that property (4) holds let JY'I' JY' 2 be 
the subspaces of the space JY' of the universal representation 
of d, corresponding toFI andF2• Clearly the subspace JY' G 
corresponding to G contains JY'I and JY'2 and the smallest 

A 

subspace JY' containing JY'I' JY'2 represents all the states of 
the form t,61 + t,62' t,6j E Fj> i = 1,2, and therefore their norm 
limits. It follows that JY' G is the Hilbert space generated by 
JY'I and JY'z. Every vector x of JY' G can be written (in a 
nonunique way) in the form x = XI + X2, Xi E JY'j, i = 1,2, 
and therefore the strong convergence in JY'I' JY'2 implies the 
strong convergence in JY' G' 
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As stressed before, the construction of algebraic dynam­
ics makes reference to a class of "relevant states," which in 
the nonlocal case are implicitly at the basis of the definition 
of the problem, from the beginning. By Proposition 2.4 the 
class of relevant states may be taken to be maximal and in 
particular stable under the symmetries of the finite volume 
dynamics (see Sec. III). 

In conclusion, a dynamical system should in general be 
defined as a triple (J/,F, at) withJ/ a Von Neumann alge­
bra with predual F and at a one-parameter group of auto­
morphisms of J/; this structure is naturally constructed in 
terms of a quasilocal algebra .JilF, a set of relevant states F, 
and a family of finite volume (or infrared cutoff) dynamics 
a~. 

As we shall see in the following sections, the above 
framework is rich enough to allow the algebraic discussion of 
spontaneous symmetry breaking in the presence of long­
range instantaneous interactions. 

This structure can be seen as a generalization of Kadis­
on's definition of a dynamical system II; the essential differ­
ence is, however, that here at' is not required to be contin­
uous on F in the weak * topology defined by .JilF. This 
property is in fact equivalent (Ref. 11 and Sec. IV) to the 
stability of .JilF under time evolution and its failure plays a 
crucial role in the explanation of energy gap associated to 
spontaneous breaking of continuous symmetries. 

III. SYMMETRIES OF NON LOCAL ALGEBRAIC 
DYNAMICS 

For a large class of systems in quantum field theory and 
in many-body theory, one is interested in symmetries which 
commute with space-time translations, sometimes called in­
ternal symmetries. As a matter of fact it is for this class of 
symmetries that Goldstone's Theorem constrains the impli­
cations of spontaneous symmetry breaking. We are thus led 
to consider the analog of such symmetries in the case of non­
local dynamics. 

Given an automorphism a of the algebra .JilF of localized 
variables the commutativity with the space translation auto­
morphism ax 

(3.1) 

does not present problems since in general ax is a well-de­
fined automorphism of .JilF. The situation is quite different 
for time translations since, as discussed in the previous sec­
tion, in the case of nonlocal algebraic dynamics, at does not 
leave .JilF stable. To define the commutation relation 

(3.2) 

one needs an algebra stable under a and under time transla­
tions. One must therefore extend a to the algebra J/ stable 
under at. 

It is worthwhile to remark that two different topological 
structures are naturally associated to J/. As weak closure of 
.JilF with respect to the family of relevant states F, J/ is a Von 
Neumann algebra. On the other hand, regarded as a C *­
algebra, J/ identifies a set of states (the dual of J/ as C *­
algebra) which not only properly contains F, but also con­
tains states which are not identified by their values on .JilF. 
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This structure would then lead to a significant enlargement 
of the original problem (see Sec. II). It is an important fact 
that if an automorphism a of .JilF can be extended to an auto­
morphism of J/, as a C * algebra, then it is automatically 
weakly continuous. 10 Therefore the extension is completely 
defined in the structure (J/, F). 

Proposition 3.1: Given an automorphism a of .JilF, a can 
be extended to an automorphism of J/ if and only if the 
family of states F is stable under a* and (a - I) *. 

Since automorphisms of Von Neumann algebras are 
weakly continuous and .JilF is weakly dense in J/, the exten­
sion is uniquely determined by the action of a on .JilF. 

Proof Here a* is defined on the dual .JilF' of .JilF and it is 
norm preserving since a is an automorphism of .JilF. If a* 
leaves family Fstable, then (a*t;6)(A),A EJ/,definesacon­
tinuous linear functionalfA (t;6) on F, since 

If A (t;6)1 < Ila*t;6I1I1A II = 11t;6I1I1A II· 
Therefore fA (t;6) defines an element of the dual of F, i.e., an 
element of J/ 

fA (t;6) = t;6(B) =t;6(a(A»). 

This provides an extension of a from .JilF to J/, which is 
weakly continuous since the weak topology is defined by the 
elements of F and F is a* stable. Since .JilF is weakly dense in 
J/, the extended a preserves the sums, the multiplication by 
scalars, and the * operation, because these operators are 
weakly continuous. Moreover, since the product is separate­
ly weakly continuous it follows that 

a(A)a(B) = a(AB), 

't/ A E .JilF, B E J/ and therefore also for A, B E J/. Finally a 
is invertible on J/ since a-I can be extended to J/ and 
a*a- I * = 1 on F. 

Conversely, if a is an automorphism of J/, a is weakly 
continuous (see Ref. 10) and therefore t;6(a (A») defines a 
linear functionalft,6 (A) on J/ which is weakly continuous 
since a and t;6 are also. Hence this identifies an element of F, 
since the functionals ofF are the only ones which are weakly 
continuous on J/. Finally, since for A E.JilF, ft,6 (A) 
= (a*t;6)(A), and the functionals of F are determined by 
their values on .JilF, one has 

ft,6 =a*t;6, 

and a* maps F into F. The same argument applies to a - I. 

In the following, we shall always consider automor­
phisms a of .JilF with the property that a*, a- I * leave the 
family F stable, so that they can be extended to automor­
phisms of the Von Neumann algebra J/. Proposition 3.2 
below shows that this property can always be guaranteed if 
the algebraic dynamics at is defined as a weak limit of ap­
proximate (finite volume) automorphisms a~ of .JilF, which 
are a symmetric 

aa~ =a~a. (3.3 ) 

This equation holds if a~ is generated by a finite volume 
Hamiltonian H v (affiliated to some localized subalgebra 
.JilF v,), which is invariant under a: a(H v) = H v' Proposi­
tion 3.3 below shows that, in the framework discussed in Sec. 
II, property (3.3) constrains the algebraic dynamics at to be 
a symmetric 
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aat =ata, on.-l/. (3.4) 

It is important to remark that for this result the strict invar­
iance of H v is required since, in the presence of long-range 
interactions, boundary terms arising from the transforma­
tion of H v under a may give rise to persistent effects in the 
infinite volume limit. 

Proposition 3.2: If the finite volume dynamics are a sym­
metric 

aa~ =a~a, (3.5) 

and a~ defines an algebraic dynamics a' as a weak limit with 
respect to a family of states F, then a~ also defines an alge­
braic dynamics with respect to a family G ~ F, which is 
stable under a*, a- I *. 

Proof' As stated in Sec. II, given a~ there is a unique 
maximal (see Proposition 2.4) set of states F M with respect 
to which a~ defines an algebraic dynamics at. On the other 
side, by assumption (see Proposition 2.3, first part) 
V A ed, (at.;f/J) (A) converges to f/J, (A), f/Jt e F, uniformly 
on the weakly compact sets of F. Therefore 

(at.; a*f/J)(A) = (a* at.;f/J)(A) = (at.;f/J)(a(A») 

converges to f/Jt(a(A») = (a*f/Jt )(A), a*f/J, e a*F, since a is 
an automorphism of d, i.e., (at.; X)(A) converges in a*F, 
whenever X e a* F. 

Since a is invertible, a** defines an isomorphism of the 
Von Neumann algebras :;;jF and :;;ja*F and therefore a* de­
fines a one-to-one map between weakly compact sets of F 
and weakly compact sets of a* F. In conclusion (at.; X) (A) 
converges uniformly on the weakly compact sets of a* F and 
a~ defines an algebraic dynamics also with respect to a* F. 
Thus F M contains a* F M; similarly F M contains a -I * F M and 
therefore 

a*FM =FM • (3.6) 

Proposition 3.3: If the finite volume Hamiltonians H v 
are a symmetric, 

aa~ =atva, (3.7) 

the algebraic dynamics at defined by a*-stable family of 
states F is symmetric, 

a at = at a. (3.8) 

Proof: Since F is a* stable, a is weakly continuous on 
.-1/ == :;;j F (see Proposition 3.1 ). Since at is the weak limit of 
a~, for any A e d one has 

a at(A) = a w-lim a~(A) = w-lim a a~(A) 
v v 

= w-lim a~ a(A) = ata(A). 
v 

Now, both a and at are defined and weakly continuous on 
.-1/ so that by weak continuity the above equation holds on 
.-1/. 

The space translations can be treated in a similar way. 
We assume that the space translations define a group of au­
tomorphisms ax of d and that the finite volume dynamics 
a~ is covariant under space translations 

ax a~ a,,- I = a~ + x • (3.9) 
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The infinite volume dynamics a~ will turn out to be 
symmetric under space translations if the limit of a~ is inde­
pendent of the sequence of volumes VII' VII - eX), ~ithin a 
class of sequences which is stable under space translations. 
Under this assumption the family F of relevant states can be 
chosen to be stable under space translations (see Proposition 
3.2) and therefore a" has a unique extension to a group of 
automorphisms of.-l/ which commute with at (see Proposi­
tion 3.3), 

(3.10) 

An automorphism a of the C *-algebra d is said to be 
broken in the representation 11" if the representation 11" 0 a is 
not equivalent to 11". When a can be extended to.-l/, see Prop­
osition 4.1, a is broken in 11" iff it does not leave the corre­
sponding central projection B". e.-l/ stable. Equivalently a 
is broken in 11" iff a is not continuous with respect to the weak 
topology defined by the states of 11" (this follows from the last 
part of Proposition 3.1 with F + = states of 11"). 

IV. SYMMETRIES GENERATED BY "LOCAL" CHARGES 

A. Local approximation of symmetries and non local 
algebraiC dynamics 

In this section we shall consider symmetries {3 of the 
algebra d, which can be approximated by "localized" auto­
morphism {3 R of do of the form 

{3R(A)=UR AUil l
, (4.1) 

with U R unitary and belonging to do, such that 

(3(A) = lim (3R (A). (4.2) 
R_oo 

The existence of the limit on do in the weak topology de­
fined by Fis enough. Actually, by norm continuity Eq. (4.2) 
extends to d and weak convergence on do implies weak 
convergence on d and therefore ultrastrong convergence on 
d, sincepis an automorphism of d. 

For concreteness, in most examples (3 R = P on the alge­
bras localized within spheres of radius R. In this case, since 
d = normclosureofU v d V,{3R is actually norm converg­
ingon d. 

In the case of a continuous one-parameter group of sym­
metries p,\ A. e R, in most cases one may construct a local­
ized automorphismp~ approximating {3 A, by taking 

U~ = exp(iQR A.), (4.3) 

with QR = Q: affiliated to some d v (briefly affiliated to 
do). In this case one has on a norm dense set of vectors in 
K F (see Proposition 2.1 ) 

-i ~ ('I', U~A(U~)-I<I»IA=o 
= (QR 'I',A<I» - (A'I', QR <1». (4.4) 

With an abuse of notation in the following we shall write the 
rhsofEq. (4.4) as ('I',[QR'A ]<1». 

Definition 4.1: A one-parameter continuous group of 
symmetries {3A, A. eR is generated by local charges QR' 
affiliated to do, on a weakly dense algebra d r C .-1/, in the 
statef/J, if V A e dr, 
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~ ¢(p"(A»)I,,=o =i1~~ ¢([QR,A p. (4.5) 

A crucial hypothesis for the proof of the (standard) 
Goldstone Theorem about spontaneously broken symme­
tries in a given representation is the validity of Eq. (4.5) on 
the ground state for an algebra d, stable under time transla­
tions. In the standard case of strictly local dynamics, it is 
enough to havep" generated by QR on the local algebra do, 
since do is stable under time evolution. For systems with 
nonlocal algebraic dynamics it is by no means guaranteed 
that P" is generated by QR on an algebra stable under time 
evolution; actually in most cases this property cannot hold as 
the following arguments show. 

Proposition 4.2: If the one-parameter group of automor­
phismsp", A E R is spontaneously broken in some represen­
tation of the family F, then one cannot have 

(4.6) 

with QR affiliated to 1, for alIA E 1. More generally, giv­
en a subalgebra f!IJ C 1, stable under pA, with a center Z 
which is not pointwise invariant under pA, Eq. (4.6) cannot 
hold on f!IJ andpA cannot be generated (Definition 4.1) by 
local charges on f!IJ, in any state in which ¢( PA(Z) )=I=¢(z), 
for some z E Z and some A E R. 

Proof Clearly Eq. (4.6) implies PA(Z) = Z, Vz in the 
center of 1, which impliespA unbroken. The same is true 
for f!IJ: if p A is generated by local charges on f!IJ, then 

~ ¢(PA(Z») = 0, V A, 

sincep"(Z) C Z. 
Remark: It may be useful to note that if PR (A) in Eq. 

(4.1) converges as R -+ 00 on a weakly dense subalgebra 
C(J C 1, to a weakly continuous automorphism r of C(J, 

then (see the proof of Proposition 4.1) r has a unique exten­
sion to 1 and, if C(J :::) do, r coincides with P on 1, since 
r = pon sf 0 (Proposition 3.1). In particular, ifEq. (4.1) is 
used to define an automorphism of 1, this is completely 
determined by Eq. (4.1) on do. 

The above Proposition rules out the possibility of ap­
proximatingpAby (local) charges [Eq. (4.6)] on 1, the 
obviously stable algebra under time evolution. Actually, 
when variables at infinity get involved in the time evolution 
of elements of sf 0' it is impossible to have an algebra 
f!IJ C 1 stable under time evolution and such that the 
(unique) weakly continuous extension of p A from d to f!IJ is 
generated by local charges, except, of course, the uninterest­
ing case in which p A is unbroken. Thus the nonlocality of the 
algebraic dynamics, in the precise sense of Sec. II, provides a 
natural mechanism for evading the existence of Goldstone 
modes in the presence of spontaneous symmetry breaking: 
essentially the equation 

(4.7) 

does not hold. 
A generalization of Proposition 4.2, which exploits the 

topological aspects of the phenomenon, shows that mass gap 
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generation in the presence of spontaneous symmetry break­
ing can be seen as the consequence of rather simple and gen­
eral algebraic structures. In particular, it will become clear 
that assumptions like existence of a "local" conserved cur­
rent generating the symmetry, validity of the infinitesimal 
form on suitable domains and even the existence of local 
charges, in the sense ofEq. (4.5), are not the relevant points 
for the phenomenon. As emphasized before, the important 
issue is the proper definition of at. (In particular one cannot 
discuss the assumptions at the basis of the rigorous proof of 
Goldstone's Theorem, in more general cases than the strictly 
local one, without facing this problem. ) 

An essential difference between local and nonlocal alge­
braic dynamics is given by the continuity properties of at'. 

Proposition 4.3: Given the structure (d' F, 1) (see 
Sec. III) at' is continuous on F with respect to the weak • 
topology induced on F by d, iff a' leaves sf stable. More 
generally, a" is continuous on F in the weak • topology 7' 8iJ 

defined on Fby a subalgebra f!IJ of 1 iff a' leaves f!IJ stable. 
Proof It suffices to prove the second part. Clearly if a' 

leaves f!IJ stable then a' maps weak • seminorms PB on F, 
defined by elements B of f!IJ, into themselves: 

PB(a'·¢)=I(a'·¢)(B)1 = 1¢(a'(B»)1 =Pat(B) (¢). 

(4.8) 

Thus a" is 7' 8iJ continuous. 
Conversely, if a" is 7' 8iJ continuous, then V B E f!IJ , 

IB,,(¢) =¢(a'(B») = (a"¢)(B) 

as a composition of continuous functions defines a 7' 8iJ con­
tinuous linear functional on F. Therefore given B E f!IJ, there 
existBI, ... , Bn E f!IJ such that 

liB" (¢) 1 < sup I¢(B;) I, V ¢ E F. 
; 

Bya standard argument,12 this implies thatlB,t (¢) is of the 
form ¢(~;=I C; B;). In fact the above bound implies 
IB" (¢) = ° if ¢(B;) = 0, i = l, ... ,n. Hence ¢I (B;) 
= ¢2 (B; ) , V i implies IB" ( ¢ I) = IB" ( ¢2) , and therefore 

there exists a linear functional g: C" -+ C such that 

IB" (¢) = g(¢(BI ), ... , ¢(Bn») 

= ~ C; ¢(B;) = ¢ (~C; B;) . (4.9) 

In conclusion 

¢(a'(B») = ¢ (~C; B;). V ¢ EF, 

and since F is separating for 1 

a'(B) = L C; B;, 
; 

i.e., a' leaves f!IJ stable. 
Remark: The first part of Proposition 4.3 also follows 

from Kadison's Theorem 4.5 and Corollary 4.7 in Ref. 11, 
since F + is a full family of states in the sense of Kadison. It 
may be useful to remark that all the complications in Kadis­
on's proof come from the relation between a dense set of 
(positive, normalized) states and the space of all continuous 
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linear functionals on .!if with respect to the weak * topology 
(Lemmas 4.1,4.2, and 4.3 of Ref. 11). 

The above discontinuity properties of at· explains why 
in general ~(,8~at(A») does not converge to ~(,8..1.at(A»). 
All that is needed is that in the state ~ the symmetry ,8 A. is 
approximated on .!if by automorphisms ,8 ~ of .!if. [It is 
enough to assume convergence of ~( ,8 ~ (A») to ~( ,8 A. (A») 
for all A in a norm-dense subalgebra of .!if.] This is equiva­
lent to the weak * convergence of ,8~. ~ to,8). .~. In general, 
one cannot expect weak convergence of,8~· ~, i.e., with re­
spect to the weak topology induced by ...1/; weak convergence 
of,8~· ~ is in fact excluded if,8~ is unbroken in the represen­
tation defined by ~ and ,8 A. is broken (see Proposition 4.2). 
On the other hand, convergence of ~(,8 ~ at (A»), for all 
A E .!if, is equivalent to weak * convergence of at· ,8 ~. ~ and 
at· is weakly continuous but not weak * continuous, when­
ever .!if is not at stable. Then, at· ,8 ~ ~ does not converge to 
at· ,8..1.. ~, in general. This argument shows that there is a 
general topological property which prevents the combina­
tion of time evolution and the approximation of,8 A. by ,8 ~ in 
the way required for Goldstone's Theorem. 

The constraints on the energy spectrum, following from 
spontaneous breaking of continuous symmetries, can be 
sharply characterized in terms of the time evolution of large 
bubbles, as R -+ 00. To this purpose we consider a one-pa­
rameter continuous group of symmetries,8 A., A E R, approxi­
mated by localized automorphisms ,8 ~ in the sense of Eqs. 
(4.1 )-( 4.3), and ~ = ('11, ''11), a state invariant under space 
and time translations, with '11 in the domain of all the opera­
tors QR' Then, since automorphisms of the form (4.1), with 
UR E...I/, clearly extended to automorphisms of the Von 
Neumann algebra...l/, still given by Eq. (4.1), 

~([ QR ,at (A) ]) = - i ~ ~(,8~a'(A») I 
dA ..1.=0 

= -i~(a'·,8~·~)(A)1 ' (4.10) 
dA ,<=0 

for any A in.!if, or more generally in...l/. 
The limit R -+ 00 of the first term on the left-hand side 

will be discussed in Sec. VI and related to the low momen­
tum behavior ofthe energy spectrum. On the right-hand side 
the limit R -+ 00 can be interchanged with d IdA, for A in a 
subalgebra of ...1/, under general technical conditions [see 
Secs. IV and VI]. Thus the information on the energy spec­
trum is provided by the function 

lim (a'· ,8~. ~)(A). (4.11 ) 
R-oo 

For A E .!if, the limit (4.11) is given by the weak * limit of 
the time evolution oflarge "bubbles" of radius R, 4 as R -+ 00. 

In the case of local algebraic dynamics such limit exists and 
it is independent of time. By Eq. (4.10) this implies the ap­
pearance of (() = 0 in the point spectrum of the energy of 
excitations at k = O. When the algebraic dynamics is nonlo­
cal, i.e., .!if is not a' stable, the limit (4.11) is not in general 
given by,8 *~, since a'· is not weak * continuous. The time 
dependence of the limit (4.11) (when it exists) is responsible 
for an energy gap at low momenta. 
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The above discussion shows that the generalization of 
Goldstone's Theorem to the nonlocal case requires the con­
trol of the limit (4.11). 

B. Effective localization of the dynamics and local 
approximation of symmetries 

The occurrence of variables at infinity in the time evolu­
tion of local variables precludes the possibility of a local ap­
proximation of symmetries on an algebra stable under time 
evolution. However, since in each factorial representation 1T 

of .!if, stable under time evolution, the variables at infinity 
become time independent c-numbers, it is reasonable to ex­
pect that the representation 1T defines a reduced algebraic 
dynamics a~ which leaves stable an "essentially local" alge­
bra, i.e., a subalgebra .!if I of...l/ that does not contain infinite­
ly delocalized variables. Such effective localization of the 
dynamics can be formalized in the following way. First we 
introduce the following. 

Definition 4.4: We shall say that the algebraic dynamics 
is essentially local if there exists a subalgebra .!if I C ...1/, 
called algebra of essential localization (without loss of gener­
ality .!if I can be taken closed in the norm topology since at is 
continuous in such topology) with the following properties: 

(a) .!ifl has a trivial center, 
(b) .!ifl is weakly dense in...l/, 
(c) .!if I is stable under at. 
Clearly the above definition tries to abstract the relevant 

structure properties associated to local dynamics: in fact, in 
the constructive approach discussed in Sec. III, if the inter­
action is local the algebra (e.g., oflocal canonical variables) 
.!if 0 is stable under at and one can take .!if I = .!if o. 

Definition 4.5: The algebraic dynamics is said to be es­
sentially non local if every subalgebra of...l/ which is stable 
under at and weakly dense in...l/ has a nontrivial center. This 
is always the case if the dynamics involves variables at infin­
ity. 

The above definitions can be reformulated in terms of 
continuity properties of at·. Since .!if I C ...1/, .!if I is faithful­
ly represented by F and therefore by Proposition 4.3 .!if I is at 
stable iff at· is continuous with respect to the weak * topol­
ogy defined by .!if I on F. Moreover, one can show that .!if I is 
weakly dense in...l/ iff the weak * topology defined by .!if I on 
F separates the points. Hence the dynamics is essentially 
local iff at· is continuous with respect to some weak Haus­
dorff topology defined by a subalgebra .!ifl C ...1/, with tri­
vial center. Thus, the "essential nonlocality" of the dynam­
ics corresponds to the discontinuity of at· with respect to all 
weak Hausdorff topologies defined by subalgebras of ...1/ 
with trivial center. 

Definition 4.6: A factorial representation 1T of the family 
F, stable under at· leads to an effective localization of the 
dynamics if there exists a subalgebra .!if I C ...1/, called alge­
bra of effective localization with the following properties: (i) 
.!ifl is faithfully represented by 1T, (ii) .!ifl is weakly dense in 
...1/, and (iii) there exists an automorphism a~ of .!if I, which 
coincides with at in the representation 1T, namely, for any 
state ~ E 1T, 

(4.12) 
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Since .!if r is weakly dense in 1, 1T(.!if r) is weakly dense in 
17(1) and therefore the center of 1T(.!if r ) is contained in the 
center of 17(1) which is trivial because 17 is factorial. [If 
z e IT(.!ifr) nlT(.!ifr )', clearly z e 17(1), and moreover z 
commutes with 17(1) since it commutes with a weakly 
dense subalgebra.] Since .!if r is faithfully represented by 
IT(.!ifr), it follows that.!ifr has a trivial center. Thus condi­
tion (i) is the analog of property (a), in Definition 4.4, and 
in particular .!if r does not contain any infinitely delocalized 
variable. 

Furthermore, since 17 yields a faithful representation of 
.!ifr, the automorphism a~ is unique, if it exists. 

The physical meaning of this structure is that the essen­
tial nonlocal effects of the algebraic dynamics are due to the 
involvement of the variables at 00; once such variables are 
frozen to c-numbers, as happens with the choice of a factorial 
representation 17, then one obtains a dynamics which maps a 
complete set .!ifr of "essentially local variables" into them­
selves. 

More generally a family of factorial representations 
{lTa }, each stable under time evolution, effectively localizes 
the dynamics on .!ifr if .!ifr is weakly dense in 1, it is faith­
fully represented by each 17 a' and for any 17 a there exists an 
automorphism a~ that satisfies condition (iii). 

The connecti;n with the essentially local case is given by 
the following. 

Proposition 4. 7: If the algebraic dynamics is essentially 
local, with localization algebra .!if r, then any factorial repre­
sentation 17, stable under a'·, which faithfully represents 
.!ifr, effectively localizes the dynamics. 

The above algebraic structure offers a convenient math­
ematical framework for the generalization of the Goldstone 
Theorem: the effective localization algebra .!if [ is in fact a 
natural algebra on which symmetries may be locally ap­
proximated (see Proposition 4.2) and furthermore it is sta­
ble under a reduced dynamics, a~, which coincides with a, 
in 17. 

Proposition 4.8: Let t/J be a state of a factorial representa­
tion 17, which effectively localizes the dynamics on an alge­
bra .!if [ C 1 (see Definition 4.6), and,B an automorphism 
of 1 which is weakly approximated on .!iff by automor­
phisms,BR of .!ifr, which are not broken in 17. Then for 
Ae.!ifr, 

lim t/J(,BRa'(A») = t/J(,Ba~(A»). (4.13 ) 
R-oo 
Proof Since,BR is not broken in 17, the state,B t t/J still 

belongs to 17 and therefore by Eq. (4.12) 

t/J(,BRa'(A») = (,Bt t/J)(a'(A») 

= ( ,B t t/J )(a~ (A) ) = t/J( ,B R a~ (A ) ). 

Now, since.!if f isa~ stableand,BR converges weaklyto,Bon 
.!if[,onehas 

lim t/J(,BRa~ (A») = t/J( ,Ba~ (A»). 
R-oo 
Clearly all that is needed for the proof is that,BR con­

verges weakly to,B on .!if [ in the representation 17. Equation 
( 4.13) can also be written in the form 

lim a'·,B t t/J = a~· ,B *t/J 
R-oo 

(4.14) 
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as an equation for states on the algebra .!if r, and the limit is 
taken in the weak * topology defined by .!if f' In the logic of 
the discussion in Sec. IV, (ii), the point is that a~· is contin­
uous in the weak * topology in which fJ t t/J converges to 
fJ *t/J, whereas a'· is not. By exploiting the effective localiza­
tion of the dynamics in the representation 17, one can there­
fore compute the weak * limit of the time evolution of bub­
bles as R -+ 00 • Since a~ is in general different from a', it does 
not in general commute with,B. As a result, (1) the time 
evolution oflarge bubbles depends on the representation de­
fined by the state t/J, typically by the behavior at infinity of 
the states of 17; (2) a nontrivial time evolution may persist in 
the limit R -+ 00 and it can be computed in terms of a~; and 
( 3) the relation between a~ and,B becomes a relevant step 
for the generalization of Goldstone's Theorem. 

V. EFFECTIVE LOCALIZATION OFTHE DYNAMICS AND 
SYMMETRIES 

In thi s section we discuss the relation between a', a~ and 
the automorphisms of 1. In the following, we always con­
sider an algebraic dynamics a', a (factorial) representation 
17 which effectively localizes the dynamics on .!iff (Defini­
tion 4.6) and a one-parameter group of automorphisms,B A 
of .!iff with the following properties: 

(I) ,BAa' = a',BA, 

(II),BA leaves .!iff stable. 
We start by listing some characteristic features of the 

effective dynamics a~. 
Proposition 5.1: If the representation 17 localizes the dy­

namics on .!if [ with a~ the corresponding time automor­
phism, then also the representations lTA defined by 

lTA (.) = 1T{ ,BA(.») 

localize the dynamics on .!iff with time automorphism given 
by 

a~ = (,BA)-la~,BA. 
A 

Proof Since,BA is an automorphism of .!if[, if 17 is a 
faithful representation of .!iff' so is lTA and by Eq. (I), lTA is 
stable under a'·. By assumption .!if [ is,B A and a~ stable and 
therefore it is also a~A stable. Furthermore, in the represen­

tation 17..., a~A reduces to a' since V A e .!iff' 

lTA(a'(A») = 1T( ,BAa'(A») 

= 1T{a',BA(A») = IT(a~ ,BA(A») 

= lTA( ,BA)-la~ ,BA(A»), 

where in the second equality we have used the commutation 
a',BA = ,BAa', and in the third equality we have used the 
stability of .!iff under ,BA. 

As we have already discussed, the crucial property for 
the phenomenon of mass generation associated to spontane­
ous symmetry breaking is that the effective dynamics is not 
invariant under ,BA, i.e., on .!iff,,BA a~ #a~ ,BA. Clearly, this 
is possible only if a~ #a'. The case in which a' = a~ can 
actually be considered as equivalent to the standard case and 
the usual approach to Goldstone's Theorem can be used in 
this case. 
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Therefore a necessary condition for a departure from 
the standard Goldstone Theorem is that a~ #at. 

Proposition 5.2: The stability of d I under at is a neces­
sary and sufficient condition for a~ = at. 

Proof: Obviously, at and a~ are both defined as maps 
from d I to vU; since a~ leaves d I stable, at = a~ implies at 
stability of d I' Conversely if d I is at stable, at and a~ leave 
d l stable and they coincide in a representation 1T which is a 
faithful representation of d l ; hence they coincide on d l • 

Remark: Clearly, the condition a~ #at isfJA covariant 
in the sense that a~ #at implies 

for any other representation 1TA (see Proposition 5.2). In 
fact, if for some A., a~A = at, then, by using the definition of 
a~A and the commutation fJAat = at fJ'\ one also gets 
a~ = at. 

The following proposition deals with the relation 
between fJ Aa~ # a~ fJ A and the spontaneous breaking of fJ A 
in the representation 1T. 

Proposition 5.3: If fJA is unbroken in a representation 1T 
which localizes the dynamics on d l , then 

fJAa~ = a~ fJA; 

as automorphisms of d l , equivalently, if 

fJAa~ #a~ fJA, 

thenfJA is broken in 1T. 
Proof: Unbroken fJA means that 1T 0 fJA is quasiequiva­

lent to 1T and therefore, for all states ¢J of 1T 0 fJA, 

¢J(at(A») = ¢J(a~(A»), V A E d l. 

Then, V A E d l , 

1T(a~ fJ Ii (A ») = 17"(atfJA(A») 

= 1T( fJAat(A») = 17"( fJAa~ (A»), 

and since d I is faithfully represented by 1T, 

a~ fJA = fJAa~ on d l. 

Corollary 5.4: If the space translations ax define auto­
morphisms of vU which commute with at, and d I is ax 
stable, then if ax is unbroken 

In conclusion we have shown that the condition 

fJAa~ #a~ fJA, 

which will be at the basis of the discussion in the next sec­
tions, implies (a) fJA is spontaneously broken, and (fJ) 
a~ #at or equivalently d l is not at stable. The discussion 
can be made sharper by introducing the following. 

Definition 5.4: Given a dynamical system (vU, at), the 
algebraic dynamics is essentially local, with localization alge­
bra d I' with respect to the family of states S C F, which is 
norm closed and stable under d, if there is a weakly dense 
subalgebra die vU, with trivial center and stable under at 
in the representation space JY's = Ps JY' (where Ps is the 
central projection corresponding to the states S, see Proposi­
tion 2.1), i.e., at leaves Ps d I stable. 

Proposition 5.5: Given a dynamical system (vU,at) and 
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a representation 1T which effectively localizes the dynamics 
on d l (localization algebra), let S denote the family of 
states of the form 1TA = 1fO fJAandPs the corresponding pro­
jection, then the following conditions are equivalent: 

(1) fJAa~ #a~ fJA, for some A., 
(2) Ps at dl#Ps a~ d l, 
(3) the algebraic dynamics is not essentially local, with 

localization algebra d I' with respect to the family of states 
S. 

Proof: We now show that (1) is equivalent to (2). In 
fact, if pAa~ = a~ p'\ for any 1TA we get 

1TA(a~ (dl ») = 1TA(P -Aa~ fJA(d l ») 

Thus 

= 17"(a~ PA(dl ») = 1T(atPA (d l ») 

= 17"(fJ Aa t(dl ) = 1TA(at(dl »)· 

Ps a~ d l =Ps at d l, 

i.e., (2) implies (1). On the other hand, if (1) holds, since 
both P A and a~ leave d I stable and 1T yields a faithful repre­
sentation of d l , we have 

17"( fJAa~ fJ - A( d l ») 

#17"(a~(dl») = 1T(at(dl »), 

and therefore 

1TA(a~ P -A(d1» 
#1TA (P -Aat(dl ») = 1TA(at P -"(dl»)' 

i.e., 

at#a~ on P"'A d l, 

for any A. such that (1) holds. Hence (1) implies (2). To 
complete the proof it is enough to show that (2) is equivalent 
to (3). In fact, if (3) does not hold, P s d I is at stable 
(Definition 5.4); moreover, Ps d l is faithfully represented 
in 1T because d I --+ P s d I --+ P", d I are morphisms and 
d I --+ P", d I is an isomorphism. Hence 

P",atps d l = atp", d l 

implies 

atps d l = a~ d l, 

and, (2)--+(3). Conversely, if (2) does not hold, i.e., 
Ps at d l = Ps a~ d l and therefore 

atps d l = Ps at d l 

= Psa~dl C Ps d l, 

and (3) cannot hold. 

VI. CHARGE COMMUTATORS AND ENERGY 
SPECTRUM AT LOW MOMENTA 

In view of our interest in clarifying the conditions under 
which spontaneous symmetry breaking occurs together with 
an energy gap above the ground state, it is convenient to 
reexamine the relation between charge commutators and en­
ergy spectrum at zero momentum. 
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In the rigorous proofs of Goldstone's Theorem a crucial 
role is played by the local structure of the algebra of fields. 
The two main points in which locality enters in an essential 
way is the stability under time evolution of the local algebra 
and the R independence of ( [ QR , A ' ] ) for sufficiently large 
R. 

For systems with long-range interactions, in general one 
loses locality and the discussions in the literature have been 
done with the philosophy of giving appropriate substitutes of 
locality (typically assumptions about the decay of the corre­
lation functions). Unfortunately, this approach prevents 
from the beginning extensions to the case of an energy gap 
associated to spontaneous symmetry breaking. The aim of 
this section is to discuss the relation between energy spec­
trum and charge commutators independently from any lo­
cality assumption, in a way that applies to the energy gap 
generation. 

The relevant condition4 at the basis of our discussion is 
the integrability of the charge as a commutator. As a special 
case, when the vacuum expectation value of the charge com­
mutator is time independent, as follows from locality or from 
conditions which guarantee a "sufficiently local" struc­
ture,I3,14 we obtain the existence of the isolated point m = 0 
in the energy spectrum of excitations at k 0, without spe­
cial assumptions on the Fourier transform of charge com­
mutators. 13,15 

We consider a representation 1T of an algebra .sf I with 
space and time translations described by strongly contin­
uous unitary operators U ( a), U ( t) and with a unique space­
time translational invariant (vacuum) vector'" o. As in the 
standard discussion of Goldstone's Theorem we are led to 
consider the limit R ...... 00 of the commutators [QR' At] 
where A is an Hermitian operator, A U(t)A UU) -1 and 
the "local charge" QR is essentially the integral of a charge 
density}o (x) over a region of size R. In general a time smear­
ing is needed and}o(x,t) is assumed to be a Hermitian opera­
tor-valued distribution of Y' (R 4), which transforms covar­
iantly under space-time translations and has "'0 in its 
domain. 

The relevant condition4 [condition (A) J is that the 
charge density commutator 

i("'o,[Jo(x), At ]"'0) = i("'o,[Jo(x, t), A ]"'0) =J(x,t) 

(6.1 ) 
is a finite measure in the x variable, i.e., there is a Schwartz 
seminorm II IIy such that for g(t) E YCR 1), f(x) 
E Y(R 3), 

IJ [fg] 1< C IIgily sup If(x)l· 
x 

As a consequence the integral of J(x,t) over x defines a tem­
pered distribution J(t). Actually, as we shall see, without 
loss of generality one can assume that the above (time 
smeared) commutator is a C cO integrable function. In gen­
eral, for any sequence {fR}' with O.ifR (x)";; 1 andfR (x) 
= 1 for Ixl <R, we have 

J(t) lim ([}O(fR ),A t])o 
R-oo 

(6.2) 

in the sense of distributions [since for any finite measure 
f fR (x)dl" (x) - f dl"(x)]. 
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The crucial role of condition (A) for a rigorous deriva­
tion of the nonrelativistic Goldstone Theorem, with a careful 
handling of the distributional and measure theoretical deli­
cate points, does not seem to have been realized in the vast 
previous literature. 13,15,16 As will be clear from the following 
Proposition 6.1 and Corollary 6.2, the derivation of the 
Goldstone energy spectrum at k = 0 (especially in the case 
of point spectrum) is made possible by this condition. It 
should be stressed that this condition involves the behavior 
of the commutator, not of the two-point function. 

PropOSition 6.1: Within the above framework, if the 
charge density commutator 

i("'o,[Jo(x),A ']"'o)=J(x,t) (6.3) 

is a finite measure in x, after smearing in t [condition (A) ] , 
then as a tempered distribution in m 

i("'o,}o(f)dE", dEk A"'o) 

- i ("'o,}o(f)dE _",dE -k A"'o) =Jf(k,m) (6.4) 

is a continuous function of k, with 

lim (21T)3'jf(k,m) =J(m), (6.5) 
k-O 

wherefis any real test function E Y(R 3), with 

J f(x)d 3x = 1, (6.6) 

dEw' dE k are the spectral measures associated to the genera­
tors of time and space translations and J(m) is the Fourier 
transform of 

J(t) = i lim ([JO(fR), At p. 
R_«> 

Equations (6.4) and (6.5) imply that for any realg(t) 

J [g] = - 2(21T)3 Im("'o,}oCf)dE [g]dEk=o A"'o), 
(6.5') 

and therefore as distributions on real symmetric test func­
tions g(m) 

J(m) = - 2(21T)3 Im("'o,}oCf)dE", dEk=o A"'o). 
(6.7) 

Furthermore, if "'0 is the lowest energy state, i.e., 
dEw 0 for m <0 (spectral condition), then on test func­
tions with support in m>O, 

J(m) = i(21f')3("'0,}0(f)dE", dEk 0 A"'o). (6.8) 

Proof: We consider the expectation value 

i(JoCIx )"'0' At "'0> 
= i(jo(f)"'o,U(x)A ''''0) =F(x,t) , 

withfE Y, satisfying Eq. (6.6). After time smearing, it is a 
C"" bounded function of x, becausefis in Yand U(x) is a 
unitary operator. By condition (A) the commutator 

i( [joe Ix ), At] )o=J f(x,t) 

is a C 00 integrable function of x and 

J d 3xJf(X,t) = J d 3xd 3yf(x+y)J(y,t)=J(t). 

(6.9) 

The Fourier transform of F is therefore a complex measure 
given by 

F(k,t) = i(joCf)"'o,dEk A t "'0)' 
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and 

F(k,t) + F( - k,t) = J f(k,t) (6.10) 

is a continuous function of k, after smearing in t. 
Since the spectral resolutions of energy and momentum 

commute we also have 

J f(k,t) = i i eiO>t [(jo(j)dEw dEk A ) 

- (jo(j)dE_w dE_ k A> l, 
and J f(k,w) is a finite measure in k, and a tempered distri­
bution in w, and it is continuous in k, when smeared with a 
g(w) E Y. By the estimate in (A), J f(k,w) is actually con­
tinuous in k as a distribution in wand by Eq. (6.9) 

(211')3J f(O,w) = J(w). 

By definition J(t) is real and J(w) = J( - w), so that J(w) 
vanishes on the test functions g(w) with the property 
g(w) = -g( -w).Onthetestfunctionsg(w) =g( -w), 
Eq. (6.5') follows from Eq. (6.5). If g is real, Eq. (6.7) 
follows from Eq. (6.5). Equation (6.8) is an immediate con­
sequence of Eq. (6.5) and the spectral condition. 

Corollary 6.2 (Goldstone's Theorem): Under the as­
sumptions of Proposition 6.1, if J(t) is a constant, as it hap­
pens if on an algebra stable under time evolution, the charge 
QR generates an automorphism which commutes with time 
translations, one gets that on real symmetric test functions 
g (w ) the imaginary part of the expectation value of the spec­
tral measure dEw at k = 0 is concentrated in w = O. Such an 
isolated point in the energy spectrum only arises from contri­
butions of states orthogonal to the ground state. 

Proof It follows easily from Eq. (6.7). A smearing of 
Eq. (6.4) by real symmetric test functions h(k) and g(w) 

shows that the ground state cannot contribute to J f(k,w); 

i('"Vo,jo( j )dE(h) dE(g)'l'o> ('110' A '110) 

- i('I1o,jo(j) dE(h) dE(g) '110> ('110' A'I1o> = O. 

Remark: When the spectrum of J(t) is discrete, Propo­
sition 6.1 implies that the corresponding points Wi in the 
energy spectrum describe (elementary) excitations with a 
lifetime which becomes infinite in the limit k ..... O. 

In the following we will consider automorphisms f3A, 
A E R, which are generated on ..ifl by local charges QR 

~<Po(.8A(A»)IA=o = i lim <POC[QR' A p, (6.11) 
dA R-oo 

on a space-time translationally invariant primary state <Po 
and QR satisfies condition (A). 

The following propositions characterize the time depen­
dence of J(t) in terms of symmetry properties of the time 
evolution of elements of ..if I in the representation 11'. By De­
finition 4.6 the effective time evolution, mapping ..ifl into 
..if l , is given by a~ and we have the following. 

Proposition 6.3: Under the above assumptions, VAE..ifI , 

J(t) =i lim < [QR,a'(A)] >"0 
R- 00 

= ~<f3Aa~(A) > I . 
dA 1.=0 

(6.12) 

Proof Since in the representation 11', VAE..if I , 
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1T{at (A») = 1T{a~(A») = U(t)11'(A)U(t)-I, 

we have 

< [QR,a'(A» > = < [QR,a~(A)] >. 

(6.13 ) 

On the other hand, a~ (A ) E..if I and therefore by Eq. (6.11) 
the limit asR ..... 00 exists; by Eq. (6.13) it yieldsJ(t) defined 
as in Proposition 6.1 and by Eq. (6.11) it is equal to the rhs of 
Eq. (6.12). 

Proposition 6.4: GivenAE..ifI , the correspondingJ(t) is 
independent of t (standard Goldstone's Theorem) if and 
only if 

~ < [f3A,a~] (A) > I = O. (6.14) 
dA 1.=0 

Proof Clearly ifEq. (6.14) holds, then 

J(t) =~<f3Aa~(A) > I 
dA 1.=0 

= ~<a~f3A(A) > I 
dA 1.=0 

=~<.8A(A»1 . 
dA 1.=0 

Conversely, if J(t) = J(O), Vt, then 

J(t) = ~<f3A(A) > I 
dA 1.=0 

= d~ <a~f3A(A) > 11.=0' 
i.e., Eq. (6.14) holds. 

We denote by S the minimal set of (primary) states on 
..ifl containing <Po and stable under a~· and f3A". We then 
consider the representation I1s of ..ifl given by the direct 
sum of all representations defined by states of S and we de­
note by Zs the center of I1s (..if / )". We further assume that 
..ifl is a weakly asymptotically Abelian with respect to space 
translations, in the representation 11', i.e., VA, BE..if1 

w-lim 11'[Ax,B] = O. (6.15) 
ixi- 00 

Proposition 6.5: Under the above assumptions 
(1) VAE..ifI , the ergodic limit 

lim ~ r ax (A)d3x::limAv::Aoo (6.16) 
V-oo V Jv v 

exists in the weak topology of I1s and it belongs to Zs; (2) 
the unique extensions of f3 A and a~ to I1s (..if I)" map Zs 
intoZs ; and (3) givenAE..if1 andJ(t) as in Proposition 6.3, 

J(t) =~<po(j3Aa~(Aoo))1 ::<po(oAa~(Aoo »). (6.17) 
dA 1.=0 

Proof To prove (1) we remark that since the space 
translations are implemented by continuous unitary opera­
tors, the ergodic limit 

w-lim ~ J d 3X 11'(Ax ) 
V-oo V 

exists for any AE..if1 and it commutes with 11'(..if/ ) (Ref. 17). 
To prove (2) we note that by construction I1s is stable 

under f3 A" and a~· and therefore, by Proposition 3.1, f3 A 

and a~ have a unique extension to I1s (..if I) " , which is weak­
ly continuous. As automorphisms of I1s (..if I)" they leave 
the center Zs invariant. 
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To prove Eq. (6.17) it suffices to note that since.B A and 
a~ are weakly continuous and commute with a", 

(PoIf3 Aa~ (A 00 ») 

= tPo(fJ Aa~ (lim A v ») 
v 

= lim tPo(fJ Aa~ (A v ») 
v 

= lim..!.. r d 3x tPo(a".BAa~ (A» = tPo(fJAa~ (A »). v V Jv 
(6.18) 

Equation (6.17) reduces the study of the energy spec­
trum at k -+ 0 to the time evolution of the ergodic limit A 00 ' 

when the initial value is infinitesimally close to that of the 
representation 1T, in the direction of.B A •• The characteriza­
tion of the energy spectrum at k = 0 simplifies if [condition 
(B)] given a fixed AEd/, and the set ~ = {a~ (A ),TER}, 
the automorphisms.B A(t) -=a.; t.BAa~ of d/ are generated 
by a finite number of charges on ~ in the state tPo (see Defin­
ition 4.1): 

~ tPo(fJA(t)a~ (A») 1 
dA A=O 

N 

= i L ai(t) lim tPo([Qk,a~(A) ]). 
i=1 R-oo 

( 6.19) 

This means that a finite number of expectation values 
limR_ 00 tPo([ QR (t),a~ (A) ]) are independent as functions 
of rER. Without loss of generality one can choose 
Q k = QR (ti), for suitable times tl, ... ,tN • We also consider 
Hermitian A and we then have the following. 

Proposition 6.6: Within the framework specified so far, 
the spectrum of J (CiJ) is discrete iff condition (B) holds. 

Proof: With the choice Q k = QR (ti ), and putting 
.B:-=.BA(ti)' condition (B) gives 

with 

Cik (t) = ak (ti + t) 

real, for Hermitian A. Moreover, 

LCik(t+S) ~tPo(fJt(A»)1 
k dA A=O 

= ~ tPo(fJ:(s)a~ (A») I 
dA A=O 

= ~Cij(S) ~ tPo(.Bf(a~(A») IA=o 

= LCij(S)Cjk(t) ~tPo(fJt(A»)1 ' 
j,k dA A=O 

(6.20) 

i.e., C ik (t) is a one-parameter group of real matrices. One can 
then write Cik (t) = (exp(Kt) )ik with K a real matrix. The 
spectrum is then discrete and it has no algebraic multiplic­
ities if J(t) is uniformly bounded in t. 

Conversely, ifthe spectrum is discrete then 
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J(T-t) = lim itPo([QR(t),a~(A)]) 
R-oo 

= ~ Pk (T - t)exp( - iCiJkt)exp [iCiJk T], (6.21) 

with P k ( T - t) polynomials and CiJ k real. Then as t varies 
only a finite number off unctions of T, J( T - t), are indepen­
dent. This means that only a finite number of expectation 
values lim tPo( [QR (t) ,a~ (A ) ] ) are independent as functions 
of l' as t varies, i.e., (B) holds. 

Remark: In terms of classical motion of variables at in­
finity, by Proposition 6.5, condition (B) is equivalent to 

d~ tPo(.BA(t)(a~(A»)) IA=o 

= ~ tPo(fJA(t)a~ (A 00 ») 
dA 

N 

-=tPo(!5A(t)a~(Aoo») = L ai(t)tPo(!5A(i)a~(Aoo »). 
;=1 

(6.22) 

Proposition 6. 7: Under the same assumption as in Propo­
sition 6.6 with J(t) uniformly bounded, if the number n of 
independent charges, for which Eq. (6.19) holds for any 
AEd/ is minimal, then the spectrum of the generator of the 
group Cjk (t) has no multiplicity. If n is even, then CiJi ;60 for 
any i; if n is odd then, for any choice of the basis 
Qk -=QR (ti ), the charge 

n 

f!2 R -= L a;QR (t;), (6.23) 
i=1 

with 

. 1 iT ai -= 11m - Cli (t)dt 
T-oo T 0 

defines an automorphism a3 of d/, which is broken on tPo 
and which satisfies 

tPo(a3a~ (A») = tPo(a3 (A»), VAEd / 

(standard Goldstone case). The charge 
n 

QR -=QR - L aiQR (ti) 
;=1 

(6.24) 

generates an automorphism/:1A which has an energy gap as­
sociated to its spontaneous symmetry breaking. 

Proof of Proposition 6. 7: Given a minimal set of charges, 
for which Eq. (6.19) holds, by Proposition (6.6) and the 
uniform boundedness of J(t) one can find n linear combina­
tions Q p of the previous charges such that 

lim tPo( [QR (t), A ]) = i bpe
Uopt 

lim tPo( [Q~, A ]). 
R p=1 R 

(6.25) 

Now, if two frequencies, say CiJ I , CiJ2, are equal, then the rhs of 
Eq. (6.25) can also be written as 

n L bpiOJpt lim tPo( [Q~, A ] ) 
p=3 R 

+eiOJ,tlimtPo<[bIQ1 +b2Q~,A n, 
R 

that is Eq. (6.19) holds with n - 1 charges. 
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From the symmetry of the spectrum of K, tV = 0 is pres­
ent iff n is odd. In this case, Eq. (6.23) defines a charge 
which satisfies 

=L lim..!.. rT 

dt'cli(t')limtPo([QR(t+tl),A]) 
I T_«> T Jo R 

= L lim..!.. ( dt' Cli (t ')elk (t)lim tPo( [QR (tk)' A ]), 
IT TJo R 

and the rhs is independent to t, by the group properties of the 
matrices C Ik • 

Finally the last statement of Proposition 6.7 follows 
from the vanishing of the (time) ergodic mean of 
tPo( [QR (t), A ]) by the definition of the ai's. 
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Barrier transmission in potentials of the type Vex) = AX2 + BX4 is studied using the phase 
integral method, the same as the JWKB approximation in lower orders. Elliptic functions are 
used for the classical solutions. The transmission coefficient is calculated for all signs and 
values of A and B that give a potential barrier. 

I. INTRODUCTION 

Formal expressions for the transmission coefficients of 
potential barriers have been widely studied in the literature 
(for example; Refs. 1-10). Using the phase integral method, 
Froman and Froman I obtain approximate expressions for 
the transmission coefficients in both the sub-barrier and su­
per-barrier cases.2 The same treatment is applied by Froman 
and Dammert to a system of two real potential barriers. 
Cramer and Nix4 study the penetrability through a double 
peaked fission barrier, taken to be two parabolic peaks con­
nected smoothly with a third parabola forming the interme­
diate well, and they applied their study to a double asymme­
tric barrier used to describe direct-reaction fission data; their 
results are calculated exactly and they use the Jeffreys­
Wentzel-Kramers-Brillouin (JWKB) method for compari­
son. In the textbook of Rapp,5 several types of barriers are 
described in order to apply the JWKB approximation to 
some simple cases; that study includes single and double po­
tential barriers, and the inverted parabolic barrier is used as 
a particular example of an exactly calculable transmission 
coefficient. McLaughlin6 obtains JWKB formulas for the 
barrier penetration from a path integral, using complex time 
in his expressions. The same subject was treated by Holstein 
and Swift,? and it was applied to the barrier penetration 
problem8 including the semiclassical treatment ofabove bar­
rier scattering9 (super-barrier case). Finally, Dammert JO 

applied the phase integral method to the transmission 
through a system of potential barriers. A number of recent 
very relevant references about the subject can be found in 
Refs. 11-14. 

In this paper we are interested in the determination of 
the transmission coefficient for potentials of the type 

(1) 

when A and B are both negative (simple barrier), with the 
special cases A = 0 (quartic barrier) or B = 0 (inverted 
parabolic barrier); or when A is positive and B is negative 
(double barrier case). The double-well potential has A < 0 
and B > 0; it presents a barrier between two wells. The calcu­
lation of energy levels including tunneling through the inter­
mediate barrier has been reported elsewhere. 15 The case 
A > 0 and B > 0 is a well, not a barrier: its energy levels were 
also studied in Ref. 15. 

II. SIMPLE BARRIERS 

A. Sub-barrier transmission 

When the total energy of the incident particle wave lies 
below the potential maximum, the transmission coefficient 
is, in the lowest order of approximation of the JWKB meth­
od, 

T= exp( - 2Kn ), (2) 

with 

Kn = 1i-J~a IPI(x)ldx (3) 

and 

PI(X) = {2/L[V(x) _E]}I/2, (4) 

where /L is the mass of the incident particle, a and - a the 
turning points [real roots of the equation: V(x) = E], and E 
is the total energy. 

It is well known that these expressions do not conserve 
the unitarity relation between the reflection and transmis­
sion coefficients. Froman and Froman I demonstrated that 
refinements in the approximation using the phase integral 
method lead to a transmission coefficient 

(5) 

This formula conserves the unitarity relation, and gives the 
same value as Tin Eq. (2) when the value of E is negligible 
compared with the potential maximum. 

Let us now apply the preceding relations to calculating 
transmission in the one-dimensional potential of Fig. 1 with 
A and B both less than zero. In order to calculate the trans­
mission coefficient, we must first have the classical solutions. 
Figure 1 shows these for the different regions of the poten­
tial, following Diaz Bejarano et al. 15

-
1
? in the region below 

the maximum of the barrier for E> Vex), and Bradbury l8 

above the maximum. For the solution under barrier 
[ V(x) > E] we used two properties of our potential and of 
the elliptic functions: the change Vex) to - Vex) trans­
forms potential barriers into potential wells and vice versa, 
and because the elliptic functions have real and imaginary 
periods, it follows that they are the "imaginary classical so­
lutions" in the region under the barrier if we change the 
parameter minto m I = 1 - m and change the sign of the 
energy.15 The distinctive mark of this solution is the imagi-
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FIG. 1. The generic potential vex) = AX2 + Bx', with A and B both less 
than zero, showing classical solutions of the equation of motion, in terms of 
Jacobi elliptic functions of parameter m, in the distinct regions for different 
initial conditions. For E <Othe initial conditions arex(O) = xo' x(O) = 0, 
for E> 0, they are x(O) = 0, x(O) = xo. There are other solutions in all 
regions for different types ofinitial conditions, but only the solutions used in 
the calculations are given. 

nary character of 0) as also used by Diaz Bejarano et al. in 
connection with the anharmonic asymmetrical oscillators. 19 

All the solutions of this figure are Jacobi elliptic functions20 

with parameter m and complementary parameter m1 or, al­
ternatively,21 with parameters k 2 = m and k,2 = mI' These 
functions are periodic with generally two complex periods. 

In our case (Fig. 1) the solution beneath the barrier 
(region where we must integrate) is 

x =xocnO)t (6) 

with imaginary 0). First 0) is calculated as a function of the 
coefficients A and B, making use of relations between the 
energy, the coefficients, and the parameter of the elliptic 
functions 15-17 

0)2 = 2A I[jt( 12m)], x~ = mjt0)2/2B, 
(7) 

E = mtJ.lCiix~/2. 
In the quantum treatment, we change Eq. (3) to the more 
convenient t variable 

(/2 
Ku =jtfi- 1)0 [XU)]2 dt. (8) 

Using the solution Eq. (6), and by substitution in Eq. (8) we 
have 

Ku = fi-ljt0)2X~ !oK sn2 0)/ dn2 O)t dt, (9) 

where K is the complete elliptic integral of the first kind. 20 
The integral Eq. (9) and similar integrals are tabulated in 
the Handbook of Byrd and Friedman.21 After simple alge­
bra, we obtain 
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Ku = ( - 2E13mm 1w)[ (2m l - I)E' + mK'], (10) 

where K' and E' are the complete elliptic complementary 
integrals of the first and second kind, respectively. To obtain 
Eq. (10) we have used the properties of the potential and the 
elliptic functions mentioned above. 

With Eq. (7) we can transform Eq. (10) into 

Ku = (1/3fi)(4jt2IE 13/1B Im3m:> 1/4 

X[(2ml l)E'+mK'], (11) 

i.e., KII as a function of m, E, and B, or 

Ku = (IEj/3mmlfi)[2jt(2m -l)/IA IP/2 

X[(2m1 l)E'+mK'], (12) 

i.e., Ku as function of m, E, and A. 
In this way, the transmission coefficient is totally deter­

mined in the sub-barrier case: It depends only on the incident 
energy (E) the elliptic function parameter (m) and the coef­
ficients (A,B) ofthe potential. 

We now study two particular cases of simple barriers. 
First, we consider the quartic potential barrier. Using 

Eq. (7) and taking into account that m = m 1 =! for this 
case, we obtain from Eq. (11): 

Ku = (2I3fi)(IE 13jt2/1B 1) 1/4K(!). (13) 

The second particular case is the inverted parabolic bar­
rier. In this case the parameter of the elliptic functions is 
m = 0, and the solution in the region under study is20 

x =Xo coSO)t (14) 

but with 0) imaginary. In a similar way we obtain a transmis­
sion coefficient of the form 

T'={1 +exp[(21TIElfi)(jtI2IA 1)1I2]}-1. (15) 

This is the same as the exact expression given by Rapp.5 The 
reason is that our method is a second-order approximation 
where, for the special case of the inverted parabolic barrier, 
the treatment is exact. 

B. Super-barrier transmission 

For energies above the barrier the turning points are 
complex. A complete detailed study of this case is given by 
Froman and Froman, 1.2 Froman and Dammert,3 and Hol­
stein,8 among others. In the present case of simple barriers, 
the transmission coefficient is 

T' = [1 +exp(2IKI)]-1 (16) 

and 

1""+;)1' K = ju = i q(z)dz (17) 
x' iy' 

and 

q(z) = {2jt[E Vex) ]}112, (18) 

where x' ± iy' are the turning points in the complex plane. 
We have used the notation of Froman and Froman. 1 These 
expressions are very similar to the expressions for sub-bar­
rier penetration, the only difference being the complex turn­
ingpoints. 
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The solution in this region is given by (see Fig. 1) 

x = (xolw )dn wt sc aJt, m <~, (19) 

where we have taken the initial conditions to be velocity 
nonzero (xo) and position zero. We will use H for the total 
energy in order to avoid confusion with the complete elliptic 
integral of the second kind. A straightforward calculation 
gives the following connections between w, the coefficients, 
the energy, and the parameter of the elliptic functions: 

w2 = A 1[,u(2m - 1)], 
(20) 

Our first problem is to determine the K integral (or 
equivalently (1). For simplicity let us express Eq. (17) as 

i
x, 

(1 = q(z)dz, 
x, 

(21) 

where XI and X 2 are the conjugate complex turning points. 
Transforming to the t variable we have 

i
t, 

(1 = ,ufz- I [xU)] 2 dt. 
t, 

(22) 

Using Byrd and Friedman's tables,21 the integral ofEq. (22) 
with the functions ofEq. (19) can be expressed in the form 

'2 
(1 = ,uxo {4mlt + _1_ 

fz 3 3w 

X [4(2m - 1 )E(wt) + m sn wt cn wt dn wt 

(23) 

We must now determine the limits of integration (t1,l2)' In 
the previous case (sub-barrier), integration between the 
turning points was equal to integration of the corresponding 
elliptic function between zero and the real half-period. All 
the operations were made in the real plane. The present case 
(super-barrier) is the same and the integration is carried out 
using the complex half-periods of the elliptic solutions ofEq. 
(19). The limits of integration in ~ and in 1. are given in 
Appendix A. For t we have 

wt2 =3(K+iK')/2, wll = (K+3iK')/2, (24) 

where K is the complete elliptic integral of the first kind and 
K ' is the complementary integral. 

The different elliptic functions which appear in Eq. (23) 
can be found from the tables of Byrd and Friedman.21 How­
ever, the determination of the noncomplete elliptic integral 
of the second kind E(wt) is more difficult (see Appendix B). 
The resulting expressions for the given limits are 

E [3(K: iK') ;k ] 

= [3E + k ' - 1 _ k ' (1 - k ') ] 
2 2 l+k-k' 

-i[ 3E' + k -1 
2 2 

- ~(E:' +E'- 2~)+ 1+'%'~k'] (25) 

and 
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E[(K + ;iK');k] 

= -+---+----[
E l-k' k'(1-k')] 
2 2 l+k-k' 

.[3E' k-l -1--+--
2 2 

- ~ (E:' +E'- 2~) + 1 +k:~k']' (26) 

where E, E' are the complete elliptic integrals of the second 
kind and its complementary integral, and k, k' are the pa­
rameters of the elliptic function. 

UsingEq. (20) and (23)-(26) thetransmissioncoeffi­
cient for energies above a simple barrier is totally determined 
as a function of known data: incident energy and coefficients 
of the potential. Let us consider as an example the inverted 
parabolic barrier in super-barrier transmission. In this case, 
the elliptic solution transforms into a hyperbolic function 
due to the value of the parameter being unity20 

X = (xolw)sinhwt. (27) 

Following a similar process to the general case we now 
obtain 

T' = {I + exp[ - (1rH Ifz)(2,u/IA 1)1/2]}-1. (28) 

This expression is that obtained by HolsteinS using the 
same method as ours but without the use of the t variable. 

Several examples are given in Fig. 2. We have plotted the 
value of T for different cases, the T' coefficients are expanded 
into a series in Kn and second-order terms are rejected. The 
figure shows the continuity of T', which has the value! when 

10 r---~-~-~--r----,------'-'---r--~---'---, 

T' _ 
......... ~ ........ . 

,.. .... 

0.8 

0.6 

04 

OL--~~~_~_~_~_~_-L_~_~_~ 

- 06 -0.2 o 0.2 0.6 E 

FIG. 2. Transmission coefficients for the inverted parabolic barrier 
V(x) = Ax2 with A = - 0.8 (full line), for the quartic barrier V(x) = Bx' 
with B = - 0.5 (broken line), and for the potential V(x) = Ax2 + Bx' 
with A = - 0.1 and B = 1.0 (dotted line). Sub- and super-barrier trans­
mission are plotted for each potential. The curves of T in the figure repre­
sents the first term of a series expansion of T I. The vertical broken line shows 
the value of the potential maximum (in our case, Vma• = 0). 
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the incident particle energy equals the potential maximum 
(zero energy in the present case); this means an equal prob­
ability for reflection or transmission. Also for E «0, T = T', 
as was observed at the beginning of this section, but for E"", 0, 
T does not conserve unitarity (the reflection coefficient is 
equal to one for all energies in the lower order of JWKB 
approximation) whereas T' does (the reflection coefficient 
in this case is exactly R ' = 1 - T'). 

III. DOUBLE BARRIERS 

In this section we consider the barriers given by the po­
tential ofEq. (1) withA > 0 andB < O. There are three inter­
esting regions. The first is when H < 0, and in this case the 
tunneling can be understood as through a simple barrier, 
because there are only two real turning points. The second 
region is when the intermediate potential well is actually 
seen; the value of the energy in this case is 0 < H < V max' 

When H> Vmax we have the super-barrier transmission. All 
the cases are given in Fig. 3 in the same way as the simple 
barrier case was represented in Fig. 1. Restrictions on pa­
rameter m are indicated where necessary; we have also indi­
cated the zones where (t) is imaginary [when V(x) > H]. 

The relations between the different magnitudes required 
are for H <0, 

2 2A 
(t) = , 

,uO - 2m) 

H = - m/-l{t)2x~ /2; 

for 0 < H < V max and the solution in the well, 

x.de wt 

x.newt 

(mc1l2) 

(x.l",,) dn ""I sc wI 

(m>1I2) 

""L 
-x 

(29) 

FIG. 3. The generic potential V(x) = Ax2 + Bx', with A greater than zero 
and B less than zero, showing the classical solutions of the equation of mo­
tion, in terms of Jacobi elliptic functions with parameter m, in the different 
regions and for the following initial conditions: for E < Vma. the initial con­
ditions are x(O) = xo, x(O) = 0, for E> Vma. they are x(O) = 0, 
x(O) = xo. There are other solutions in all regions for the different types of 
initial conditions, but only the solutions used in our calculations are given. 
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2 2A 
(t) =----

/-l(l+m)' 
(30) 

H=/-lolxU2; 

and outside the barriers, 

2 2A 2 - /-l{t)2 H __ m,u{t)2x~ 
(t) = /-l(l + m)' Xo = --U;-' 2 (31) 

For H> Vmax the relations are the same as for the simple 
barrier case, Eq. (20), because the solution is of the same 
form, the distinctive feature being the value of the parameter 
m. 

A. Sub-barrier transmission 

For H < 0 the calculations are the same as in the simple 
barrier case. 

In the region 0 <H < Vmax the expression for the coeffi­
cient is given in many textbooks on quantum mechan­
iCs. 5•

22
,23 In the JWKB approximation it is 

T=exp[ -2(Ku + KIV»/4cos2Lm (32) 

with 

Ku = il-llbp1(X')dX" K IV = il-I[PI(X')dX', 

Lm = il- 1icp2 (X')dX" 
(33) 

and 

PI(X) = {2/-l[V(x) _E]}1/2, P2(X) =ipl(X), (34) 

where a, b, c, and d are the four real turning points. In our 
case Ku = K IV because of the symmetry of the potential. 
Using the corresponding elliptic functions shown in Fig. 3, 
Eqs. (30) and (33), and following a process similar to the 
case of the simple barrier in sub-barrier transmission, we 
obtain 

and 

or 

and 

KIl =KIV 

= (l/3il)(4/-l2H3/m3IB I) J/4[ (1 + m)E'-2mK'] 
(35) 

Lm = (2I3il)(4/-l2m/H3IB I )114[ (1 + m)E - mIK], 
(36) 

Ku = K IV = - (H /3mil)[2/-l(l + m)/A Jl/2 

X[(l+m)E'-2mK'] (37) 

Lm = (2H /3mil)[2Il(l + m)/A] 1/2[ (1 + m)E - mIK]. 
(38) 

In this way, we now have two equivalent expressions for 
the transmission coefficient as a function of known data: 
parameter of the elliptic functions, coefficients of the poten­
tial, and incident energy. 

B. Super-barrier case 

As we can see in Fig. 3, for this case the elliptic function 
solution is Eq. (19), but with m >~. The expression for the 
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transmission coefficient can be found in Ref. 3. Then we 
have 

T= exp[ - 2(KI + K 2») 

(39) 

with 

KI = -If'q(Z)dzl, K2 = -li~4q(Z)dzl, (40) 

and 

s = [1 + exp( - 2KI)]1/2[ 1 + exp( - 2K2 ») 1/2. 

The a term can be changed to 

a = L - (0'1 + 0'2)' 

where 

L = \ Re{'q(Z)dZ I 

(41) 

(42) 

(43) 

and XI' X 2' X 3' and X 4 are the four complex turning points; 
q(z) is as defined in the simple super-barrier transmission 
case. The quantities 0'1 and 0'2 are real and can be approxi­
mated by3 

0'1 = O'(KI/1r) , 0'2 = 0'(K2/1r) , 

where 

(44) 

0'( : ) = ~ { : In 1 : 1- : + arg r [~ - i( :) ]}, 
(45) 

Ford et al.24 have calculated the quantum effects near to the 
potential maximum: 

~ argr[! -(:)] = - ;1T[ln(:J
2 

+ (!r)T
/4 

(46) 

with r = 1.781 07 ... If we join all the preceding results, we 

T 10 

O. 

08 

01 

06 

o~ 

O. 

0) 

0.1 

01 

0 
0 

Eo E, 

) 

A =10 

B =·01 

'4.,,, 2.5 

~ E 

FIG. 4. Transmission coefficient versus total energy for the potential 
Vex) = x2 

- O.lx4. The broken vertical line shows the position ofpotential 
maximum. 
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FIG. 5. The same as Fig. 4 for the potential Vex) = x 2 - O.03X4. 

then have Connor's expression25 for the transmission coeffi­
cient. 

If we approximate a by L, we get Ponomarev's for­
mula.26 This only gives a good approximation for energy 
values far from the potential maxima, because the contribu­
tion of 0' I and 0'2 in the zone near the maxima can be impor­
tant. 

In our case, due to the symmetry of the potential we 
have K I = K2• We must also evaluate the integral for L, Eq. 
(43), where the limits arexz andx3• We change to the more 
convenient t variable and find the integration limits as in 
Appendix A. The resultant expressions are similar to the 
simple super-barrier case except that now m > !. 
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FIG. 6. The same as Fig. 4 for the potential Vex) = x 2 - O.05X4. 
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FIG. 7. The same as Fig. 4 for the potential VeX) = x 2 
- O.07X4. 

Some examples are shown in Figs. 4-8. In Figs. 4-7 we 
have plotted T versus energy E with E> O. For given A and 
D, T is zero when E < O. In Fig. 8 we can compare the Pono­
marev26 and the Connor25 formulas. These figures show the 
discontinuity of T near the minimum and maxima because of 
the nonvalidity of the approximation used in these regions. 
In all the figures one observes the existence of resonances 
below the maxima, they appear in the places calculated by 
Diaz et al. 15 using a JWKB calculation for the energy levels 
in a potential well. Moreover, the value of T oscillates some­
what when E> Vmax before approaching unity. 

o. 

" 
/ 

,-/ 
01 

06 

OJ 

01 

01 

/ 
I 

/ 

/ 
/ 

/ ,-

A : 07 

B : -10 

~.:01225 

O~'~------~------~lO------~l~O------~l~O--E-J 

FIG. 8. T versus E for the potential Vex) = O.7x2 
- x' calculated in the 

Ponomarev approximation (full line) and the Connor approximation 
(broken line). 
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APPENDIX A: TURNING POINTS AND INTEGRATION 
LIMITS IN ABOVE-BARRIER TRANSMISSION 

The turning points are the solutions of V(x) = H. Using 
the results of Eq. (20), after some algebraic manipUlation, 
we obtain 

x 2= (xolw)2(2k2-1 ±2ikk') 

with k 2 = m and k' = I - m = mi' This can be written as 

X= (xolw)( ±k±ik') 

so that the four turning points are pairwise symmetrical 
complex conjugates. 

The calculation of the integration limits is the same for 
all cases. We give only one of them, X3 = (xolw) (k + ik '). 
From this one obtains 

X3 = (xolw )(sn wt3 dn 1Ut3/cn wt3). 

Ifwe take the square of this expression and use the properties 
of the elliptic functions,20 then 

k 2sn4 wt3 - [I + (k+ik')2]sn21Ut3+ (k+ik')2=O 

with the solution 

sn2wt3 = (k + ik ')/k 
or20,21 

wt3 = 3(K + iK')/2. 

APPENDIX B: NONCOMPLETE ELLIPTIC INTEGRALS 
OFTHESECOND KINDCALCULATEDATTHE TURNING 
POINTS 

We preferred not to make a series expansion for the cal­
culation of these integrals, and instead to look for an analytic 
expression. The definition of Jacobi's zeta function is 

Z(u + iV,k) = E(u + iv,k) - (E /K) (u + iv). (BI) 

One property of this function is 21 

Z(u + iV,k) = {Z(u,k) 

+ [k 2 sn(u,k)cn(u,k)dn(u,k)sn2(v,k')] 

X [I - sn2(v,k ')dn2(u,k)] -I} 

- i{Z(v,k') + v1T/2KK' 

- [dn2(u,k)cn(v,k ')sn(v,k ')dn(v,k')] 

X [I - sn2(v,k ')dn2(u,k)] -I}. 

Finding the value of E(u + iV,k) from (BI) and using 

Z(u,k) = E(u,k) - (E /K)u, 

Z(v,k') = E(v,k') - (E'/K')v 

we obtain 

E(u + iV,k) 

= {E(u,k) + [k 2 sn(u,k)cn(u,k)dn(u,k)sn2(v,k')] 

X [I - sn2(v,k ')dn2(u,k)] -I} 
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- i{E(v,k') - (E /K + E'/K')v + V1r/2KK' 

- [dn(u,k)cn(v,k ')sn(v,k ')dn(v,k')] 

x [1 - sn2(v,k ')dn2(u,k)] -I}. 

Let us look at the calculation in detail for the turning 
point used in Appendix A. We must use the following rela­
tions for elliptic functions21 of argument u + iv­
= 3(K + iK')/2: 

sn(3K/2,k) =sn(K/2,k) = (1 +k')-1/2, 

cn(3K /2,k) = - [k '/(1 + k')] 1/2, 

dn(3K/2,k) = (k')1/2, 

sn(3K '/2,k') = (1 + k) -112, 

cn(3K'/2,k') = - [k/(1 +k)]1/2, 

dn(3K'/2,k') = (k)1/2. 

Then 

E [3(K ~ iK') ,k] 

= {E (3K k) _ [ k' (1 - k ') ]} 
2' (1+k-k') 

_ i[Ee~',k ') - 3 (EK'/K +2E ' -1T/2K) 

kk' ] + . 
(1 + k - k') 

(B2) 

The problem now is to calculateE( 3K /2,k) andE( 3K ' / 
2,k '). We use Eq. (BI) in the form 

Z(u + v,k) = E(u + v,k) - (E /K) (u + v) 

and21 

Z(u + v,k) = Z(u,k) + Z(v,k) 

- k 2 sn(u,k)sn(v,k)sn(u + v,k). 

Then 

EC:,k )=Z(~,k )+Z(K,k) -k2sn(~,k) 

XSn(K,k)Sn( ~ + K,k ) + ~ + E. 

Using Eq. (BI) again, taking into consideration the 
known values of the elliptic functions, and with21 
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E(K /2,k) = [E + (1 - k')]l2 

we obtain 

E(3K 12,k) = [3E - (1- k') ]12. 

The same procedure can be used to find 

E(3K'/2,k') = [3E' + (k-I)]l2. 

These results substituted into Eq. (B2) give Eq. (25). 
For the other three turning points the same method is 

followed. 
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It is shown how to analytically continue the Faddeev equation in the second sheet of the 
complex energy plane when one has a local two-body interaction. 

I. INTRODUCTION 

In scattering theory, virtual states and resonances are 
associated with poles of the on-the-energy-shell S matrix on 
the unphysical sheet of the complex energy plane. If such 
poles are close to the positive real axis (physical scattering 
region), then scattering observables like phase shifts are very 
strongly influenced. In two-body problems the situation is 
very clear: in general one only has to obtain Jost functions 
and to look for zeros corresponding to poles of the on-shell S 
matrix. I Virtual states correspond to poles at real negative 
energies, whereas resonances correspond to pairs of complex 
conjugate poles on the second sheet. For short-ranged poten­
tials the above statement is at most an easy numerical exer­
cise. Three-body systems, however, are essentially more 
complicated. For such a system few proposals have been 
made in order to calculate resonances and virtual states. 
Here we discuss briefly the ideas of Girard and Fuda2 (GF), 
Fonseca, Tomio, and Adhikari3 (FTA), Pearce and Afnan4 

(PA), and GiockIes5 (G). The GF method uses partial wave 
dispersion relations and numerically continues the approxi­
mate solution of the partial wave N /D equations for the neu­
tron/deuteron problem to the relevant unphysical sheet. 
The second proposal (FTA) analytically continues the ap­
proximate solution of the Faddeev equation (calculated in 
the first sheet of energy) with known analytic properties 
onto the unphysical sheet associated with the lowest scatter­
ing threshold. They applied this method to study Efimov 
virtual states in the three-boson Amado model. The. (P A) 
method reduces the finding of resonances to the solution of 
an auxiliary eigenvalue Faddeev equation for complex ener­
gies. They applied this method to 1Td elastic scattering with 
coupling to the N!::t. channel. GlockIe's method, however, 
analytically continues Faddeev's equation (before solution) 
into the unphysical sheet of energy. It was first applied to 
study the S-matrix pole trajectory in a three-neutron model5 

and more recently to calculate the virtual state of the triton 
where a two-pion exchange three-nucleon force was pres­
ent.6 

To solve the Faddeev equation (on the first or the sec­
ond sheet of the complex energy plane) for a system interact­
ing via local two-body potentials, we must solve in general a 
coupled set of two-dimensional integral equations. To avoid 
the complications of two-dimensional integral equations, the 
above methods use separable two-nucleon interactions. This 
reduces the problem to a coupled set of one-dimensional in­
tegral equations. Calculations of virtual states and reson-

aj Present address: Departamento de Fisica, Universidade Federal Flumin­
ense, 24.000 Niter6i-RJ, Brazil. 

ances for a three-nucleon system interacting via a local two­
nucleon potential do not exist to the best of our knowledge. 
The theoretical investigation of the Faddeev's equation for 
such a problem is by itself an interesting subject of scattering 
theory and would have several applications in physics. 

In this paper, using the G method, we show how to ana­
lytically continue Faddeev's equation for a system of three 
bosons interacting via local two-body potentials. It is done 
conveniently using some aspects of the formulation of Karls­
son and Zeiger7 [hereafter (KZ)] ofFaddeev's equation. In 
reality we just use the idea ofKZ formulation concerning the 
two-body t matrix written in its half-off-the-energy-shell 
form. It has the advantage that the three-body energy, in­
stead of appearing in the off-energy-shell t-matrix (as in the 
usual form of the Faddeev equation), appears in the resol­
vent operator of the equation. This fact turns out to be im­
portant in our approach in order to perform the previously 
mentioned analytical continuation. 

In order to make the paper more consistent we present 
in Sec. II the G method to a two-body system. In Sec. III we 
present how to continue the Faddeev equation onto the sec­
ond sheet of energy associated with the lowest scattering 
threshold if we have a local potential. 

II. TWO-NUCLEON SYSTEM 

We start with the S-wave Schrodinger equation in mo­
mentum space (h 2m = I), 

tf;( p) = roo p'2 dp' V( p, p')tf;( p') (1) 
)0 E_p,2 ' 

where p is the relative momentum between two nucleons and 
m is the mass of each nucleon. The integration limits in Eq. 
( I) and in the rest of the paper extend from 0 to 00. For a 
local interaction V( p, p') is given by 

V(p,p') =_2_ roo drsin(pr) sin(p'r)V(r). (2) 
1TPP' )0 

For instance, if we put the Reid I So potential8 in (I), the 
system does not support a bound state. At this point we are 
on the first sheet of energy. First the G method generalizes 
( I) to the following form: 

Tf(E)tf;(p) =f p'2 dP' V(p,p')tf;(p') . (3) 
E_p'2 

Since the kernel of the equation is compact, provided VCr) 
satisfies certain bounds, there exists an infinite number of 
discrete eigenValues Tf. Equation (3) is Eq. (I) with poten­
tial V /Tf. Now for some Tf < 1 Eq. (2) has a nontrivial solu­
tion. In a classical work9 Weinberg showed that Tf(E) is a 
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monotomic function of energy (E < 0). If 1] increases, then E 
increases, too. The idea of the analytical continuation is 
shown in Fig. 1. Sections I and II refer to first (physical) and 
second (unphysical) sheets of the complex energy plane. 
Equation (3) has a square-root unitarity cut along the real 
positive energy axis, shown in Fig. 1. Our aim is to analyti­
cally continue Eq. (3) through the square-root unitarity cut 
and look for the pole in the second sheet. The pole in the first 
sheet corresponds to some 1] < 1. As 1] increases E b follows 
the indicated arrow. Ifwe approach the upper rim of the cut 

(1] -+ 1) we encounter a pole singularity in p' = Po = .[E. 
Once the analyticity of V( p,p') and t/!( p') in the neighbor­
hood of Po is established we can deform the path of integra­
tion in p' away from the real axis near p' = .[E. It allows us 
to move with E onto the upper rim of the cut and even across 
the cut onto the lower half-plane of the second sheet. Then 
the path of integration is shifted back to the real axis. There­
by one sweeps over the pole Po = - i.JlET and picks up a 
residue term. It means that, in place of Eq. (3), we have 

1]I1(E)t/JI(p) = foo p,2dp' V(p,p')fI(p') 
Jo p~ _p,2 

The superscript II indicates that this equation is valid in the 
second sheet of energy. The analyticity of 1](E) is extensive­
ly discussed in Ref. 10. In order to obtain a closed set of 
integral equations we define 

1]I1(E)fI( Po) = foo p,2 dp' V~PO,p:;fI( p') 
Jo po-p 

-i'rrpoV(po,po) t/JI(po)' (4b) 

By solving set (4) we calculate the virtual state (Ev) oftwo 
nucleon in singlet state interacting via the Reid soft core 
potential. The condition 

1]I1(Ev) = 1 (5) 

gives us 
Ev = - 0.1218 MeV. 

Our value leads credence to the result obtained in Ref. 3. 

III. THREE-BODY SYSTEM 

To simplify the discussion we take a system of three 
identical bosons with mass m (h = m = 1) interacting 
through a local potential. The Faddeev equation for bound 
state (5 wave) in the momentum space reads9 

where 

_M ~_--IlC--:=I:='r:=f=-__ Ref 
fb-i 

(6) 

_M _-_--:Il£--El=~I=f=-__ Ref 
f~i 

FIG. 1. The first and the second sheet of the complex energy plane. The 
positions of the ground state and virtual states are indicated. 
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FIG. 2. Deformation of the path of integration necessary for continuation to 
the second sheet. 

1Tt = ~! q2 + q,2 + qq'x and 1T2 = ~ q2 +! q'2 + qq'x . 

(7) 

In Eq. (6) P refers to the Jacobi relative momentum of two 
particles, q denotes the relative momentum of the center of 
mass of the pair and the remaining particle, t is the two-body 
off-the-energy-shell scattering amplitude in the three-body 
space, and E is the three-body energy. At this point it is 
interesting to see that the reduction of (6) when the interac­
tion is separable5 is given by 

F -loo q,2 dq' Z(q,q')F(q') 
(q) - E ,2 E ' 

o -~q - 2 
(8) 

where Z (the "effective potential") is related to form factors 
and E2 is the two-body binding energy. The amplitude F 
satisfying (8) has two unitarity cuts starting at the elastic 
scattering and breakup thresholds. The former corresponds 
to a square-root cut. Equation (8) is formally equivalent to 
Eq. (3). In Refs. 5 and 6 the analytical continuation is done 
as in Sec. II. 

In contrast to Eq. (8), Eq. (6) without modifications 
needs a more detailed study in order to be analytically con­
tinued into the second sheet of energy. Note that the cut 
arising from the two-body t matrix in the three-body space is 
hidden in the variables (E - ~ q2) and 1Tt • This fact makes it 
difficult to perform a direct contour deformation in the q' 
plane to the second sheet of energy. In order to obtain a 
formal equivalence between Eq. (6) and Eq. (8) we use the 
idea of Karlsson and Zeiger. 7 It consists of substituting the t 
matrix into Eq. (6) in the form 

t(Z) = V + VG(Z) V, (9) 

with the complete propagator G(Z) in its spectral represen­
tation 

G(z)=L I¢b)(¢bl + foo K
2
dKI¢t)(¢tl, 

b Z - Eb Jo Z - EK 
( 10) 

where Z = E - ~ l, I ¢b)' Eb, I ¢t), and EK refers to two­
body bound-state wave function, binding energy, outgoing 
scattering state, and kinetic energy, respectively. To avoid 
unnecessary SUbscripts we restrict ourselves to the case 
where just one bound state exists, namely Eb = E2. With 
such consideration the t matrix of Eq. (6) can be written as 

t( p,1Tt ,E _ ~ q2) 

= V(p 1T ) + (pWI ¢2)( ¢2WI1Tt ) 
, t E 3 2 E - .. q - 2 

lOOK 2dK (pWIt/!tHt/!tWI1Tt) 
+ 2 

o E-~q -EK 
(11) 
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This equation relates the off-the-energy-shell t matrix with 
its half-energy-shell form. Note that 

(plVl <Pt)( <pt IV 111'1) = t +(p,K)t(K,1TI ) . (12) 

By substituting Eq. (11) into Eq. (6) we have 

1 i"" II t/J( p,q) = E 2 3 2 q,2 dq' dx 
-p - .. q 0 -I 

{V( ) iooK2dKt+(P,K)t(K,1TI) 
X p,1TI + 2 

o E-iq -EK 

+ (plVl <P2)~<P21V11TI)} t/J(1T2,q') . (13) 
E-iq -E2 

Our aim now is to put (13) into the same structure as (8) 
where we know how to analytically continue the equation in 
the second sheet by the G method. In order to get it we 
introduce the following definitions: 

F(q) = i"" q'2 dq' J~ I dx( <p21V 111'1) t/J( 11'2' q') , 

Fo(p,q) = roo q,2dq' II dXV(p,1TI )t/J( 1T2,q'), (14) 
Jo -I 

FK(q) = r"" q'2dq'II dxt(K,1TI )t/J(1T2,q'). 
Jo -I 

With them, (13) becomes 

t/J(p,q) = ~ 2 {Fo(P,q) + (plVl t/J2) F(q) 
E-p -iq E-iq -E2 

i "" K 2 dK t + ( p,K)F K ( q) } 
+ 2 . 

o E-iq -EK 
(15) 

Now, using (15) the set of F's amplitudes satisfy the follow­
ing integral equations: 

F(q) = {Jq'2 dq'II dx[A(q,q:,x) F'(q') 
-I N(q,q,x) 

+JK2dK AK ( q,q',x) F ( ') 
NK (q,q',x) K q 

+ Bo(q,q',x) F. (11' q')]} 
N. ( , ) 0 2' , 

o q,q,x 

F ( ) = {J ,2 d ' II dx [AK ( q, q',x) F( ') 
K q q q N(') q 

-I q, q,x 

+ JK'2 dK' AKK , (q,q',x) F
K

, (q') 
N K, (q,q',x) 

(16a) 

+ BK(q,q',x) F. (11' ')]} (16b), 
N. ( 

, ) 0 2,q , 
o q,q,x 

Fo( p,q) = { J q'2 dq' II dx [ C( q, q:,x) F(q') 
-I N(q,q,x) 

J K2 dK CK ( q,q',x) , 
+ N ( ') FK(q) 

K q,q,x 

+ Co( q,q:,x) FO(1T2,q')]} , 
No( q,q ,x) 

( 16c) 

where 
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A(q,q',x) = (<P21V11TI)( 11'2 IV I <P2) , 

AK ( q,q',x) = ( <p21V 111'1) t + (11'2' K) , 

Bo(q,q',x) = (<p21 VI1TI ) , 

A KK , (q,q',x) = t + (1TI,K)t(K,1T2) , 

BK(q,q',x) = t(K,1TI ) , 

C(q,q',x) = V(p,1TI ) ( 11'2 IV I <P2)' 

CK(q,q',x) = V(p,1TI )t +( 1T2,K), 

Co(q,q',x) = V(p,1TI ), 

(17) 

No(q,q',x) =E - ~ - iq'2 =E _q2 - q,2 - qq'x, 

N(q,q',x) = (E-iq,2_E2)No(q,q',x), 

NK(q,q',x) = (E-iq'2_EK ) No(q,q',x) . 

As we can see, the set of integral equations ( 16) has now 
through N(q,q',x) the same explicit cut structure of (8). In 
other words, N (q ,q' ,x) generates the elastic scattering cut as 
shown in Fig. 3. The three-fragment channel cuts starting at 
E = 0 and generated by the free propagators No (q,q' ,x) are 
also indicated in Fig. 3. Before we start with the analytical 
continuation of set ( 16) we have to analyze the analyticity of 
F'sand the functions defined in (17). It was made in detail in 
Ref. 11. Here we should mention that such analyticity de­
pends on the form of the local potential V. For example, if V 
has a Yukawa form we may study the cut structure of the 
problem. In this case, a cut arising from V( p,1T) starts at 
11' = ± ipj2 [or equivalently at . 

q' = - 2qx ± 2i~ qZ( 1 - X 2) + Ilz 

and 

q' = - qx/2 ± (i/2)~q2(1 - x 2) + 41lz 

for Ix I < 1 and 0 < q < 00 ] • 

Therefore to obtain the singularity lines we need a numerical 
study to find the domain where the F's are analytical. Similar 
studies are necessary for each of the numerators of (16). 
Hence, we assume that the branch cuts arising from the nu­
merators of ( 16) are far from the region where we deform 
our path of integration. Now let us use the same recipe (G 
method) used in Sec. II and Refs. 5 and 6. Ifwe approach the 
upper rim of the cut, as indicated by the arrow in Fig. 3, we 
encounter a pole singularity in N(q,q',x). In the neighbor­
hood of the real q' axis, we can deform the path of integration 

in q' away from the real axis near q' = qo = ~~(E - E 2). 
With such prescription and generalization (as in Sec. II) 
F = KF -+ 1JF = KF; we obtain the analytical continuation 
for Eqs. (16), 

1JII(E)F II (q) 

= { ... } _ 41T iqo II dx A (q,qo,x) FII(qO) , 
3 . - I No(q,qo,x) 

1JII(E)F~ (q) 

-{ ... } 411'. JI dxAK(q,qo,x)FII( ) - --lqo qo , 
3 - I No(q,qo,x) 

(18a) 

1JII(E)F~I( p,q) 

= { ... } _ 411' iqo JI dx C(q,qo,x) FII(qO) , 
3 -I No(q,qo,x) 
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d:p: I '" 

FIG. 3. The first and the second sheet of the complex energy plane. The 
structure of the cuts are explained in text. 

where { ... } are the corresponding right-hand sides of Eqs. 
( 16). The superscript II indicates the second sheet of energy 
in the complex plane. In order to get a closed set, this equa­
tion has to be complemented by the following set of equa­
tions: 

(18b) 
1lII(E)P~I( p,qo) 

- { ... } _ 41r. II dx C(qo,qo,x) plI( ) 
- q-q lqo qo . 

- 0 3 _ I No (qo,qo,x) 

The set of equations ( 18a) and ( 18b) constitutes the desired 
formulation of the eigenvalue problem for the virtual states 
of three particle interacting via a local potential. Its energy 
Ev is determined through ll(Ev ) = 1. 

IV. SUMMARY 

We have shown how to analytically continue the Fad­
deev equation for a system of three particles interacting via a 
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local potential. From the structure of the set ( 18) we see that 
such a problem is much more complicated than the case 
when a separable interaction is present. Although the equa­
tions were presented for the simple case L = S = 0 (S being 
the total spin), a generalization seems to be quite trivial. 

Ifwe compare sets (18a) and (18b) with those obtained 
in Ref. 6 for separable potentials, calculations with local po­
tentials in the second sheet of energy seem to be quite in­
volved. In spite of that our study sheds light on the nature of 
such a calculation. 
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The standard definition of space-time perturbation is reexamined. It is seen that the 
noninvariance of the metric under identification gauge transformations is a consequence of the 
adopted zero signature in the fifth dimension of the space of space-times. An n-parameter 
extension of that definition is proposed, with a (4 + n) -dimensional fiat space of space-times 
with a nonsingular metric. It is shown that in the vicinity of a point in the background space­
time there is a geometrically defined family of perturbations, which are solutions of the 
Einstein-Yang-Mills equations. 

I. INTRODUCTION 

The idea of space-time perturbation has been in use 
since the beginning of general relativity and it remains an 
essential tool for astrophysics, cosmology, and quantum 
field theory in curved space-times. 1-9 Nonetheless, the cur­
rent definitions of space-time perturbations are not clear, at 
least in some respects. Intuitively one speaks of a fixed space­
time background (V4,g) and a perturbed space-time 
(V4(E),g(E) t, where the metric 

gij =gij + Ehii + "', 
is a solution of Einstein'S equations. Here E is a parameter 
(or a collection of parameters), and hi} is a field over the 
background. In one point of view the physical space is identi­
fied with the background and a perturbation of (V4 ,g) would 
be the fictious manifold ( V4 (E) ,g ( e»). Wben gij is replaced in 
Einstein-s equations, we obtain an approximate equation for 
hij as seen from an observer who supposedly remains unper­
turbed in the background. 

In another more realistic point of view, the physical 
space is identified with the perturbed manifold (V4(E).g(e») 
with respect to a fictious background (V4 ,g). Here a tetrad 
frame initially defined in the backgound changes continu­
ously with the parameter when the perturbation is carried on 
the tetrad fieJd itself. Then the perturbed metric is obtained 
by calculating the physical components of gij in the per­
turbed tetrad field. Again, replacing this metric in Einstein'S 
equations an approximate equation for hi} is obtained, with 
respect to the background. Since now that background is no 
longer the physical space, the resulting equation would not 
be truly physical. However, this second point of view is more 
general as it would include the first one as the limit when 
e-O. provided such a limit is properly defined. 

The limit of a space-time, when certain parameters tend 
to given values, was studied by Geroch 10 and later applied to 
a geometric definition of space-time perturbation by Stewart 
and Walker,u This definition, referred to here as the Ger­
och-Stewart-Walker (or GSW for short) definition, is cur­
rently used as the standard geometric definition of space­
time perturbation. 

In the GSW definition, the physical world in its dynami-

a) Permanent address. 

cal evolution is set in correspondence with a five-dimension­
al space ( V5, Y ), in which the various stages of that evolu­
tion are pictured as distinct members of a one-parameter 
family of embedded space-times (V4(e),g(e»), including the 
background (V4,g) as a boundary. Tbis family is character­
ized by a vector field in V5 transverse (not tangent) with 
respect to V4 • Tben a (one-parameter) perturbation of 
(V4,g) is defined by a one-parameter diffeomorphism of 
( V5, Y) which relates (V4,g) to any other member of the 
family along the integral curves of the transverse vector 
field. All points thus obtained are identified with a single 
point of the physical space by the identification map /: 
(family of embedded space-times) -+ (pbysical space). In a 
different language, this diffeomorphism can be described as 
a deformation of the background. 12 

A choice of distinct transverse vector fields corresponds 
to a choice of distinct families, distinct perturbations, and 
distinct identification maps. Since this choice is made inde­
pendently of the coordinates ofV4 , it is referred to as a choice 
of identification gauge and a transformation between trans­
verse vectors is called an identification gauge transforma­
tion. As is well known, the basic probelm associated with the 
GSW definition is that a choice of identification gauge usual­
ly imposes a coordinate condition on V4 (see Ref. 3). Thus 
the space-time perturbations, which are identification gauge 
invariant (igi), are said to be the only physically meaningful 
ones. However, when this definition is applied to the metric 
of V4 , it turns out that it can never be an igi quantity.l1·l3 
Therefore the intuitive idea of space-time perturbation as 
given by small deviations of the metric does not seem to fit 
well within the GSW definition. 

We notice that Gerocb's space of space-times has been 
conveniently chosen to have zero metric signature along the 
fifth dimension, so as to avoid measuring distances between 
two space-times. In fact, no dynamical principle has been 
proposed in the definition of the geometry of that space, so 
that the fifth dimension is devoid of physical significance. 
This situation is distinct but it reminds one of the criticism 
made by Einstein and Bergmann to tbe lack of physical sig­
nificance attached to the original five-space of Kaluza. 14.15 

Quite conceivably, if a space or a small portion of that space 
is filled with submanifolds which are identified with physical 
space, then it is likely to have some physical meaning. 

The purpose of this note is to present a modification of 
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the GSW definition of space-time perturbation where the 
space of space-times is replaced by a (4 + n) -dimensional 
fiat space M4 + n' n> 1. Consequently we have an n-param­
eter perturbation theory where the families of space-times 
are characterized by n orthogonal vector fields. The other 
major distinction from the GSW definition is that the metric 
of M4 + n is Minkowski-like with nonzero signature in all 
dimensions. 

In Sec. II we make a brief review of the GSW definition. 
Section III extends that definition to n parameters and con­
structs the corresponding field equations. The question of 
gauge invariance is left to a subsequent paper. 

The index notation is as follows: Greek indices refer to 
the higher-dimensional space and run from I to 5 in Sec. II 
and to 4 + n in Sec. III. Lowercase Latin indices always 
refer to the four-dimensional space-times and run from I to 
4. All capital Latin indices run from 5 to 4 + n. 

II. ONE·PARAMETER PERTURBATIONS 

Given any space-time (V4,g), it can always be locally 
and isometrically embedded in a curved five-dimensional 
space ( V5 , f1 ). The embedding is specified by a set of coordi­
nates yQ(Xi) functions of the space-time coordinates Xi such 
that 

- _ Q pea 
gij - Y;iY;j.y ap, (1) 

where the semicolon denotes covariant derivatives with re­
spect to gij' If Na is a vector field orthogonal to V4 we also 
have the equations 

y~NPf1 ap = 0, N aN Pf1 ap = ± K2, 
where K is a constant. 

(2) 

Equations (1 ) and (2) are the basic equations for deter­
mining the embedding of( V4,g) , assuming that the geometry 
of V5 is known. As previously mentioned, the GSW defini­
tion does not prescribe any physical principle to determine 
the metric f1 a{J' Instead, Eqs. (2) are made trivial with the 
assumption that K = 0: 

f1 = (f1 mn 0) 
ap 0 O· (3) 

In this case the only relevant equation is ( I ), which reduces 
to 

gij=I'('lif1mn' 

Here 1'(' = Y;;' can be thought of as a tetrad field over V4 • 

Since the Y;;' define an invertible matrix of rank 4 we may also 
write 

f1mn=I-liml-ljngij' (4) 

Consequently, an observer in V4 interprets f1 mn as the tetrad 
components of gij' This means tha!..!he choice of metric (3) 
reduces the extrinsic geometry of V4 to its Riemannian ge­
ometry, aided by tetrad formalism. 

Nonetheless the existence of the embedding space 
means that the normal vector field cannot be ignored. Let r; a 
denote a vector field in V5 such that it is not tangent to V4 (a 
transverse vector field), 

(5) 
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where the a i are arbitrary tangent components. To each r;a 
we associate a one-parameter diffeomorphism h. of V5 such 
that for a given point pE V4 , its orbit h. (p) is the integral 
curve of r; a. Now define a nonintersecting one-parameter 
family of four-manifolds V4(X

i ,s) , with the same differentia­
ble structure as V4 , and whose points lie in the orbits h. (p) 
for allp belonging to the embedding neighborhood ofV4 • In 
particular, V4 is the family member corresponding to s = O. 

IfQ denotes a geometrical object in V4 , the correspond­
ing object in V4 (Xi,S) is given by the appropriate action of the 
derivative map h ~ of h •. The change ofQ along r;a is given 
by the Lie derivative 

2' ,Q = lim{( h ~(Q) - h ~(Q)]/s}. ._0 
Therefore if s is sufficiently small so that its powers are ne­
glected, we obtain a linear perturbation of Q defined by 

(6) 

Higher-order perturbations may be obtained by repeated ap­
plication of (6). Thus for a k th-order perturbation we have 

(k) k sj 
Q = I ~j' Qj+l =2',Qj> Qo=Q· 

j=O J. 
In particular, the linear perturbation of the tetrad field is 

(7) 

When contracted with a geometrical object Q, this perturbed 
tetrad produces a perturbation on the tetrad (or physical) 
components of Q, with perturbation order depending on the 
rank ofQ. 

Now we are in position to restate the GSW definition of 
space-time perturbation. A member of the family V4(Xi,S) 

constructed above is a perturbation of V4 (the background) 
when its metric is induced by the metric of V5 via the per­
turbed tetrad 

(2) (I) (I) 

gij= 1'('lif1mn=t'('tigmn' (8) 

where we have denoted 

Therefore after reaching expression (8) the problem 
can be handled without further mention of the five-space. 
However, considerations on V5 are important to understand 
the difference between two perturbations of the same order. 
From (5) and (6) and the properties of Lie derivatives, the 
difference between two linear perturbations of Q produced 
by two transverse vector fields r; a,r; fa is 

(I) (1) 

Q' - Q = 2'sQ+ 2'7JQ, 

where 

sa = (s'a'; - sai)y~ 

is an arbitrary tangent vector and 

TJa = (s'a' - sa)Na 

(9) 

is a vector normal to V4 • With the adoption of the metric (3) 
for V5 , we do not have a measure for a so that we can always 
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choose a, a' such that 1Ja is a zero while S a remains arbitrary. 
Therefore the two perturbations of Q will be equal if 
.!£' sQ = 0 for any tangent vector S a. This condition cannot 
be satisfied except for a very special class of objects. In parti­
cular if Q = gij this would require the impossible condition 
that any tangent vector field should be a Killing vector field 
of V4 (see Ref. 11). 

One possible way out of the above difficulty is to remove 
the arbitrariness of S a by assigning a measure along the fifth 
dimension in such a way that 1Ja would still vanish but S a is a 
Killing vector field of V4 • Such a scheme would be better 
understood in a multiparameter perturbation program. 

III. MULTIPARAMETER PERTURBATIONS 

The embedding of a curved manifold into another 
curved manifold is a difficult problem of differential geome­
try. A simpler problem is to embed a Riemannian manifold 
into a flat space. In particular, for space-times there are nu­
merous known examples with varying dimensions and signa­
tures. 16 We may generically assume that V4 is locally and 
isometrically embedded in a flat space M 4n with 4 + n di­
mensionsandsignaturep( + ) + q( - ). Theseembeddings 
are specified by a set of Cartesian coordinates .xI'(Xi) such 
that 

(10) 

where 1JI'V denotes the Cartesian components of the metric of 
M4 + n and the comma denotes partial derivatives. 

When XI'(Xi) are real analytic functions of Xi we may 
use Friedman's adaptation of the Janet-Cartan theorem 
showing that ten dimensions are sufficient to embed analyti­
cally any four-dimensional space-time. 17 While most known 
embeddings fall in this category, there is no proof that all 
space-times can be analytically embedded and they probably 
cannot. In fact, if we consider the most general cases, includ­
ing regions that are near singularities, then it is likely that the 
analytic condition fails and the best we can hope is that these 
functions remain differentiable. In this case it has been 
shown that the maximum number of required dimensions 
rises to 14 (see Ref. 18). This limit is irrelevant to our pres­
ent considerations except for the fact that we expect to be 
dealing with 14 independent differential equations. 

If N ~ denotes n vector fields orthogonal to V4 , then 
besides (10) we also have the following equations: 

X':iN~1Jl'v =0, N~Ni1Jl'v = gAB =K2
EAOAB' (11) 

where now K is a nonzero constant, which for simplicity we 
take to be 1 and E A = ± 1 are the signature numbers. For 
the purpose of perturbation theory we assume that if the 
background (V4 ,g) has a certain embedding signature (p,q) 
then its perturbations also have the same signature. 

A generic transverse vector field in M4 + n has the gen­
eral expression 

;1' = 51' + XAN~, 
where again 51' denotes an arbitrary tangent vector. To com­
pare with Sec. II we may introduce the notation 

s = ~ gABX AX B and a single vector N I' = :xA N ~ / s, bearing 
in mind that the independent parameters are:xA. With this 
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notation the transverse vector reads 

;1' = Sl' + sNI' . 

As before, to each such vector we associate a diffeomor­
phism h. of M4+n such that for eachpeV4' its orbit is the 
integral curve of ;1', with parameter s. We may now intro­
duce an n-parameter family of embedded manifolds V4 (Xi,s) 
whose points lie in the orbits of h •. Therefore in the neigh­
borhood of V4 the points of the family can be expressed by 
the coordinates 

. . (azl') Zl'(x',s) =XI'(x') +s & + .... 

Assuming that s is sufficiently small, this expression can be 
approximated by a straight line (actually, since our embed­
ding space is flat, these lines are globally defined) 

(12) 

The identification map can be constructed as in the pre­
vious section. Supposing that the manifolds described by 
(12) are space-times, the various points p = h. (p), 
p' = h., (p), ... , associated with different values of sin (12) 
correspond to a single point in the physical space. For each 
set of independent vectors NA satisfying (11) we have one 
such identification map. In other words, different identifica­
tion maps are generated by pseudorotations of the vectors 
NA • For a fixed origin inV4 these transformations belong to 
thegroupSO(r,s) wherer( +) +s( -) denotes the signa­
ture of gAB' This group is a noninvariant subgroup of the 
homogeneous group of isometries of M4 + n' SO (p,q). This 
means that a transformation of SO (r,s) induces a transfor­
mation in the subspace tangent to V4 • Consequently, it is 
sufficient to calculate perturbations generated by the normal 
vectors N A and use the transformations of SO (r ,s) to change 
the identification gauge. Obviously, such a situation cannot 
exist in the five-dimensional case of the last section. It is 
interesting to notice that such construction can be general­
ized to other structures where the high-dimensional space is 
not necessarily an embedding space. 19 

The linear perturbation of a geometric object Q defined 
in V4 , corresponding to the normal direction N, or equiv­
alently to a choice of n normal vectors NA , is 

(I) 

Q = Q + s.!£' NQ = Q +:xA.!£' NA Q, ( 13) 

and in particular for the metric gij we have the linear n­
parameter perturbation 

(1) 

g ij = gij +:xA.!£' NAgij' 

We shall see that.!£' N gij is given by the second quadratic _ A 

form of V4 • 

Unlike (1), expression (10) cannot be reduced to a sim­
ple tetrad construction, but we can make use of a vielbein 
formulation. Defining the vielbein 1~ = X~, relating the 
Cartesian frame to a tangent frame in V4 , its iinear n-param­
eter perturbation is given by 

(I) 

I ~ = 7~ +:xA.!£' N)~ = 7~ + :xAN~,i' (14) 

where N~,i is given by Ref. 20, 
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N I-' -mnb XI-' -;;MNA NI-' A,i = -g imA ,n +l; iMA N' (15) 

and where 

bimA = -N~,iX~m17l-'v 

are the coefficients of the second quadratic form of V4 and 

AiMA = N~,iN~17l-'v 

are the components of the "torsion" vector. It has been ob­
served that these components transform as the Lie algebra 
components of a gauge potential under SO(r,s) (see Ref. 
21 ). Therefore, if the L AB denote the Lie algebra generators 
of that group, these geometric gauge potentials are 
Ai = AiABL AB. Using (15) the linear vielbein perturbation 
becomes 

(1) 

If = (87 -XAgmnbimA )l~ +x4gMNAiMAN~, (16) 

which is the same as az 1-'/ axi, where Z I-' is given by (12). 
Following the same idea as in Sec. II, we may define the 

n-parameter geometric perturbation of the background V4 as 
a member of the family of four-manifolds given by (12) 
whose metric is induced by 17l-'v via the perturbed vielbein 
(16) 

(2) (1) (1) 

g ij = I f I j17l-'v =gij +XAX7NA iMA AjNB' (17) 

where we have denoted 

gij =gij - 2X AbijA + x4xBgmnbimAbjnB' (18) 

Notice that by using ( 12), expression (17) is equivalent to 
(2) 

g ij = ZjZj17I-'V' (19) 

In the case ofthe GSW definition, the perturbed metric 
is simply replaced in Einstein's equations and these are 
solved in terms of t '('. Here we have a different situation 
because of the larger number of functions to be determined 
and therefore we also need an additional set of equations. 
These equations are derived from the integrability condi­
tions for (10) and (11), the Gauss-Codazzi-Ricci equa­
tions.20 

The next step would be to write Einstein's equations for 
gij and use the mentioned supplementary equations to deter­
mine the complete set of unknowns. A simpler but less 
straightforward method is to translate the metric of M4 + n to 
the Gaussian coordinate system formed by Xi and x4 and the 
equivalence of expressions (17) and (19) to obtain the fol­
lowing metric expression21

; 

YAB = Z~Z':P17l-'v 

= (gij + x4x7NAiMAAjNB XAAiMA). (20) 
XAA iMA gAB 

Then as follows from the analogy with the Kaluza-Klein 
metric ansatz, calculating R (y).Jdet'f ' 

R(g)~ - detg = - itr F2~ - detg, 
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where R (Y) and R (g) are the curvature scalars constructed 
with YaP andgij' respectively, and we have denoted 

Fij = aiAj - ajAi + ![Ai,Aj]' 

F 2 _,.im jnF F 
-6 g ij mn' 

(21) 

Therefore from (21) we may construct an equality of action 
functional whose variations with respect to gij and Ai give 
the equations 

DiFij=O, 
(22) 

whereDi = Vi + !Ai and Vi is the covariant derivative with 
respect to gij' Here Tij(F) denotes the Yang-Mills energy 
momentum tensor corresponding to the torsion vector Ai' 
All contractions are made with respect to gij (see Ref. 21). 

Since gij is given as the background metric, the 14 Ein­
stein-Yang-Mills equations (22) can be interpreted as 
equations on the second quadratic form and the torsion vec­
tor. While the latter has an interpretation as a Yang-Mills 
potential with gauge group SO (r,s), the former has not yet a 
clear physical interpretation. 
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Using a multiparameter definition of space-time perturbation in a (4 + n) -dimensional flat 
space, the question of identification gauge invariance of the background metric is examined. It 
is shown that when the allowed identification gauge transformations are given by rotations in 
the parameter space, then the background metric is invariant. A possible association with 
Kaluza-Klein theory is also examined. 

I. INTRODUCTION 

In a previous paper we discussed the properties of space­
time perturbations as defined by Geroch, Stewart, and 
Walker (GSW) and proposed a reformulation of that defini­
tion) (hereafter referred to as I). The new definition has n 
parameters with a nonsingular metric in the parameter 
space. Each perturbation is a solution of Einstein-Yang­
Mills equations where the gauge potential is the torsion vec­
tor of the background. 

The question of gauge invariance is discussed in the 
present paper. It is found that for the physically meaningful 
identification gauge changes, the background metric can be 
made gauge invariant. Because we have to work with a viel­
bein instead of a tetrad perturbation, the extra dimensions 
cannot be dispensed with as it is done in the case of the GSW 
definition. Consequently the space of space-times may have 
a physical meaning. In this respect the analogy with Kaluza­
Klein theory mentioned in I is improved, with the assump­
tion that the internal space of that theory is replaced by the 
space of perturbation parameters. Indeed, it is shown that 
this parameter space is naturally bounded and that the iden­
tification map provides the necessary identification of points 
located at the boundaries. 

The notation and index convention is the same as in I 
and an equation (xx) of that paper will be referred to as (xx­
I). 

II. GAUGE INVARIANCE 

As it was seen in I, the GSW definition of space-time 
perturbation produces a gauge dependence on the metric 
perturbations, essentially because the geometry of the five­
dimensional space Vs is chosen to have zero signature along 
the fifth dimension. The situation would be different if that 
metric had a nonzero signature. In fact let us suppose that 
K = 1 in expression (2-1). Then a transverse vector field~" 
in Vs is given by (N a = 0 for a#5) 

~a = a)J~i + aNa, 

where now the value of a can be measured. Therefore when 
calculating the difference between two perturbations as in 
(9-1) 

.) Permanent address. 

the normal vector 1/a = (s'a' - sa)N" cannot be made zero 
by arbitrary choices of a. It will vanish when a's' = as, which 
corresponds to saying that the gauge transformation is an 
isometry in the parameter space, with the important conse­
quence that in this case the resulting tangent vector S in (9-
I) is no longer arbitrary, but depends on that isometry. That 
is, the condition for the two perturbations to be equal be­
comes an equation in S, .Y 5 Q = O. Therefore the resulting 
coordinate condition is improved (but not eliminated) with 
respect to the case where K = O. In order to completely 
eliminate the coordinate gauges, the equation .Y s Q = 0 
should reduce to an identity, but of course, this cannot be 
done for a generic Q. It is, however, possible to select specific 
geometrical objects Q such that S generates a symmetry of Q. 
In particular, because the current definitions of space-time 
perturbations rely on the perturbations of the metric, we 
would be interested in a gauge invariant metric perturbation 
and by the above argument this would be the case when S is a 
Killing vector field of V4 • 

The embedding of V4 in M4 + n is defined up to an iso­
metry of M4 + n' In other words, besides the manifold map­
ping group of V4 we have an embedding symmetry group 
SO (p,q). In terms of Gaussian coordinates an infinitesimal 
transformation of this group is x'a = X" + s a, where 
S (,,;/J) = 0, the covariant derivative being calculated with re­
spect to r a,B given by (20-1). These equations split as 

X'i = Xi + S i, S U;j) = 0, S U;A) = 0, 

X,A = ~ + SA, S (A;B) = O. 
Since we are interested in evaluating these transformations 
in the background, these Killing's equations must be project­
ed in V4 : 

S U;j) Ix-< = 0 = 0, S U;A) Ix-< = 0 = 0, S (A;B) Ix-< = 0 = O. 

After using the metric r a,B and the corresponding Christof­
fell symbols we obtain the projected equations2 

(1) 

(2) 

(3) 

where we have denotedt" = salx-<=o and the covariant de­
rivative in (1) refers to Kij' Notice that in the last two equa-
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tions we have partial derivatives. IfE denotes the group of 
coordinate transformations in V4 , X'i = Xi + S i, where g i 
satisfy (1) and G denotes the group of transformations 
X'A =~ + SA, where SA satisfy (3), then Eq. (2) says that 
these groups are not invariant subgroups of the embedding 
symmetry SO (p,q), even when it is restricted to V4 • Notice 
from (3) that for an observer in V4 the subgroup G describes 
local isometries of the parameter space with metric gAB' The 
general solution of (3) is 

(4) 

where the O'P depend only on Xi and e (afl) = r(are~) = O. 
The projected S A is 

gA=SAIx4=O =e!(xi)xm. 

Therefore points in the background are not necessarily 
mapped into the background after a transformation of G. We 
may define a physical gauge transformation as the one that 
preserves the space-time definition (~= O=>x,A = 0), i.e., 
such that SA 1x4 =o = 0, or 

SA = e~ (Xi)XB. (5) 

In this case Eqs. (1 )-(3) become 

"i-U;j)=O "i-. =b. "i-m E.-(A,B)=O (6) 
!t ':'I,A lrnA ~ , ~ • 

Therefore with the condition g A = 0, E and G become the 
groups ofisometries ofgij and gAB , respectively, but still not 
invariant subgroups of SO (p,q). In other words if we take an 
isometry of gAB then we have an induced isometry in V4 • 

We may now return to the problem of identification 
gauge invariance for the multiparameter perturbation de­
fined in I. As stated in that paper, our identification map is 
defined by a combination of the vectors NA for a given set of 
parameters ~ 

r;a =~N~, 
leading to the perturbation (13-1). Applying to the back­
ground metric gij we obtain 

(1) 

g ij =gij +~ 2" NAgij' 

If we now change the vector r; a by means of an isometric 
transformation of the parameter space, a new perturbation is 
generated, 

(I) 
I - IA CP -

gij =gij +X ..z NAgij' 

where N ~ denotes the corresponding change in the set of 
vectors NA • The difference between the two perturbations is 

(I) (I) 
I CP -gij - gij = -!- (x,AN:" -x4NA)gij' 

Now if the group of isometries of gAB were an invariant 
subgroup of SO (p,q), then~NA would be an invariant and 
the two perturbations would be equal. However, as follows 
from (1)-(3) this is not the case and X'AN~ -~NA will 
have tangent and normal components. In fact, consider an 
infinitesimal transformation ~ -+ x4 + SA, where S A is given 
by (4). From (1) and (2) it follows that there is an induced 
transformation Xi -+ Xi + S i so that the vector field N A trans­
forms as 
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axB axm 
NA-+NA' =--NB +--1 

ax'A ax'A m' 

where 1m is tangent to V4 • Using (4) and writing 
S i(Xi,~) = 0 :"xm + e ~~, it follows that 

N~ =NA - e!NB - e';lm' 

so that 

X'AN~ -~NA =~e';lm +xmlm - e!xmNB, 

and 
(1) (I) 

gij - gij = 2" xgij + 2" sgij + 2" "gij' 

where X and S are tangent vectors with components along 1m 
given by Xm = e ';~, S m = x m

, and 1] is a normal vector 
with components along NA given by 1]A = e !xm. Therefore 
if the two perturbations differ by a coordinate transforma­
tion in M4+ n defined by (1 )-(3), then they are distinct. 
However, the transformations (1 )-( 3) do not preserve the 
space-time definition (i.e., points in space-time do not neces­
sarily remain in space-time) unless g A = 0, which means 
e! = 0 and consequently if we restrict our gauge group to 
satisfy g A = 0, we have in view of (6) that S is a Killing 

(1) (1) 

vector field and gij - gij = SU;j) = O. In other words, gauge 

transformations such that gA = 0 produce gauge invariant 
metric perturbations. Notice that ifV4 does not admit a Kill­
ing vector field, the only transformation induced in V4 from 
(6) is the identity. It is also important to note that the re­
striction of the gauge transformation to g A = 0, is the only 
meaningful type of gauge transformation allowed by an ob­
server sitting in physical space. 

III. GAUGE-FREE PERTURBATIONS 

From the expression (17-1) we see that the perturba­
tion of the background metric induced by the vielbein per­
turbation is given by the second quadratic form bijA and by 
the torsion vector A iAB' On the other hand, comparing (20-
I) with the Kaluza-Klein metric ansatz we notice that the 
background metric in that ansatz is replaced by 

gij =gij - ~bijA +~xBgmnbimAbjnB' (7) 

which does not depend onA iAB • Therefore if we wish to pur­
sue an analogy with Kaluza-Klein theory we should look at 
(7) as a "gauge-free" metric perturbation. Indeed the geo­
metrical implication of AiAB is to bend the family of embed­
ded space-times with respect to NA • This follows from (16-
I), which shows that contrary to 7':", the perturbed vielbein 
(I) 

I ~ is not orthogonal to NA • In other words the derivative 
map h ~ does not preserve the orthogonality to NA . 

Supposing that the "gauge potentials" AiAB are momen­
tarily switched off, the perturbed vielbein becomes [from 
(14-1) and (16-1)] 

(I) 

lim/f = Yj =gmn(gim -~bimA)X~, 
A_O 

(8) 

which is a set of vectors orthogonal to NA for any~. The 
corresponding family of space-time is of course different 
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from that described by (12-1). The points of the new family 
can be obtained by integrating (8): 

Y~(Xi,xA) =X~+~V~, (9) 

where 

V~ = - fbimAgmnx;,. dXi. 

The metric tensor in each member of this family, induced by 
7J~" via (8), is 

gij = Y;; Y~j7J~" = gmn(gim - ~bimA) %n - :xBbj"B)' 
(10) 

which is precisely (7). Therefore the family of manifolds 
described by (9) with metric (10) defines a new class of 
space-time perturbation induced solely by the second qua­
dratic form without participation of the torsion vector. The 
identification map can be defined with the same parameter s 
as in I and with the vector field V~ = ~V~/s so that 

h~(p) = y~(XI,s) =X~ +sV~. (11) 

The identification map itself identifies all points along the 
curve (11) with a single point in physical space. 

Since Y;;N~7J~" = 0, the metric of M H " in terms of 
the vielbein Y:a is 

, _ (gij 0 ) 
YaP - 0 - . 

gAB 
(12) 

Therefore given a background V4 its "gauge-free" per­
turbation is any member of the family of space-times embed­
ded in M H " with metric given by ( 10). These perturbations 
satisfy Einstein's vacuum field equations Gij (g) = 0 derived 
from (22-1) asAUB ...... 0. Interesting enough, when~ is suf­
ficiently small that equation produces a linear wave equation 

(I) 

for b/jA . Indeed for gij = gij + ~bijA and following the gen­
eral procedure oflinearization3 we obtain 02bijA = 0, where 
0 2 is calculated with respect to the background g ij' There­
fore for an observer in V4 it is the second quadratic form 
rather than the metric which is interpretable as the graviton. 

Unlike Geroch's space of space-times, which is bounded 
at the background (~ = 0) only, here we have another nat­
ural limit. Indeed, since det r' #0 then det g#O and from 
(10) it follows that the parameters ~ are subjected to 

(13) 

In other words, ~ must not coincide with any of the curva­
ture radii p! of V4 corresponding to a principal direction 
dxm and one of the normals NA (Ref. 4). Notice that ( 13) is 
trivially satisfied when ~ = O. Therefore the allowed do­
main of the perturbation parameters is ~E[O,a(p)] where 
a(p) <p! for any values of A and m. In order to allow for 
group properties we should also include negative values of ~ 
so that we could expand the range of ~ to ~ 
E [ - a (p ) ,a (p ) ]. The resulting picture is that of a local strip 
in M4 + n filled with space-time perturbations (such a picture 
also holds with slight modifications when theAuB are pres­
ent) generated by b/jA . When a(p) is small these perturba­
tions appear as oscillations of b ijA around the background 
geometry. Evidently the values of a (p ) depend on the geom-
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FIG. 1. Local space-time perturbations induced by bija' 

etry of the background but from the point of view of high­
dimensional physics, some other assumptions may be re­
quired to determine its size. [For example assuming a 
gravitational Casimir-like force between those boundaries 
then under certain conditions a (p) becomes of the order of 
Planck's length.5

] 

A straightforward comparison with Kaluza-Klein the­
ory fails when we ask about the nature of the ground state, 
which in that theory is of the form M4XBn , where M4 is 
Minkowski's space and Bn is a compact space of small diam­
eter. This compactness would respond for the periodic be­
havior of the extra dimensions. Here we have a local space 
which is bounded at ~ = ± a (p) but the desired periodic­
ity is not apparent. It is our view that this periodicity is pro­
vided by the identification maps. Indeed, if all points of the 
family of space-times along the orbit of hs (p) are mapped 
into a single point of physical space, then for a four-dimen­
sional observer sitting in that space the sequence of space­
time perturbations will be seen with a periodicity in ~. 
Therefore that observer may think of B" as a compacted 
space in the geometrical sense. However all that is required is 
thatB" is compact in the topological sense. That is, bounded 
with identified points. This construction seems to be equiva­
lent to the Geroch-Mansouri-Witten dimensional reduc­
tion procedure. 6,7 
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The explicit form of the solutions of the Einstein field equations corresponding to a perfect 
fluid in geodesic, hypersurface-orthogonal motion is given with the following restrictions: (i) 
the comoving hypersurfaces are flat; and (ii) the second fundamental form of these surfaces is 
degenerate. These results are a natural extension of the metrics previously found by Szafron 
and co-workers [D. A. Szafron and J. Wainwright, J. Math. Phys. 18, 1668 (1977); D. A. 
Szafron, ibid. 18, 1673 (1977); D. A. Szafron and C. B. Collins, ibid. 20, 2354 (1979)] as a 
perfect fluid generalization of the Szekeres dust solutions. 

I. STATEMENT OF THE PROBLEM 

Many years ago, Szafron 1 studied a large class of solu­
tions of Einstein field equations corresponding to geodesic 
perfect fluid source and admitting the following form of the 
metric (comoving coordinates): 

ds2 = dt 2 _ e2a dz2 _ e2fJ(dx2 + dy2) , 

a = a (t,x,y,z) , /3 = /3 (t,x,y,z) . 
(I) 

The case of dust corresponds to the well known Szekeres 
metrics,2 so that space-times with metric (I) corresponding 
to a perfect fluid source were called "Szekeres models." 
They were characterized in a geometric way by Szafron and 
Collins3 as being those geodesic perfect fluid solutions of 
Einstein equations with conformally flat comoving slices so 
that both the second fundamental form and the Ricci tensor 
of every slice are degenerate (they possess at least two equal 
eigenvalues) . 

In this paper, we will study the subset of all Szekeres 
models such that the comoving surfaces are flat. This study 
fits into the program recently proposed by Stephani and 
Wolf 4 for finding such kind of solutions. To be concrete, we 
will obtain the explicit form of the metrics with the following 
properties. 

(i) The matter content is a perfect fluid whose flow lines 
form a geodesic congruence orthogonal to a family S of 
spacelike hypersurfaces. 

(ii) Each spacelike surface ~ in the family S is flat. 
(iii) The second fundamental form of the hypersurfaces 

~ of S is degenerate, that is, it possess at least two equal 
eigen values. 

Our starting point will be the equations for a and /3 in 
( 1) given by Szafron 1; we shall adopt the same notation, in 
particular ( )' = a I az, () = a/at, and we will use the pair 
of complex variables 5 = x + iy, ~ = x - iy. The form of the 
equations is different when /3 ' i= 0 (class I) or when /3' = 0 
(class II), so that we will treat both cases separately. 

II. METRICS OF CLASS I, f3' ::j; 0 

The Szekeres models of class I are metrics of the form 
( 1) with a and /3 defined as follows 1: 

/3 = log ifJ(t,z) + v(z,s,~) , (2a) 

(2b) 

e - v = A (z)s~ + B(z)S + B(z)~ + C(z) , (2c) 

where A(z) and C(z) are real functions, B(z) is complex 
with 

AC-BB=1!4(I+k(z»), (3) 

and ifJ(t,z) verifies the differential equation 

2¢/ifJ + (¢,1t/J)2 + Kp(t) + k(z)/t/J2 = 0 , (4) 

where p(t) is the pressure of the fluid and K is the constant 
appearing in the Einstein field equations. 

Proposition: The necessary and sufficient condition for 
the comoving three-dimensional slices in a class I Szekeres 
model to be flat is k(z) = O. 

Proof: It follows from a straightforward computation of 
the three-dimensional Ricci tensor. A partial result (suffi­
ciency of the condition) was stated in Ref. 1 for a particular 
form of t/J(t,z). 

Allowing for this result, we will look for the metrics ( 1 ) 
with a and/3 defined by (2) with the following restrictions: 

AC-BB=!, (5) 

2~/t/J + (¢,lifJ)2 + Kp(t) = 0, (6) 

the last condition being just the propagation equation for the 
length scale in the Friedmann (k = 0) solution. Let us per­
form the standard substitution t/J = G 2/3. Then the equation 
becomes 

G + iKp(t)G = 0, (7) 

which is linear and of second order in G. 
The general solution of (7) is 

G(t,z) = [a(z) +b(z)/(t)](j)-1/2, (8) 

where a and b are arbitrary functions of z and / (t) is related 
with p ( t) by the following equation: 

j I j - ~(j I j)2 = ~Kp(t) . (9) 

Theorem: The general form of the metrics of class I Sze­
keres models admitting flat comoving slices can be expressed 
as in Eqs. (1) and (2) with the following restrictions: 

AC - BB = ! ' (lOa) 

t/J(t,z) = [a(z) +b(z)/(t)]2I3(j)-1/3, (lOb) 
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where a(z), b(z), and 1 (I) are arbitrary functions oftheir 
arguments. 

Proof As far as the functionp(t) appearing in (6) was 
arbitrary, we can interpret (9) as a mere definition ofp(t) 
once 1 (t) is given or vice versa. The function t,6(t,z) given in 
( lOb) is then the general solution of Eq. (6) corresponding 
to the function p (t) defined by (9). 

We have computed the energy density and the kinemati­
cal quantities associated to the fluid motion corresponding 
to this set of solutions. The results are given in Appendix A. 

III. METRICS OF CLASS II. f3' =0 

The class II Szekeres models are again metrics of the 
form (1) with a and /3 defined now as follows I: 

/3 = log t,6( t) + v(s,t) , (11a) 

ea = A(t,z) + t,6(t)a(z,s,#;) , (lIb) 

e- v =l+kI4s#;, (11c) 

a = eve U(z)s#; + V(z)s + V{z)#; + W(z)] , (lId) 

where U(z) and W(z) are real functions and V(z) is com­
plex, k = 0, ± 1, and the functions t,6 (t) and A (t,z) are re­
stricted by the differential equations 

2¢1t,6 + (¢1t,6)2 + Kp + k 1t,62 = 0, (12) 

..:it,6 +A¢ +A¢ + KpAt,6 = U(z) + kI4W(z) . (13) 

Proposition: The necessary and sufficient conditions for 
the comoving three-dimensional slices in a class II Szekeres 
model to be flat are k = 0, U(z) = O. 

Proof It follows from a straightforward computation of 
the Ricci tensor. The sufficiency of the condition for some 
particular cases has been stated by Bonnor and Tomimura.5 

In our case (k = 0), Eq. (12) reduces to Eq. (6). This 
suggests introducing again the auxiliary function 1 (t), 
namely, 

t,6(t) = (j)-1/3, (14) 

so that we are led to the same expression (9) for p(t) as in 
Sec. II. The general solution A(t,z) of the linear equation 
(13) in the case U(z) = 0, k = 0 is easily expressed in terms 
of l{t): 

A(t,z) = [A(z)I(t) +B(Z)](j)-1/3, (15) 

whereA andB are arbitrary functions ofz. Note that, allow­
ing for the definitions of a and /3 in (11), the arbitrary func­
tion W(z) can be reabsorbed into B(z) or vice versa. 

We collect now our results into the following theorem. 
Theorem: The general form of the metrics of class II 

Szekeres models admitting flat comoving slices can be ex­
pressed as in Eq. (1) with the following restrictions: 

eft = (j) -1/3 , 

ea = A(t,z) + [xa(z) + yb(z) Hj) -1/3, 

A(t,Z) = [A(z)I(t) +B(Z)](j)-1/3, 

(16a) 

(16b) 

(16c) 

where A, B, a, b, and 1 are arbitrary functions of their argu­
ments. 

The expressions of the energy density and the kinemati­
cal quantities associated to the fluid motion corresponding 
to these metrics are given in Appendix B. 

655 J. Math. Phys., Vol. 28, No.3, March 1987 

IV. CONCLUSIONS 

We have obtained the explicit form of the metrics of all 
Szekeres models admitting flat comoving slices, that is, the 
metrics that fulfill conditions (i)-(iii) as given in Sec. I. 

The class I solutions given in (10) are a generalization 
of the Szafron solutions I corresponding to 

Kp = fq(1 - q)t -2, (17) 

t,6(t,z) = [g(z)t l - Q +h(z)t q j213, (18) 

as can be seen by substituting l(t) = t l
-

Zq into Eq. (10). 
In the case q = !, however, we obtain a more general result, 
namely, 

t,6(t,z) = [a(z) + b(z)log(t) ]2I3t 1/3, (19) 

which is the complete solution ofEq. (6) withp(t) given by 
( 17) in the q = ! case. 

Szafron and Wainwright6 have obtained explicit expres­
sions for class II Szekeres models with a time dependence of 
the pressure as given in (17). The subset of their solutions 
corresponding to our case U(z) = 0 [C(z) = Oin their nota­
tion] is given by 

t,6(t) = [Cit I-q + C2t q ]2I3 , (20) 

where C I and Cz are constants. 
The geometrical properties of the whole class of Sze­

keres models, including an invariant classification of them, 
are given in Ref. 3. In the case of the solutions given in (10) 
and (16), their Killing structure can be obtained directly 
from the tables given in Refs. 1 and 6. The spherically sym­
metric case can then be seen to correspond to the class I 
metrics (10) with A, B, and C constant. This case has been 
considered in a recent work 7 as a generalization of the well­
known Tolman (k = 0) dust solutions.s 

ACKNOWLEDGMENTS 

The authors are indebted to the unknown referee, who 
made useful suggestions concerning the final presentation of 
the results. 

We also acknowledge financial support under CAICYT 
Project No. 1005/84. 

APPENDIX A: SOME RESULTS FOR CLASS I METRICS 

We list here some results concerning metrics of class I 
[described by Eq. (10)]. Notation is the same as Sec. II. The 
energy density fl of the fluid is given by 

Kfl = jj2[ (11 j)' + 2b IF] 

X [( 1/ j)' + 2(b' + 3/2bv')/(F' + 3/2Fv')] , 

(AI) 

where we have noted 

F(t,z) = a(z) + b(z) 1 (t) , (A2) 

the pressure p being defined by Eq. (9) in the text. 
The expansion (J of the fluid is 

(J =j [( 1/ j)' + b IF + (b' + 3/2bv')/(F' + 3/2Fv')] 

(A3) 

and the components of the shear tensor are 
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~=a;= -!~ 

=!i [b IF - (b' + 3/2bv')/(F' + 3/2Fv')] . (A4) 

APPENDIX B: SOME RESULTS FOR CLASS II METRICS 

We list here some results concerning metrics of class II 
[described by Eq. (16)]. Notation is the same as in Sec. III. 
In this case, 

Kf.l= -!/[(lIir+ 2A (z)IH] (Bl) 

is the energy density, where we have noted 

H(t,x,y,z) =A(z)j(t) + B(z) + a(z)x + b(z)y, (B2) 

the pressure being defined by Eq. (9) in the text. 
The expansion of the fluid is given by 

O=i[(1lir+A(z)IH] (B3) 
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and the components of the shear tensor are 

!~ = -~ = -a; =!iA(z)IH. 
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A spatially homogeneous Bianchi type VIo model containing a viscous fluid in the presence of 
an axial magnetic field has been studied. A barotropic equation of state together with a pair of 
linear relations among the square root of matter density, shear scalar, and expansion scalar 
have been assumed. Solutions are obtained in the presence of a magnetic field, only in two 
special cases, which are comparatively easy. The complete solutions for this model in the 
absence of a magnetic field are also obtained. The presence of a magnetic field in the former 
case, however, does not in effect cause any major modification in the fundamental nature of the 
initial singularity of the expanding model. 

I. INTRODUCTION 

The investigation of cosmological models in Einstein's 
theory usually chooses the energy momentum tensor of mat­
ter as that due to a perfect fluid. These models lead to an 
initial singular state. Of course, it is important to investigate 
more realistic models that take into account dissipative pro­
cesses due to viscosity. 

The first suggestion was investigated by Misner l and he 
proposed that the neutrino viscosity acting in the early era 
might have considerably reduced the present anisotropy of 
the black-body radiation during the process of evolution. 
Murphy2 in 1973 showed that the bulk viscosity can push the 
initial singularity in Friedman universe to the infinite past 
but at the cost of violating the Hawking-Penrose energy 
conditions. Belinskii and Khalatnikov3 studied the behavior 
of anisotropic spatially homogeneous models with viscous 
fluid in the asymptotic limits. They assumed that the fluid 
viscosity coefficients could be expressed as power functions 
of the matter density. It was found by them that the dissipa­
tive mechanism due to the presence of viscosity not only 
modifies the nature of the initial big bang singularity, but 
also can account for the anomalously large entropy per bar­
yon in the present day universe. Similar properties were 
shown by Banerjee, Duttachoudhury, and Sanyal4 by con­
structing particular Bianchi I models consisting of a viscous 
fluid. Other models with viscosity terms included in the 
stress energy tensor were constructed by Banerjee and San­
tos,5,6 Banerjee, Duttachoudhury, and Sanya}/ Coley and 
Tupper,8,9 and Santos, Dias, and Banerjee. to Also problems 
with axial magnetic fields in Bianchi I and III and Kan­
towski-Sachs viscous fluid models were previously investi­
gated by Banerjee and Sanyal. 11 Though the recently devel­
oped theory of inflationary cosmology, 12 using GUT, claims 
to have given a plausible explanation for the outstanding 
cosmological problems, such as the high degree of isotropy 
and large entropy per baryon in the present universe, the 
theory itself appears to be incomplete yet in many aspects. It 
is therefore worthwhile to investigate if the classical relativi­
ty theory is successful in dealing with the above problems by 
introducing dissipative phenomena in the matter content of 
the universe. 

In this paper we proceed to investigate the Bianchi VIo 

model filled with a viscous fluid characterized by both bulk 
and shear viscosities including a magnetic field in the axial 
direction. Evidently the task of obtaining exact solutions in a 
viscous fluid model becomes more difficult than the corre­
sponding perfect fluid case, due to a larger number of un­
known quantities to be determined. In this way, in the pres­
ent paper we attempt to find exact solutions under the 
assumption that the ratio of the shear to expansion rate (cd 
()) and the density to the square of the expansion (pi () 2) 

were both constants. The perfect fluid solutions for the Bian­
chi II model with these assumptions were first obtained by 
Collins and Stewart. 13 

In Sec. II we consider Einstein's field equations for a 
Bianchi VIo cosmological model and show the dynamical 
importance of matter density and shear scalar. The entropy 
variation is also explicitly stated. 

In Sec. III we obtain two particular solutions in the pres­
ence of the magnetic field and complete solutions in the ab­
sence of it. 

II. EINSTEIN'S FIELD EQUATIONS AND SOME 
GENERAL RESULTS 

The metric for the spatially homogeneous Bianchi VIo 
space time is taken in the following form: 

ds2 = _ dt 2 + e2a dx2 + e2(f3+ mx } dy2 + e2(y-mx} dr, 
(2.1 ) 

where a, /3, and yare functions of time alone and m is a 
constant. The energy momentum tensor for a viscous fluid is 

TjJ- Y = (p + p)vjJ-vY + pOjJ- Y - 'T/UjJ- Y, (2.2) 

with 

and 
(2.3 ) 

UJ.tY = vjJ-;Y + vv,jJ- + vjJ- v f3Vv,f3 + vy Vf3vjJ-;f3' 

In the above p is the thermodynamic pressure and 'T/ and {; are 
the shear viscosity and bulk viscosity coefficients, respec­
tively. Here if is the four-velocity vector so that v!L if = - 1. 
Since there is a magnetic field along the x direction, we have 
F23 as the only nonvanishing component of the electromag­
netic field tensor. From Maxwell's equation it can easily be 
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seen that FZ3 = A, where A is a constant of integration. Ifwe 
have for the stress energy tensor of electromagnetic field the 
expression 

E" v = (11417') [ F"aFva -1 8" vFafJFafJ] , 

the nonvanishing components are 

-Eg = -EJ =E~ =E~ = (A z/81T)e2(fJ+Y). (2.4) 

Einstein's field equations are (choosing 81TG = C = 1) 

R" v _! 8" VR = _ (T" v + E" V), (2.5) 

and in the comoving coordinates v" = 80". Thus in view of 
Eq. (2.5) and using Eqs. (2.1 )-(2.4) we find the following 
equations: 

p~2IR2_! (a2+p2+ r ) _m2e- 2a 

= + (A 2/81T)e- 2(fJ+Y), (2.6a) 

j3+r+~ (RIR)(P+1'-a) +~(a2+p2+r) 
+m2e-2a= - (p-21Ja ) + (A 2/81T)e- 2(fJ+Y), 

(2.6b) 

r+a + ~ (RIR)(1'+ a -P) + !(a2 +p2 + r) 
_m2e-2a= - (p-21JP) - (A 2/81T)e- 2(fJ+Y), 

(2.6c) 

a + P + ~(R IR) (a + P - 1') + ~(a2 + p2 + r) 
- m2e - 2a = _ (p _ 21J1') - (A 2/81T)e - 2(fJ+ Y), 

(2.6d) 

andP- 1'=0. 
A dot represents time differentiation and R stands for 

R 3 = exp(a + P + r). (2.7) 

In view of Eq. (2.6a) and with a suitable coordinate trans­
formation we can have 

P=r· (2.8) 

Combining the field equations (2.6a)-(2.6d) and using Eq. 
(2.8), we get the following set of equations: 

! 0 2 -p - er = m2e- 2a + n2e- 4fJ, (2.9a) 

P + (0 + 21J)P - (p - p)/2 -! ~O - ~ 1JO = n2e- 4fJ, 

(2.9b) 

P + (0 + 21J)P - ( p + p) + ~O - i 1JO - J 0 2 
- 2er - 0 

(2.9c) 

Here we have used the relation (2.9a) to derive the other 
two. In the set of equations (2.9a)-(2.9c), A 2/817' has been 
replaced by n2

• The expansion and the shear scalars 0 and er 
are defined in the usual way: 

and 

where the shear tensor (7"v has the usual expression 

(7"v =! (v,,;v + Vv,,,) +! (v"vflvv,fJ + vvvfJv,,;fJ) 

+ j (g"v + v"vv ){)· 

From Eqs. (2.9b) and (2.9c) we get 

(2.10) 

(2.11 ) 

iJ = - 2er -! 0 2 - ~ [p + 3( P _ ~O)] _ n2e - 4fJ, 
(2.12) 
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and the divergence relation (T"V + E "V);v = 0 yields 

p = - (p + p) 0 + ~O 2 + 47Jer. (2.13 ) 

It is interesting to observe from Eq. (2.12) that for a 
contracting model (that is, for 0 < 0) the time derivative for 
the expansion scalar 8 is less than zero. It means that 0 re­
mains negative always and thus collapse cannot be halted for 
a physically reasonable fluid (p > 0, p > 0). On the other 
hand, if the bulk viscosity ~ is very small and can be ignored, 
one has 0 < 0 independent of whether the model is expanding 
or contracting. Thus there may be a maximum but no mini­
mum of the volume. One can easily verify that in both the 
cases R"vv"vv <0, and thus Hawking's energy condition is 
satisfied. 

Another relation showing the dynamical importance of 
matter density and shear scalars can be derived in view of the 
field equations (2.9a)-(2.9c) and also usingEqs. (2.12) and 
(2.13). This expression is explicitly given in the form 

(piO 2)' = _ [0/0 2)(er + m2e - 2a + n2e - 4fJ)]' 

= (erI0 2) [3( p - p)O -1 + 3~ + 41J] 

+ (m2e- 2aI0 2) [3~ _ (p + 3p){) -1] 

+ (n2e - 4fJ 1( 2) [3~ + ( P _ 3p)O -1]. 
(2.14 ) 

From the definitions of 0 and (7 given by Eqs. (2.10) and 
(2.11) it is possible to write 

(2.15) 

which in tum yields 

p = (013 ± (7IJj). (2.16) 

Now differentiating Eq. (2.15) with respect to time and sub­
stituting P from the field equation (2. 9b) and P and 0 from 
Eqs. (2.16) and (2.12), respectively, one can finally obtain, 
after a little manipulation and utilizing (2.9a), the relation 
for shear dissipation in the form 

(er)' = - 2(21J + 0)2 ± (4uIJj)(n2e- 4fJ _ m2e- 2a ). 
(2.17) 

Using Eq. (2.16) in the above relation it is possible to obtain 
further a very similar kind of relation 

(erR 6)' _ 2(e- 4fJR 4 ), 
-'-----0-"- - - 41Jer - n ~--.:.... 

R6 R4 

(e- 2aR 2 ), 
- m2 (2.18) 

R2 

The relations (2.17) and (2.18) are generalizations of the 
corresponding equations derived for Bianchi I space-time in 
a previous communication.4 Further, as considered by Be­
linskii and Khalatnikov,3 let the time derivative of the en­
tropy density be 

i/~ =pl(p + p), 

where ~ is the entropy density. The total entropy can be 
defined as s = R 3~, the time derivative of which can be 
found in view of Eqs. (2.13) and the above one, as 

sis = (~02 + 41Jer)/( p + pl. (2.19) 

Now, sincep + p>O and~>O, 1J>0, sos>O, which implies 
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that the total entropy will always increase with the change of 
proper time irrespective of any model (expanding or con­
tracting). 

III. EXACT SOLUTIONS OF EINSTEIN'S FIELD 
EQUATIONS 

We have obtained a set of three field equations [viz., 
(2.9a)-(2.9c)] with six unknown quantities (viz., a,p,p,p, 
1], and;) to be determined. So in order to obtain exact solu­
tions of the field equations we consider three more physically 
reasonable equations: one is a barotropic equation of state 
between matter density and thermodynamic pressure and 
the other two are a pair oflinear relations connecting matter 
density, expansion, and shear scalars. They are 

P=EP, p=C2(J2, cr=D2(J2, (3.1) 

where C and D are two constant quantities. Hence the field 
equations (2.9a)-(2.9c) can now be written in view ofEqs. 
(2.10)-(2.13) and (3.1) as 

(! _ C 2 _ D2)(J2 = m 2e- 2a + n2e- 4f3, (3.2a) 

/3 + ((J + 21])iJ - [(1 - E)/2]C 2(J2 -!;(J - ~ 1](J 

/3 + ((J + 21])iJ - [! + (1 + E)C 2 + 2D2](J2 -;(J 

- ~ 1](J - 0 = 2n2e - 4f3. 

In view of Eqs. (2.16) and (3.1) we have 

iJ = q ± D / {3) (J, 

which, when substituted in Eq. (2.10), gives us 

a = q + 2D /{3)(J. 

(3.2b) 

(3.2c) 

(3.3 ) 

(3.4) 

The above two equations [(3.3) and (3.4)] lead to the rela­

tiona = aiJ, where a = q + 2D/{3)/(! ± D/{3), so that 

e- 2a = be- 2af3. (3.5) 

In Eq. (3.5) b is an integration constant of positive magni­
tude. Now in view ofEqs. (3.3) and (3.2a) we get 

q _ C 2 _ D 2)/(i ± D /{3)2 = m 2be -2af3 + n2e- 4f3, 

which can be written as 

iJ = [Cle - 2af3 + C2e - 4f3 ]112, (3.6) 

CI and C2 being two constants. It is not difficult to show that 
both C I and C2 are greater than zero. Writing x for e2f3, rela­
tion (3.6) can be integrated to yield 

(3.7) 

The explicit value for x (that is, e2(3
) is obtainable upon 

choosing specific values for a. We consider here two special 
cases: a = 2 and a = 0. It is evident that the parameter a 
cannot be unity because then from its definition D = ° or, in 
other words, the shear vanishes. When a = 2, we have 

x = e2f3 = 2(CI + C2) 1/2(t - to) = C3 (t - to), (3.8) 

where C3 is a constant and is equal to 2(CI + C2)1/2. Thus 
from Eq. (3.5) 

(3.9) 
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The expansion scalar (J = 2I(t - to) and the proper volume 

R 3 = ~+2f3 = (CV..[ii)(t - to)2. From the above solu­
tions, one can conclude that for such a model as t -+ to, 
R 3 = 0, i.e., the proper volume vanishes, the expansion sca­
lar (J -+ 00, and in consequence p -+ 00, cr -+ 00. It is a point 
singularity. The magnetic field B being proportional to e - 2f3 
also increases to an indefinitely large value at the singularity. 
On the other hand as t -+ 00 , we have (J -+ 0, cr -+ 0, p -+0, and 
R 3 -+ 00. The second case is for a = 0, when we have the 
integral 

1 J dx "2 (C
I
X2+C

2
)1/2=t-tO' 

On integration we obtain, since C2 > 0, 

(1/2-Je;) In[x-Je; + ~CIX2 + C2 ] = t - to, 

so that the solution for e2f3 is given by 

(3.10) 

x = e 2f3 = (l/2-Je;) e-2v'c.(t-to)[e~(t-to) - C
2

]. 

(3.11 ) 

In this case a = const. Now as t-+tl' such that 

e~(t-to) = C
2

, 

we have e2f3 -+ 0, the proper volume R 3 -+ 0, (J -+ 00, so that 
p -+ 00, cr -+ 00, and the magnetic field B -+ 00. On the other 
hand, as t increases e2f3 increases and approaches an infinitely 

large magnitude as t-+ 00. In this limit (J-+2-Je;, that is, a 
finite magnitude so that the scalars likep, cr, etc. also remain 
finite. 

Now, eliminating both; andp from Eqs. (2.12) and 
(2.13) and using Eq. (3.1) the explicit expression for the 
shear viscosity coefficient can be obtained. This is given by 

1] = (l/2D 2) [(C 2 - !)O /(J -! (J(2D 2 +! _ C 2) 

_jn2e- 4f3 /(J]. (3.12) 

When the metric is known the exact magnitude of 1] can be 
calculated independently of any equation of state relating 
density and pressure of the fluid. But the calculations for the 
bulk viscosity coefficient ; involve pressure and therefore 
one has to know the pressure in order to write the final form 
of;. Let us assume the barotropic equation of state p = Ep, as 
considered earlier in Eq. (3.1), to be valid for the fluid under 
consideration. In this case the relation (2.13) yields 

;=~ [O/(J+(!+2D 2 + [(1 +3)/2]C 2)(J 

(3.13 ) 

We now consider a more simple case where there is no 
magnetic field. Here one can obtain the exact solution for 
Bianchi type VIo spatially homogeneous space-time filled 
with viscous fluid. Now since a magnetic field is absent, we 
have n2 = ° and from Eq. (3.2a) using (3.4) we obtain the 
equation 

[(j_C 2 _D2)/(j + (2I{3)Dna2=m2e-2a. 
(3.14) 

Integrating Eq. (3.14) and with a suitable time transforma­
tion we get the solutions for a and p as 

(3.15 ) 
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where a is the same constant as mentioned in Eq. (3.5) and 10 
is another integration constant. The proper volume and ex­
pansion scalars are given by 

(3.16) 

and 

() = (1 + 2Ia)lt, (3.17) 

where 1 + 21a = (j =+= 2D 1/3). 

From (3.17) it is evident that iJ is proportional to () 2 and 
further in this case n2 = 0, so that the relations (3.12) and 
(3.13) lead us to the conclusion that both the shear and bulk 
viscosity coefficients are proportional to the expansion sca­
lar (). This in turn suggests that these viscosity coefficients 
are linearly proportional to the square root of the matter 
density, i.e., 1/ = 1/opl/2, t = topl12, with 1/0 and to being 
constants. Now since j - C 2 - D 2 > 0, we have 

(j ± D 1/3) > 0, but (1 =+= (2I/3)D) may be greater than or 
less than zero depending on the magnitude of D. For an 
expanding case () > 0 and one finds that (1 + 21 a) > 0, that 

is, (1 + (2I/3)D) > 0. In this case as t-+O we have the proper 
volume R 3 -+01 and the expansion scalar ()-+ 00, so that the 
density p, shear 02, and the viscosity coefficients 1/ and t all 
approach infinitely large magnitudes. It represents a point­
like singularity, the model exploding from a singularity state 
and asymptotically approaching an infinite expansion stage 
at t -+ 00. In this limit p, 02, 1/, and t all vanish. 

There is one particular case [( 1 - 2D 1/3) ] < 0 when 
the solution is different. Here (1 + 21 a) < 0 and so () < O. It 
represents a contracting model. When t -+ 0, the model starts 
from an infinitely large volume (R 3 -+ 00 ), but since ea -+0, 
e /3 -+ 00, at this epoch we may say that the model is initially in 
the form of an infinite disk at the start of contraction. At 
t -+ 00 we get R 3 -+ 0, but now ea -+ 00 , e /3 -+ 0, so that the sin­
gularity is in the form of a line. The peculiarity of this situa­
tion is that at this limit of zero volume the expansion scalar () 
becomes vanishingly small, so that the density shear and the 
viscosity coefficients all vanish in this limit. 
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IV. CONCLUSION 

In the present paper we analyzed a Bianchi VIo model 
with viscous fluid and in the presence of magnetic field in the 
axial direction. The viscous fluid is characterized by bulk 
and shear viscosities. We assumed that 021 () 2 = D 2 is a con­
stant andpl(} 2 = C 2 is also one. We obtained solutions for 
only two special cases in the presence of a magnetic field, 
which, however, do not change the nature of the singularity. 
In the absence of the magnetic field complete solutions were 
obtained. Here the viscosity coefficients 1/ and t are found to 
be power functions of the fluid density being proportional to 
p1/2. In a particular case of the latter the model is a contract­
ing one with a peculiar feature of the density, viscosity coeffi­
cients, shear, etc. all approaching negligible values in the 
limit of zero volume. 
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Previous work by the authors [B. M. Barker and R. F. O'Connell, Phys. Rev. D 12, 329 
(1975); 14, 861 (1976); B. M. Barker, G. G. Byrd, and R. F. O'Connell, Astrophys. J. 305, 
623 (1986); B. M. Barker and R. F. O'Connell, Gen. Relativ. Gravit. 18, 1055 (1986)] on the 
post-Newtonian (order c-z) gravitational two-body problem with spin and parametrized post­
Newtonian parameters rand {3 was concerned with the relative position r = r 1 - r z• Here this 
work is completed by finding the individual positions r 1 and rz, which is necessary for the 
interpretation of certain binary-system observations. First the center of inertia reI is found. 
This makes it possible to obtain the positions r 1 and r z and the center of mass reM as a function 
of the relative position r, relative velocity v, and spin angular momenta S(1) and S(Z) of the two 
bodies. Thus, if a solution r = r(t) can be obtained, then solutions r l = r l (t) and r 2 = r 2 (t) 
can also be obtained. The final results are given in a very general coordinate system specified 
by four arbitrary dimensionless parameters. In particular, the spin-orbit potential energy terms 
VSI and VS2 are given without going to a frame of reference where the total momentum is zero. 

I. INTRODUCTION 

In our previous work 1-4 involving equations of motion 
arising from the post-Newtonian gravitational two-body 
problem with spin, we were interested only in the relative 
position r. However, for some binary systems-such as the 
binary pulsar·6 PSR 1913 + 16--it is necessary to have 
equations of motion for the positions r l and rz in order to 
connect theory and observation.7

-
9 In Sec. II we define three 

coordinate systems. Our most general coordinates r I and r 2 

are related to the Einstein-Infeld-Hoffman (EIH) coordi-

where a and ao are arbitrary dimensionless parameters, m N 

is the mass of body N, G is Newton's constant of gravitation, 
and c is the speed of light. From Eqs. (2.1) and (2.2), we 
obtain 1.2.10 

. nates rE I and rE2 by four arbitrary dimensionless param­
eters. In Sec. III we give the spin-orbit potential energy 
terms Vs I and VS2 in a frame of reference where the total 
momentum is not zero and include parametrized post-New­
tonian (PPN) parameters rand {3. In the Appendix, we give 
a more elaborate treatment of Vs I and VS2 for general rela­
tivity. In Sec. IV, we find the center of inertia reI for our 
most general coordinate system and display the positions r 1 

and r 2 and the center of mass reM as a function of the relative 
position r, relative velocity v, and spin angular momenta S(1) 

and S(2) of the two bodies. In Sec. V we present our conclu­
sions. 

II. COORDINATE SYSTEMS 

In this paper, we use coordinates rEN , r.N, and rN' 
whereN for body N always equals 1 or 2. The relative coordi­
nates rE' r., and r are given by 

rE = rEI - rEZ, r. = r.1 - r.2' r = r l - rz· (2.1) 

The r.N coordinates are related to the EIH coordi­
nates l •

2 rEN by the coordinate transformation10 

N G[ m 1m 2 ] r. rEN =r.N + (-1) a (1-aO)mN +ao-- -2-' 
mN cr. 

(2.2) 

(2.3) 

where M=.ml + mz. 
The r N coordinates are related to the r.N coordinates by 

the coordinate transformation2 

r.N = rN -AN vN XS(N)/mNc2, (2.4) 

where Al and A2 are arbitrary dimensionless parameters, v N 
is the velocity of body N, and SeN) is the spin angular mo­
mentum of body N. From Eqs. (2.1) and (2.4), we obtain2 

z v XS(N) 
r. =r+ L (-l)NAN _N __ _ 

N=I mNcz (2.5) 

Ifwe are in a frame of reference where the total momentum is 
equal to zero (i.e., center-of-mass system) then to first order 
m iv i + m2v2 = O. We then obtain VN = - ( - l)N p,v/mN' 
where v = VI - v2andp,=.mlmz/M. UsingtheaboveinEqs. 
(2.4) and (2.5) we obtain, 2 respectively (correctto the post­
Newtonian approximation), 

(2.6) 

(2.7) 

To the same approximation, we also obtain 
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( 
GM) 2 ILVXS(N) 

r E = r 1 - a -2- - L AN 2 2 
C r N= 1 mNc 

(2.9) 

where Eqs. (2.8) and (2.9) hold only for center-of-mass 
system. Our most general coordinates r N are, thus, related to 
the EIH coordinates r EN by the four arbitrary dimensionless 
parameters a, ao,A 1, andA2 as given by Eq. (2.8). 

The notation of Refs. 3 and 4 is consistent with this 
paper. The coordinates r EN' r.N, and r N of this paper corre­
spond to rE1H.aP.N' rN, and rN(AN) of Ref. 2, respectively. 
The coordinates r EN and r.N of this paper correspond to r NB 
and rN of Ref. 10 (Sec. I and II), respectively, if the electro­
magnetic part of Ref. lOis omitted. Reference 1 is all in EIH 
coordinates. 

We also will be using coordinates for the center of mass 
rECM ' r.CM ' and rCM' where 

2 

rECM = L vNrEN, 
N=l 
2 

rCM = L vNrN, 
N=l 

2 

r.CM = L vNr.N, 
N=l (2.10) 

and where in general VI and V 2 can take any values such that 
VI + V2 = l. However, in this paper we will always set 
VN = mN/M. Using Eqs. (2.2) and (2.10), we obtain 

rECM =r.CM -aG(1-ao)omr./c2r., (2.11) 

where om=.ml - m 2• Using Eqs. (2.6), (2.8), and (2.10), 
we obtain 

2 XS(N) 
r.CM =rCM + L (_l)NANILV M, 2 ' 

N= I mN C 

(2.12) 

r 
rECM =rCM -aG(1-ao)om-

2
-

c r 

2 XS(N) 
+ L (- l)NAN ILV At 2 ' 

N=I mN C 

(2.13 ) 

where Eqs. (2.12) and (2.13 ) hold only for a center-of-mass 
system. 

III. SPIN-ORBIT TERMS 

Cho and Dass II have given the potential energy terms 
Vs I and VS2 for general relativity in EIH coordinates and in 
a frame of reference where the total momentum is not zero. 
Their results~erived from Schwinger's source theoryl2-
are 

VSI = (Gm2/c
2r1) 

X nS(I)·(rExvEI) - 2S(1)o(rExvE2)]' (3.1) 

VS2 = (Gm l /c
2r1) 

X [ -1S(2)o(rE XVE2 ) + 2S(2)o(rE XVE 1)]' 

(3.2) 

Using the time derivative Eq. (2.10), we can put Eqs. (3.1) 
and (3.2) in the form 

SN=-- ---+2 o(rEXvE ) V GIL (3 m l m2 )S(N) 
c2r1 2 m;' 

662 

+ (_ l)N ~~ ( M )S(N)o(rEXVECM)' 
c rE 2mN 
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(3.3 ) 

which is in agreement with the earlier general relativity re­
sults ofTulczyjew13 [see his Eq. (3.10) and his Errata] who 
derived them using an "improved" EIH formalism. 

The generalization ofEq. (3.3) to include PPN param­
eters rand {3 is 

VSN = c~~ [(r + + ):~2 + r + 1 ]S(NJo(rE XVE ) 

( I N GIL ( M )S(N) + - ) -2- -- o(rExvECM )' 
c r1 2mN 

(3.4 ) 

The r and{3 dependence of the first term in Eq. (3.4)-it 
turns out to be independent of {3-has been given by us2 

previously and is consistent with the results of Borner, 
Ehlers, and Rudolph. 14 The VSN term will contribute a term 
- aVsN/iivECM to the total momentum P ECM ' where 

_ aVSN = (_ I)N GIL (~)rEXS(N) 
iivECM c2r1 2mN . 

(3.5) 

The second term in Eq. (3.4) must be r (and{3) indepen­
dent so that its contribution to the total momentum will be r 
(and (3) independent. We shall now explain why the total 
momentum P ECM must be independent ofr (and{3). Con­
sider the nobody post-Newtonian Lagrangian with PPN pa­
rameters rand (3 for (uncharged) point bodies (see Sec. 
IV C of Ref. 10). For this caselO P ECM is independent of r 
(and (3). Because our two spinning bodies can be considered 
to be made up of n-point bodies, the total momentum P ECM 
for the two spinning bodies must also be independent of r 
(and{3). 

IV. CENTER OF INERTIA 

Let us start in the r.N coordinate system where 
r .CI' V.CI' and S.CI are the position, velocity, and accelera­
tion, respectively, of the center of inertia, and where 'll., 
P .CM' and p.N are the total conserved energy, total con­
served (canonical) momentum, and (canonical) momen­
tum of body N, respectively. The center of inertia must satis­
fy the equationlO.15.16 

~('ll./c2)r.CI)=P.CM =p. I +p.2 , (4.1) 
dt 

from which it follows that ('ll. /c2) V.CI = P .CM and 
S.CI = O. 

In order to satisfy Eq. (4.1), we set 

'll.r.C1 = ± ['ll.Nr.N + ( - l)N--L S(N)XV.], 
N=I 2mN 

(4.2) 
where 

'll.N = mNc2 + !mNv;N 

_ [~_ ( _ l)Na(1- ao)om] Gm l m2 . 
2 IL r. 

(4.3) 

We must also have 

'll. = 'll.1 + 'll .2 

112 .:f:. 1 2 Gm l m2 
=l1'1.C + ~ -mNv.N - , 

N= I 2 r. 
(4.4) 

B. M. Barker and R. F. O'Connell 662 



                                                                                                                                    

which is in agreement with Eq. (4.3). The terms m NC2 in Eq. 
( 4.3) and Mc2 in Eq. (4.4) must include rotational kinetic 
energy in order that these equations be accurate to the New­
tonian approximation (i.e., order co). Thus we have 

(4.5) 

(4.6) 

where mON' I (N), and ro (N) are the nonrotating rest mass, 
moment of inertia, and angular velocity, respectively, of 
body N. We deduced Eqs. (4.2) and (4.3) by using the re­
sults for nonrotating bodies given in Sees. IV B and IV C of 
Ref. 10 and then adding spin terms to Eq. (4.2) that are 
consistent with Eq. (3.5). The spin terms in Eq. (4.2) are 
consistent with Eq. (3.5) because 

!!...[( -1)N-P,-S(N)xv ] 
dt 2mN c2 

• 

= ( - 1)N Gp,M 2 r. XS(N). (4.7) 
2~mNc 

In evaluating the left-hand side of Eq. (4.7) which is a post­
Newtonian term (i.e., of order c-2 ), we have used d SeN) I 
dt = 0 and a. = - GMr.!~ , which are correct to first or­
der. The spin-orbit terms and Eq. (3.5) in See. III are of 
order c-2 and, thus, to this order we can replace the rEN 
coordinates with r.N coordinates. It is an interesting faceo 
that P .CM expressed in f.N coordinates is explicitly inde­
pendent of the parameters rand {3 (and a if ao = 1). It 
should be noted that the post-Newtonian potential energy 
terms for the spin-spin interaction 1-4 Vs I,S2 and the Nordt­
vedt effece-4,9 as well as the quadrupole moment interac­
tionsl

•
3

•
4 (small Newtonian terms and thus treated as if they 

were post-Newtonian terms from an order of magnitude 
point of view) VQ1 and VQ2 are velocity independent and 
hence will not contribute to P .CM' We conclude that Eqs. 
(4.1 )-( 4.3) are still valid when these terms are included in 
the Lagrangian. 

In the center-of-mass coordinate system P .CM = 0 and, 
thus, v.C1 = 0 and f .CI is a constant. We shall now set 
r .CI = 0 and obtain from Eq. (4.2) 

± [~.Nf.N + ( l)N ~(N)XV.] = O. (4.8) 
N=I 2mN 

From Eq. (4.8), it follows (to post-Newtonian order) that 

~ .2 1 ~ 1 N Jt S (Nl r.1 = ---r.2 ---2 £.. (- ) -- Xv.' 
~.I m1c N=I 2mN 

(4.9) 

and thus 

_(_I)N[~.~.N + mN 
r. = r.N 2 

~ .1 ~ .2 m 1m2c 

X ± (- l)N....1!:.-. S(Nl XV.] , 
N=I 2mN 

(4.11) 

which can be inverted to give us 

663 J. Math. Phys., Vol. 28, No.3, March 1987 

~ ~ 1 (_I)N .' .2 f---

~.~.N Mc2 

2 

X') (-l)N....1!:.-.S(N)Xv •. 
II=1 2mN 

(4.12) 

Because we are in center-of-mass system, we can use V.N 
= - ( - l)N p,v.lmN in Eqs. (4.4) and (4.3) to obtain, 

respectively, 

~. = Mc2 + ! p,u; - GMp,lr. ' (4.13) 

~.N = mNc2 + 1 p,
2
u;ImN 

- [! (-I)Na (1-ao)8mlp,]Gm1m2!r •. 
(4.14) 

Inverting Eq. (2.10) we obtain 

r.N = - (- 1)N(m 1m2IMmN)r. + f.CM' (4.15) 

Using Eqs. (4.13) and (4.14) in (4.12) and comparing the 
result with Eq. (4.15), we obtain (to the post-Newtonian 
approximation) 

_ p,8m [2 GM + 2a( 1 - ao)GM
2
] 

rCM----v--- f 

• 2M 2C
2 

• r ur • • t"" • 

-~ ± (- I)N....1!:.-. S(Nl XV•. (4.16) 
Mc N=1 2mN 

The masses M and m N in the first terms (terms of order c2
) 

in Eqs. (4.13) and (4.14), respectively, are given by Eqs. 
(4.5) and (4.6) and the same must be true for the masses in 
the firstterm ofEq. (4.15) (i.e., for the masses in VN = mNI 
M) ifEq. (4.16) is to be correet. 

The EIH coordinate versions ofEqs. (4.15) and (4.16) 
are given by setting a = O. We obtain 

rEN = - (- l)N(m1m2/MmN)rE + rECM' 

f ECM = p,8m [U1 _ GM] r
E 

2M 2c2 rE 

( 4.17) 

-~ ± (- I)N....1!:.-. S(Nl XVE . (4.18) 
Mc N=! 2mN 

The above with SeN) = 0 (the result for nonrotating bodies) 
has been given by Wagoner and Will.7 Using Eqs. (2.11) and 
(4.18), we can regain Eq. (4.16) correct to the post-Newto­
nian approximation. 

Let us next consider our most general coordinate sys­
tem, the rN coordinate system. Inverting Eq. (2.10) and 
combining Eqs. (2.12) and (4.16), we obtain (to thtl post­
Newtonian approximation) 

rN = - ( - l)N m 1m2 r + rCM' (4.19) 
MmN 

rCM = p,8m [u2 _ GM + 2a( 1 - ao)GM2]r 
2M 2c2 r p,r 

1 N ( u ) ---2 2: (-l)N _t""_ (1 UN)S(Nl XV, 
Mc N=I 2mN 

(4.20) 

where the above are valid in the center-of-mass coordinate 
system where the total momentum is zero. Tulczyjew13 [see 
hisEq. (3.14) and his Errata] has given an EIH coordinate 

B. M. Barker and R. F. O'Connell 663 



                                                                                                                                    

system version (i.e., a andAN are zero) of our Eq. (4.20). If 
we start with a Lagrangian in the r.N coordinate system and 
make the coordinate transformation of Eq. (2.4) to the r N 

coordinate system, we will obtain an acceleration-dependent 
Lagrangian.4 To obtain this acceleration-dependent Lagran­
gian start with the Lagrangian in the r.N coordinate system, 
replace r.N by rN and v.N by VN' and then add the terms 
- VA.l and - VA. 2 , where 

(4.21 ) 

The center of inertia must then satisfy the equation 16 

!!... (~rCI) = III + 112, (4.22) 
dt c 

where 

(4.23 ) 

and it follows from Eq. (4.22) that (W /c2)VCI = III + 112 
and v CI is a constant. In order to satisfy Eq. (4.22), we set 

WrC1 = Ntl [WNrN + (_I)N 

X(2~J (1- UN)S(N)XV] , 

where W = WI + W 2 and 

W N = mNc2 + ~mNv~ 

(4.24) 

- [~- (-l)Na(1-ao)l)mlj.L]Gmlm2Ir. 
(4.25 ) 

It should be noted that we could also add the constant terms 
K I S(l)XVCM and K 2S(2)XVCM' where KI and K2 are arbi­
trary dimensionless constants, to the right-hand side of Eq. 
(4.24) and also to the right-hand side of Eq. (4.2). This 
would not alter our other results because we use Eqs. (4.2) 
and (4.24) inaframeofreferencewherevcM is zero. We can 
also obtain Eqs. (4.24) and (4.25) by noting that these re­
sults are exactly what is needed to obtain Eq. (4.20). This 
can easily be seen by comparing Eqs. (4.2), (4.3), and 
(4.16) with Eqs. (4.24), (4.25), and (4.20), respectively. 

The spin supplementary condition2.17 of Price l8 and of 
Newton and Wignerl9 corresponds to setting AN equal to 
zero and has the advantage that the Langrangian will have 
no acceleration-dependent spin terms.4 The spin supplemen­
tary condition2.17 of Corinaldesi-Papapetrou2o corresponds 
to setting AN = ~ and has the advantage that Eqs. (4.20) and 
(4.24) will have no spin-dependent terms. The spin supple­
mentary condition2

•
17 of Pirani21 corresponds to setting 

AN = -! and has the advantage that the equations of mo­
tion take on a particularly simple form. The equations of 
motion can be written as 

aN - ( - 1 )NGmprlr 

= SPIN-INDEPENDENT TERMS 

+ SPIN TERMS + SPIN-SPIN TERMS 

+ QUADRUPOLE MOMENT TERMS, (4.26) 

where the SPIN TERMS, which depend on Al and ..12, are 
given by 

+ c?r [(2r +2)S(P)XVN +(Ap -2r - ~)S(P)XVp+(3Ap-3r- ~)S(P)'(~XVp)r 

S(P)'(rxv ) ] 
+ (3r+ 3) r N r + (- I)N(3r+ 3) :; S(P)Xr , 

l~--------~~----------------------------

(4.27) 

and where P= 3 - N. If one now sets A I = ..12 = -!, the 
above can be put in the form 

SPIN TERMS 

(4.28) 
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It should be noted that Eqs. (4.26 )-( 4.28) are correct for a 
non-center-of-mass coordinate system and that Eq. (4.28) 
takes on the identical form in a center-of-mass coordinate 
system where VCM is zero (to first order). If one sets r = 1 
and uses the vector identity 

(rxv)S(N)'r 

== [S(N)'(rXv)]r + (S(N) Xv)r - (v'r) (S(N) Xr), 

(4.29) 

and the center-of-mass system relation VN = - ( - I)N 
Xj.Lv/mN in Eq. (4.28) one can put this equation into the 
form of the center-of-mass general relativity result of 
D'Eath22 [see his Eq. (6.7)]. 
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V. CONCLUSIONS 

We completed the solution to the post-Newtonian gravi­
tational two-body problem with spin and PPN parameters r 
andpby giving [seeEqs. (4.19) and (4.20)] the positions fl 
and f2 and the center of mass fCM of the two bodies as a 
function of the relative position f, relative velocity v, and 
spin angular momenta S(O and S(2) of the two bodies. Thus, if 
we have a solution f = f(t), correct to the post-Newtonian 
approximation, we also have solutions fl = r l (t) and 
fz = r2(t), correct to the post-Newtonian approximation. 
For coordinate systems [see Eq. (2.S)] where a#O and 
ao# 1, the position rCM has a nonzero term 2a( 1 - ao) 
X GM 2/lLrinsidethesquare bracketofEq. (4.20) that is due 
to the potential energy term - Gm l m 2/r not being split lO 

equally between ~ I and ~ z of Eq. (4.25). Clearly Eqs. 
(4.19), (4.20), (4.24), and (4.25) remain valid if the poten­
tial energy terms for the spin-spin interaction 1-4 Vs I,S2 and 
the Nordtvedt eft"ect2-4,9 as well as the quadrupole moment 
interactions 1,3,4 V Q I and V Q 2 (which are all velocity and 
acceleration independent and hence will not contribute to 
the total momentum "I + "z) are included in the Lagran­
gian. 

In the Appendix, we gave a quantum field theory deriva­
tion of the spin-orbit potential energy terms Vs I and VS2 for 
general relativity in a frame of reference where the total mo­
mentum was not zero and our results were in agreement with 
those derived by Cho and Dassll from Schwinger's source 
theoryl2 and those derived by Tulczyjew13 using an "im­
proved" EIH formalism. In Sec. III, we included PPN pa­
rameters r andp in the spin-orbit potential energy terms and 
concluded that the second term in Eq. (3.4) had to be inde­
pendent of rand p. 

and the contractions are24,25 

h ~v (x)h ~p (x') 

- icfz(Dp,ADvp + D,.,pDvA - tJ,.,vDAp )DF(x - x'), 
(AS) 

where 

DF(x-x') = lim _1_Jdkeik(X-X') 1 . 
E_+o(21T)4 k2_iE 

(A6) 

We also have23 

S2 = ~ 12 J dx J dx' T [:Hint (x): :Hint (x'):], (A7) 
2c fz 

where :Hint : may be replaced23.26 by - :Lint: • 

Using Eqs. (A4) in (A7), we obtain 
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APPENDIX: FIELD THEORY DERIVATION OF VS1 AND 
VS2 

In this Appendix, we shall give a quantum field theory 
derivation of the spin-orbit potential energy terms VSI and 
VS2 ofEqs. (3.1) and (3.2), respectively, for general relativ­
ity in a frame of reference where the total momentum is not 
zero, Let us consider the one-graviton exchange interaction 
between a spin-! particle of mass m I and a spin-O particle of 
mass m 2• Let the initial and final propagation four-vectors 
for the spin-! particle be Pp. and p~, respectively, and those 
for the spin-O particle be qp. and q~, respectively. We also 
have 

PI = lip, EI = dipo' Al = mlc/fz, 

p2 = p2 _ p~ = _ Ai, 
P 2 = fzq, E2 = cfzqo, ..1,2 = mzc/fz, 

q2 = q2 _ q~ = _ A ~ , 

(Al) 

(A2) 

where PN and EN are the momentum and energy, respec­
tively, of particle Nand fz is Planck's constant divided by 21T. 
Note that the A I and ..1,2 of this Appendix are not the same 
quantities as the A I and ..1,2 used in the rest of this paper. 

The graviton coupling constant K is related to Newton's 
constant of gravitation G and the speed of light c by the 
relation 

(A3) 

Let ¢ be a spin-! field with mass m l and Uo be a spin-O field 
with mass m 2 , The interaction terms (using ordered prod­
ucts23 ) with the graviton field hp.v areZ4,25 (to order K) 

X [auo(x') aUo(x') _ tJa /3 aUo(x') aUo(x') 

ax~ axp 2 ax~ ax~ 

_ D~ A~Uo(X')Uo(X')] h~/3(x'):. 
Using Eqs. (AS) and (A6) along with 

¢(x) = (l/V)1/2¢+( p)eiPX , 

~(x) = (1/V)1/2~-(p')e-iP'X, 

Uo(x') = (cfzl2qoV)1/2a (q)eiqX' 

+ (cfz/2q~ V) 1/2a*(q')e - iq'x' , 
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(AS) 

(A9) 

(AW) 

(All) 
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in Eq. (AS), we find 

S - i~(21T)4 8( _ I + _ ') 
2 - 4V2(qoqo)1/2 P P q q 

X ( 11 )2:[ -Al"qiP-( p/),p+( p) 
P -P 

+ !( P + p') (q + q')iP- ( p') 

Xi(q + q/)y,p+ ( p) ]a*(q/)a(q); , (AI2) 

where Vis a volume factor, and only the appropriate terms in 
the Fourier expansion have been included on the right-hand 
side ofEqs. (A9), (AW), and (All). 

The quantity V(k), correct to first order in G, is defined 
in terms of the second-order S matrix as23 

S2 = ( - i/dW2) (21T)48( P + q - p' - q/) 

X tP! - ( p')a*(q') V(k)a(q),pt ( p), (A13) 

where iP- ( p') = ,p* - ( P')Y4 and 23 

(At5) 

(A16) 

(AI7) 

and where h=p' - p = q - q' so that 

k=p'-p=q q', ko=Po-Po=qo-qo' (AIS) 

Let us now set 

(AI9) 

where VI (k) is spin independent and Vs I (k) is spin depen­
dent (Le., depends on 0'0». Using Eqs. (A12)-(At9), we 
obtain 

V k _ - t?1f,(2 (AI + Po )1/2(AI + Po )112 1 [ _ AlA ~ (1 _ p'op ) 
I( ) - 4(q~O)1/2 2po 2po k2_k~ (AI +Po)(A I +Po) 

- ! (p+p')(q+q')(qO+qO) (1 + (AI +P:;o~AI +Po,) 

+.!(p+p')(q+q') (p.(q+q') + p/.(q+?'»)], 
4 Al +Po Al +Po 

(A20) 

v. (k) = - c
2
fi2,(2 (AI + Po )112 (AI + Po )112 1 [(A1,q -.! (p + p')(q + q')(qo + qo») 

SI 4(q~o) 1/2 2po 2po k2 
- k ~ 4 

X ia(t)o[kX(p+p')] +.!(p+p')(q+q/) 
2(A I + Po )(A I + Po) 4 

X + - . (
ia(J)'[kX (q + q')] ia(t}'[kX (q + q')] ikoa(l)o[ ( p + p') X (q + q,)])] 

2(A I +Po) 2(A I +Po) 2(A I +Po)(A I +Po) 
(A2l) 

Using Eq. (AlS), we can express ko as lO ko = ko( p' + p)/ 
(Po + Po) orasko = ko(q + q/)/(qo + qo)' Similar to what 
was done in Ref. 10, we shall put the k ~ that is in Eq. (A20) 
and (A2l) in the form 

k ~ = [1 + 2a(a I2 + a2l )] (k' (,P' + P») (k.(q + ~'») 
Po +Po qo+qo 

_ 2a[a 12( k
o
( ,p' + P»)2 + a21 (ko(q + ~/»)2] , 
Po +Po %+qo 

where 

a l2 = [( 1 - ao)m l + aom2]!m2 , 

a2l = [(1 - aO)m2 + aomtl/m l • 

(A22) 

(A23) 

(A24) 

We also have a ko in Eq. (A21), a situation that did not arise 
in Ref. 10. Because there is no simple way to obtain a square 
rootoftheq ofEq. (A22), we suggest that this kobe putin 
the form 
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ko = 0
0 

(ko( ,pI + P») + (l _ (
0

) (k.(q + ~/»), 
Po +Po qo +qo 

(A25) 

where 00 is another arbitrary dimensionless constant. It 
should be noted that Eqs. (A20)-(A22) and (A25) have 
been put into a form such that they remain the same if p <=t p' 
andpo<=tpo or ifq<=tq' and qo<=tqo while k is not altered (i.e., 
we do not change k into - k). The quantity V(k) can also be 
defined in terms of the potential energy V( r ), correct to first 
order in G, as 

V(k) = f dre i(p"r,+q"r')V(r)ei(p'r,+q-r,). (A26) 

The potential energy V(r) is a Hermitian operator and is 
also momentum dependent [i.e., V(r) == V(r,pop,qop) where 
Pop and qoP are operators J . 

If we are only interested in the classical results, as we are 
in this paper, the ordering of the factors in V( r, Pop '~p ) 
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makes no difference (i.e., we can neglect delta function 
terms). To obtain the classical results corresponding to Eqs. 
(A20)-(A22) and (A25) setp' = P,P~ = Po' q' = q, andq~ 
= qo while now considering k to be an independent variable 
(i.e., do not set k equal to zero). The classical results are 

where 

[ (
kop)2 (koq)2] - 2a a 12 Po + a21 q;;' (A29) 

kop koq 
ko = ao - + (1 - ao) - . (A30) 

Po qo 
The inverse ofEq. (A26) for the classical result is 

V(r) =-1-3fdkel'k.rV(k), (A31) 
(217') 

and we shall put [as in Eq. (A19)] 

V(r) = VI(r) + VSI (r). (A32) 

In Ref. 10, we considered the one-gravitation exchange 
interaction between a spin-O particle of mass m I and a spin-O 
particle of mass m2 • The result [Eq. (5) of Ref. 10] corre­
sponding to Eq. (A20) was not identical, but the classical 
result [Eq. (8) of Ref. 10] correspondingtoEq. (A27) was 
identical. The post-Newtonian result (Le., result to order 
c-2 ) for VI (r) is given by Eq. (33) of Ref. 10. Because of the 
choice of k ~ in the form ofEq. (A29), the post-Newtonian 
result for VI(r) is actually in the r.N coordinate system as 
defined in Sec. II of this paper. 

The post-Newtonian approximation to Eq. (A28) is 

V. (k) = _ C
2

fi2K2 [3A2 iawo(kXp) - ia(l)o(kXq) l· 
SI 4k2 4AI 

(A33) 

UsingEq. (A1)-(A3) andletting~ lia(I) .... S(l)inEq. (A33), 
we find, after using Eq. (A31) and 
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-1-fdke1k
•
r!. = ~ (A34) 

(217')3 k2 41Tr ' 
that the post-Newtonian approximation to VSI (r) is 

VSI (r) = (G/c2r )[(3m2/2m l )S(1)o(rxPI ) 

(A35) 

To obtain both VSI (r) and VS2 (r), one could consider the 
one-graviton exchange interaction between a spin-! particle 
of mass m l and a spin-! particle of mass m2• However, it is 
much easier to obtain VS2 (r) from VSI (r) by letting 1 .... 2 
and 2 .... 1 and r = r l - r2 .... - r, which gives us 

VS2 (r) = (G /c2r) [ - (3ml/2m2)S(2)o(rXP2) 

+ 2S(2)o(rxPI)]. (A36) 

Finally, noting that PN = mNVN to first order, we see that 
Eqs. (A35) and (A36) are in agreement with Eqs. (3.1) and 
(3.2). 
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A rigorous version of the quadrupole radiation formula is derived using the characteristic 
initial value formulation of a general relativistic fluid space-time. Starting from initial data for 
a Newtonian fluid, an algorithm is presented that determines characteristic initial data for a 
one-parameter family of general relativistic fluid space-times. At the initial time, a one­
parameter family of space-times with this initial data osculates the evolution of the Newtonian 
fluid and has leading order news function equal to the third time derivative of the transverse 
Newtonian quadrupole moment. 

I. INTRODUCTION 

The goal of this paper is to derive a version of the quad­
rupole radiation formula which is based upon the character­
istic initial value problem for a general relativistic fluid. Ini­
tial data for a A-parameter family of general relativistic 
space-times are constructed from initial data for a spatially 
compact Newtonian fluid which provides a A = 0 Newton­
Cartan background. At the initial time, the quadrupole for­
mula is obtained as an equality between the leading A-order 
term of the Bondi news function and the third time deriva­
tive of the transverse Newtonian quadrupole moment. All 
assumptions concerning A differentiability of the system are 
manifestly consistent. All asymptotic properties follow from 
the asymptotic properties of the Newton-Cartan back­
ground. 

Many important results in general relativity have cen­
tered about initial value problems. In the case of the space­
like Cauchy problem, one notable example is the global exis­
tence and uniqueness theorems for solutions to the vacuum 
Einstein equations having asymptotically Euclidean spatial 
sections. 1 In the case ofthe characteristic initial value prob­
lem, one difficult feature of the ordinary Cauchy problem 
disappears, namely the differential constraints on the initial 
data. Yet there has been only slight progress toward proving 
global existence and uniqueness theorems. 2 Null hypersur­
faces, with nonvanishing domain of dependence, contain 
caustics so that new difficulties arise from the lack of 
smoothness of the initial hypersurface.3 In the presence of 
fluid sources, very little has been established in regard to 
global existence and uniqueness theorems even in the space­
like case; and for compact fluid sources no such theorems are 
known even in Newtonian hydrodynamics. 

In this state of affairs, it is nevertheless possible to estab­
lish properties of formal solutions obtained by series expan­
sion. In this manner, several derivations of the quadrupole 
formula have been based upon a harmonic coordinate ap­
proach.4 Also, using the method of Newton-Cartan limits 
on null cones,5,6 a derivation has been given in null coordi­
nates, in which the calculations are simple enough so that the 
underlying ideas are not hidden.7 The weakness of such re­
sults is that assumptions implicit in a perturbation expansion 

might, at higher orders, lead to mathematical inconsisten­
cies in the case of radiative space-times. An alternative possi­
bility is to avoid such inconsistencies by establishing proper­
ties of initial data sets rather than of solutions. Since data on 
an initial null hypersurface immediately exhibits gravita­
tional radiation at null infinity, such a study of the quadru­
pole radiation problem is very natural. (In contrast, initial 
data on a spacelike hypersurface, though they contain this 
information, do not exhibit it directly. However, perhaps the 
radiation reaction problem could be formulated in terms of 
such data.) 

Thus, rather than basing a strong version of the quadru­
pole radiation formula on overly optimistic assumptions as 
in Ref. 7, this paper establishes a weak initial value version 
using well founded assumptions. This at least provides some 
mathematically rigorous domain for its validity. Such a deri­
vation was first given for a highly simplified dust modelS but 
the calculations were far too complicated to generalize. The 
strategy here is to retain the same basic formulation as for 
the dust model but to employ the more powerful calcula­
tional approach of Ref. 7. 

The main success of the characteristic initial value prob­
lem has been the description of gravitational waves in the 
asymptotic region far from the sources.9 This has been ex­
tended to a global formalism, with fluid interior, by assum­
ing the existence of outgoing null cones emanating from 
some central geodesic. 10 The null cone assumption appears 
to be justified for a wide class of astrophysical systems with 
intense gravitational fields. The original purpose was to ap­
ply this global formalism to a numerical study of the genera­
tion of gravitational waves. Similar numerical studies using 
more general null hypersurfaces have also been initiated.3 A 
serious problem arises here concerning the presence of in­
coming radiation in the initial data. In the vacuum case, the 
requirement that the initial cone be shear-free gives the cor­
rect data for Minkowski space but, in the presence of matter, 
these data generally contain more incoming radiation than 
the amount of outgoing radiation generated by the matter. 10 

Without some control over this incoming radiation, any nu­
merical evolution or any statement of the quadrupole formu­
la would be of little physical value. 

668 J. Math. Phys. 28 (3), March 1987 0022-2488/87/030668-09$02.50 @ 1987 American Institute of Physics 668 



                                                                                                                                    

How should one choose gravitational null data which, 
for a given matter distribution, exclude "too much" incom­
ing radiation unrelated to the matter source? A tentative 
answer to this, proposed in Refs. 5 and 6 and used below, is 
the requirement of a Newton-Cartan limit based upon a 
family of outgoing null cones. In this limit, the gravitational 
null datum is determined by the background Newtonian po­
tential. (Boundary conditions at infinity eliminate homo­
geneous contributions to the potential which might arise as a 
Newtonian limit of incoming radiation. In this context, see 
the Newtonian limit of plane waves. II) A A-parameter sys­
tem of space-times is described on a common manifold so 
that they share a family of outgoing null cones emanating 
from a timelike geodesic worldline. In a Bondi-type null co­
ordinate system x a = (XO,Xl,~) = (u,r,cos (},,p) based 
upon these cones, the A metric takes the A-dependent Bondi 
form 

ds2 = [e2A 'P(1 + A 2W /r) - A 4~h ABUA UB ]du2 

+ Ue2A 'p du dr 

+ U 3~UA du d~ - A 2~hABd~ dxB , (1.1) 

where h ABhBC = (jAC, det(hAB ) = 1, and hAB = qAB 
+ A 2yAB , withqAB the unit-sphere metric. Thefieldsp, W / 

r, rUA, and YAB are required to be O(~), near r = O. Then, 
an admissible coordinate system in the neighborhood of the 
origin is given by t = u + Ar, x = r sin () cos ,p, y = r sin () 
X sin,p, and z = r cos (), which agree with Fermi coordi­
nates up to terms which do not involve the curvature. The 
explicit A factors in (1.1 ) ensure that the A = 0 limit yields 
the metric of Newton-Cartan theory with absolute time 
slices u = const, provided p, UA

, W, and Y AB are smooth in 
this limit. 

For matter source we adopt the A-dependent ideal fluid 
stress-tensor 

Tftv = (p + A 2p )WftWV - A 2pgftV (1.2) 

with four-velocity wft of the form wft = t,ft + A 2Vft . The ex­
plicit A factors are sufficient to ensure that Einstein's equa­
tions yield, for A = 0, the Euler-Poisson equations, which 
emerge in a polar coordinate system with freely falling ori­
gin. In this local inertial frame, the Newtonian potential cP* 
satisfies the boundary conditions 

CP*(u,O~) = 0, CP*.I (u,O~) = 0 (1.3) 

and has the asymptotic behavior 

CP*=r~alm(U)Ylm +a(u) +0(+) (1.4) 

at infinity. The remaining condition for the existence of a 
Newton-Cartan limit is that theA = 0 limit of the Christof­
fel connection of (1.1) be the Newton-Cartan connection 
(whose geodesics are free-fall trajectories), which requires 
that -

lim (W +p) = CP*. 
..t-o 2r 

This can be reformulated, using the hypersurface equations 
(see below), as the condition5 

( 1.5) 
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where qA is a complex null dyad for the unit sphere, 
qAB = 2q(AQB)' and a colon denotes covariant differenti­
ation with respect to qAB' The left-hand side of (1.5) is the 
Weyl tensor version of the gravitational null datum. Here we 
only require (1.5) to hold in an osculatory sense in time [see 
Eq. (2.6)]. 

Einstein's equations Eftv: = GftV + 81TTftv = 0, for this 
system, are equivalent to the four hypersurface equations 

Ell-' =0, 

the two gravitational evolution equations 

EAB -! gABgCDEcD = 0 , 

and the four fluid evolution equations 

( 1.6) 

( 1.7) 

( 1.8) 

The remaining Einstein equations then follow from the 
Bianchi identities provided the smoothness conditions at the 
origin are satisfied. 10 All integration constants are uniquely 
determined by the vanishing of p, U A, W, and Y AB at the 
origin, which also follows from the smoothness conditions at 
the origin. Further details of this A system are given in Ref. 6 
and will be presented as they are required. 

Section II reduces the quadrupole issue to a calcula­
tional problem by establishing the following lemma. 

Lemma 1: Given smooth, compact initial fluid data for a 
Newtonian system, there exists initial null cone data for aA­
dependent family of general relativistic (GR) systems 
whose formal evolution, in the A = 0 limit, osculates the 
Newtonian system in the sense of (2.6). The free gravitation­
al null datum is a cubic polynomial in A with uniformly 
smooth asymptotic behavior as described by (2.16) and 
(2.17). 

Now the remaining problem is strictly calculational. 
Find the leading order news function for these data and com­
pare it with the third time derivative of the quadrupole mo­
ment of the Newtonian background. To expedite this calcu­
lation a slow motion conformal Bondi frame is introduced in 
Sec. III. The quadrupole formula is then obtained in Sec. IV. 
The assumptions underlying this result and the conclusion 
can be summarized by the theorem below. 

Initial Quadrupole Radiation Theorem: Given smooth, 
compact initial data for a Newtonian fluid, at uo, there exists 
logarithmically asymptotic flat null data for a A-dependent 
general relativistic fluid space-time with the following prop­
erty. Any A-dependent fluid space-time, which can be 
smoothly represented in null cone coordinates in a neighbor­
hood of UO' with this null data at uo, has (i) a A = 0 limit 
whose evolution osculates the Newtonian system in the sense 
of (2.6) and (ii) a leading order news function which satis­
fies the quadrupole radiation formula (4.8) at uo' 

Conventions and Notation: Our conventions are adopt­
ed to agree, as closely as possible, with those of Refs. 5-8. We 
use signature + - - -; units for which G = c = 1; 
Greek letters ranging over 0-3 for space-time indices; lower­
case Latin letters ranging over 1-3 for spatial indices: capital 
Latin letters ranging over 2-3 for indices on topologically 
spherical two-spaces; a semicolon to denote space-time co­
variant differentiation; a colon to represent covariant di1fer­
entiation with respect to the unit sphere metric qAB; a com-
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rna for partial differentiation; a unit sphere dyad for which 
qAB = 2q(AqAB); and curvature conventions, for which 
v/l;ap - v/l;Pa = vvR "/laP' R/lv = R a/lva ' R = R aa' and the 
intrinsic scalar curvature of the unit sphere equals - 2. The 
numerical conventions for the unit sphere spin-weight lad­
der operator d are fixed by the examples v A:BqAqB 

d(vAqA)IJ'i,J:AA = 3d/, and (d3 - 3d)1] = 2s1], for a 
s~n-weight s quantity 1]. Acting on spherical harmonics, 
MYlm = -/(/ + I)Y1m • We write/= ~P")A n for the ex­
pansions of A-dependent fields. We use the shorthand nota­
tion 

f /= ff(S)dS. 

We denote by & 0 the operator which projects out I = 0 har­
monics and by & 1 the operator which projects out / = 0 and 
I 1 harmonics. In Sec. III, we introduce a Penrose compa­
tification with conformally rescaled metric denoted by g/lv' 

II. QUASI-NEWTONIAN INITIAL DATA 

We now discuss how smooth compact initial data p,vi 

and an equation of state for a Newtonian fluid at initial time 
uo determine initial null data for the A system through the 
requirement of the Newton-Cartan limit in the form 
(1.5 ).5.6 We do not require that this limit exist for any finite 
time interval but only to an osculatory degree sufficient to 
formulate an initial value version of the quadrupole formula. 
For this purpose, we require that the limit condition (1. 5) 
and its first three u derivatives are satisfied at uo. In order to 
discuss such time derivatives determined from initial data by 
evolution equations, we introduce a A family of Lorentz 
space-times in a neighborhood of uo which is described in 
null cone coordinates. Our primary interest is in those rela­
tionships at uo in which all time derivatives may be reex­
pressed in terms of derivatives tangential to uo by using evo­
lution equations and coordinate conditions. 

At uo, the fluid datap and Vi for theA system have their 
A-independent Newtonian values. As gravitational null data 
at uo, it is sufficient to adopt the cubic A dependence 

qAqBYAB = qAqB [y~DJ + AYW + A 2 y~~ + A 3 y~~] . 
(2.1 ) 

For analyzing Einstein's equations it is convenient to intro­
duce complex scalar potentials a and Z by 

{fa = qAqBYAB I , 

3Z = J'i UAqA, 

and the Weyl tensor version of the null data 

(2.2) 

(2.3 ) 

t/J= (ra),! . (2.4) 

We fix the freedom in these potentials by requiring 
& la = a and & oZ = Z, i.e., a has no I = 0 and I = 1 parts 
and Z has no I = 0 part. This differs from the original gauge 
choice in Ref. 5 but it leads to some simplifications while 
introducing no changes in geometrically significant quanti­
ties. In terms of t/J the initial data takes the form 

t/J = t/J{O) + At/J(l) + A 2t/J(2) + A 3t/J(3) . (2.5) 

(The boundary conditions at the origin imply that t/J, a, and 
qAqBYAB are equivalent ways to specify the gravitational 

670 J. Math. Phys., Vol. 28. No.3. March 1987 

data.) The osculatory version of the Newton-Cartan limit at 
uo now becomes 

a" an 
- t/J(O) = - 2& 1 - <1>* O<;n<;3 (2.6) 
aun au"' . 
The hypersurface equations (1.6) take the form 

- 4r/3.1 = Jp • (2.7) 

(r4Z,1 ),1 = 2r4 (/3lr),l - (2 + 3d)ra +Jz • (2.8) 

W.I ! 32 d2 f (a + il) + (2 - dd)/3 

1 4 - -+ 4r [rM(Z+Z»),1 +Jw , (2.9) 

where the J's are quantities intrinsic to a single null hyper­
surface. They have the hierarchical form that Jp depends 
only upon the null data, Jz depends only upon the null data 
and/3, and J w depends only on the null data/3, and Z. Thus 
they can be integrated in turn to find /3, Z, and W given the 
null data. Smoothness at the origin determines the radial 
integration constants by integrating these equations from 
the origin, e.g.,/3 = - !SJplr. Furthermore, theJ's are con­
structed using a finite number of differential and algebraic 
operations within a null hypersurface. As a result, given the 
polynomial A dependence of the null data at uo• they will be 
analytic functions of A (including A = 0) at uo. Expressions 
for theJ 's, accurate up to order A 4, are given in Appendix A. 
At each order, each J(n) is determined by gravitational null 
data up to t/J(n - 2) and matter data up to pen) and vi" - I). 

The gravitational evolution equation (1.7) takes the 
form 

(2.10) 

where J", is again a hypersurface quantity which is deter­
mined by null data up to t/J(n - 2) and matter data up to pen) 
and vjn 1). Again, at u uo,J '" is an analytic function of A. 
An expression for J", accurate up to order A 4 is given to 
Appendix A. The evolution equation can be combined with 
the hypersurface equation to yield5

,6 

r'iPt/J = E... [rt/J,o J.1 +1. [r4 (:!L) ] 
r r r,1 ,1 

+ & I(Jp + Jz.t ) , (2.11 ) 

where V2 is the Laplacian in spherical coordinates. Equation 
(2.11) gives a set of Poisson equations for the initial gravita­
tional data. The source for t/J(O) is the matter density p(O) of the 
Newtonian background. 

V2t/J(O) = _ 81T& I p(O) 

in consistency with the Newton-Cartan limit condition 
(2.6). 

The Poisson equation for t/J(l) has source depending 
upon t/J(O),o and initial data, so that the source can be con­
structed out of previously known quantities at uo. Similarly, 
by u differentiation, the Poisson equation for t/J(J).o has 
source which can be constructed out of previously known 
quantities at uO' after using the evolution equations to re­
place time derivatives in terms of derivatives tangential to Uo. 
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This continues for rlP),oo' That gives enough information to 
construct, in turn, sources for riP>' rlP),o, and riP), all at uo' in 
terms of either previously known quantities or solutions of 
prior Poisson equations. Thus we have a scheme for deter­
mining the initial gravitational data ",(n) (O<n<3) by solv­
ing a sequence of Poisson equations. 

It remains to check whether the asymptotic properties 
of the source terms are consistent with the boundary condi­
tion that", vanish at infinity so that they determine unique 
solutions. The ability to eliminate homogeneous solutions of 
the Poisson equations, which do not vanish at infinity, is in 
fact our mechanism for restricting incoming radiation. It is 
self-evident from (2.6) that in the region exterior to the 
sources ",(0) has analytic 1/r dependence. Specifically, 
",(0) = O( 1/r'l) with 

?P",(O) = 3(Q /r'l) + O( 1/r4) . (2.12) 

Here Q is a pure spin-weight 2, 1 = 2 quantity describing 
the transverse Newtonian quadrupole moment 

in terms of the Cartesian quadrupole components 

Qij = fp(O) (x;Xj -!roij)dV. 

(2.13 ) 

The behavior of ",(1) and ",(2) in the exterior has been 
worked out in Ref. 6. For ",(I) the exterior self-gravitational 
source terms are linear and simple to analyze. At uo, we 
again have analytic 1/r dependence in the exterior region 
with 

(2.14 ) 

The same behavior applies to the first two u derivatives 
of ",(1), at uo, which can be calculated from our knowledge of 
the first three u derivatives of ",(0), at Uo. For ",(2), the solution 
is complicated by nonlinear, noncompact source terms. Not 
all details of the exterior behavior have been worked out but 
it has been shown6 that in the exterior, ",(2) has the form 

",(2) = "'A (2) + "'L (2) In r/r, (2.15) 

where ",(Z)A and "'L (Z) are analytic in 1/r and both have O( 1/ 
r'l) asymptotic behavior. At uo, these results hold in the pres­
ent case for both ",(2) and its first u derivative. Whether "'L (Z) 

can actually be nonzero has not been established but the 
important feature here is that at worst it has O( 1/r'l) de­
pendence. 

The exterior behavior of ",(3) was not explored in Ref. 6 
but the results for the dust model8 explicitly show the exis­
tenceofaIn r/r'l term. This is the first order at which asymp­
totic behavior inconsistent with the peeling property arises. 
However, most of the standard properties of null infinity 
remain intact for this weaker logarithmic version of asymp­
totic flatness, e.g., the existence of a conformal boundary at 
null infinity, the BMS group and the properties of the Bondi 
mass and news function. 12 In Appendix A we show that the 
asymptotic behavior of ",(3) for the dust solution character­
izes the worst possible behavior in the general case, 

",(3) = "'A (3) + "'L (3) In r, 

where "'A (3) is analytic in 1/r and both "'A (3) and "'L (3) are 
O( 1/r'l). Whether "'L (3) is analytic in 1/rhas not been inves-
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tigated but it is shown in Appendix A that it satisfies the 
asymptotic uniform smoothness conditions that if 
j(uo,r,xA) = O(g(r») then 

Jj = O(g) and Jj = 0 (~). (2.16) 
J~ Jr r 

These conditions are also possessed by all the metric vari­
ables and their u derivatives at uo, as determined by evolu­
tion equations. 

In summary, at Uo we can set 

'" = "'A + A Z"'L (2) In r/r + A 3"'L (3) In r, (2.17) 

where", A is analytic, the "'L 's are uniformly smooth, and all 
the ""s are O( 1/r'l). We have thus established Lemma 1, 
stated in the Introduction. 

III. THE CONFORMAL BONDI FRAME 

An asymptotic approach can be used' to expedite the 
calculation of the news function for the data determined in 
the last section.7 Since the news function is a purely geomet­
rical field it may be calculated in any coordinate system. The 
first step is to demonstrate the existence of an asymptotic 
Bondi frame in which ( 1.5) is still valid. For this purpose it is 
convenient to construct a Penrose compactification 13 of a 
neighborhood of the exterior region of the initial null cone by 
attaching a portion of f+ to the physical space-time. An 
appropriate conformal factor and new radial coordinate is 
the inverse luminosity distance 14 n = I: = 1/r. Then the 
conformal metric gl'v = ll2gl'v is given by 

d'S2 = [e 2A 'f312 (1 + A 2WI) 

- A 4h ABUA UB ]du2 - Ue2,).'f3 du dl 

+U3UAdud~-A2hABd~dxB. (3.1) 

In this coordinate system (u,l,xA ), '" as well as the aux­
iliary variables p, UA, W, and r AB are still analytic in A and 
satisfy the uniform smoothness conditions (2.16) with re­
spect to 1 at uo. 

However, the metric variables do not vanish at f+. 

Their asymptotic forms may be inferred from the equations 
A A 

(VI' ll) Vl'll = o(n) 

and 
A A A ""-

VI' vvn - UI'V vpvpn = O(ll) , 

which follow from the existence of a conformal boundary 
and the vacuum Einstein equations. 14 This gives 

hAB =qAB +A2KAB +0(1), (3.2) 

P=H+O(l2), (3.3) 

UA =hAB(LB+2re2A'HDBH) +O(e), (3.4) 

W/2=DAL A+O(l) , (3.5) 

where H,L A , and K AB are independent of I, with 

AKAB,u = ( - hACDB - hBCDA +! hABDC)L c + O(l) , 

(3.6) 

and where DAis the covariant derivative with respect to h AB . 
(Alternatively, these properties could be established directly 
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in the physical space from an asymptotic integration of the 
hypersurface and evolution equations.) 

The asymptotic metric terms (H, L B
, and K AB ) arise 

because our coordinates were chosen to be locally inertial at 
the origin. They would vanish in a conformal Bondi frame, 
which corresponds as closely as possible to an asymptotic 
inertial frame. However, carrying out such a transformation 
directly would disrupt the A analyticity of the metric vari­
ables, i.e., 1/..1. terms would arise. This would then compli­
cate the bookkeeping of A orders in the calculation of the 
news. Such problems are avoided by introducing a slow mo­
tion time (u - uo) = A (v - vo) and a further conformal res­
caling g!'v = g!'v /..1. 2 so that 

as2 = [e2A 'P[2( 1 + A 2WI) 

- A 4h ABUA UB ]dv2 - 2e2A 'P dv dl 

+ U 2UA dv d~ - hABd~ dxB 
• (3.7) 

In the A = 0 limit, d'S21eads to a background Minkowski 
geometry. Equation (3.7) provides a slow motion post-Min­
kowski representation of the post-Newton-Cartan initial 
value system.6 

The goal now is to remove the asymptotic metric terms 
by a coordinate transformation (v',1' ~ ') = x a

' (xP) leading 
to a conformal Bondi frame. In doing so, the conformal met­
ric must also undergo a conformal transformation 
g!'v = (t)-2~v in order to retain det(hAB ) = 1. The total 
change is 

and the new conformal factor 0' = I' is given by 

(1')2 = 12 det(a~') . (3,9) 
axB 

This determines the new /' in terms of the new ~' . Also, once 
the new v' and ~' are known at f+ their values interior to 
f+ are determined by requiring that the null coordinate 
conditions 

g'O'o'=O and gO'A'=O (3.10) 

are maintained. 
Consider first transformatioI1S' with v' = v, with an eye 

toward setting K Ab and LA to zero in the new frame. This 
requires that the new glA must vanish at f + or, according to 
(3.8), 

~' = _A2~' LB. 
,u ,B 

Wethushave~' = ~ +..1. 2y4, wherey4 iszerothorderinA 
and, at f+, satisfies 

(3.10 

We need only set the first two v derivatives of LA equal 
to zero, at uo. (We continue to refer to the initial null hyper­
surface as uo.) At uo, we choose ~ + A 2y4 to generate the 
conformal mapping that initially sets K AB = O. The first two 
v derivatives of y4, at f+, are then determined by (3.11) 
and then (3.6) ensuresKAB remains zero up to its first three 
v derivatives. 

Transforming KAB and LA to zero in this way also 
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changes r~~. It is important to check that there is no change 
in /2rO)AB.1l = (rr~~.r).r so that the Newton-Cartan limit 
condition (1.5) is still valid in the new coordinate system. 
Interior to f+, (3.10) gives y4,1 = 0 so that y4 has no I 
dependence and the I derivatives of r~~ are not changed, as 
desired. 

Assuming now that L A and K AB have been transformed 
to zero. We next transformH to zero while keeping ~' = ~ 
at f+, so that LA and KAB remain zero. After setting 
v' = v + A 2y , the condition that the new H' vanishes reduces 
to 

Y,v (l - e2A2H )/A 2 (3.12) 

at f+. At uo• we take Y = 0 so that the initial null hypersur­
face is unchanged. Then (3.12), or its higher v derivative 
counterparts, determines all necessary v derivatives at f+ . 

It remains to check the change in r~~ ,11 under this transfor­
mation. At interior points, (3.10) gives 

Y,l 0(..1. 2) and y4,l = qABy,B + 0(..1. 2) , 

where we again set xA 
' xA + A 2 yA (but now with yA 0 

at f+). Thus y4 = qABY.BI + 0(..1. 2). As a result, r~~ and 
the leading order shear tensor r~~,l change, but r~~,lI re­
mains unchanged. 

Thus for the A-dependent system there exists a confor­
mal Bondi frame, at uo• in which 

qAqB[2rAB'll = - 4qAtf<l>*:AB + 0(..1.) , 

or, equivalently, 

¢ = - 29\<1>* + 0(..1.) . 

The transformation to this frame preserves analyticity 
with respect to A and uniform smoothness with respect to I. 
Recall that the original coordinates for the physical space­
time covered a neighborhood of Uo which was introduced to 
represent time derivatives at Uo without explicitly reexpress­
ing them, via evolution equations, in terms of derivatives 
intrinsic to Uo' The same applies to the conformal Bondi 
coordinates. 

The original physical time u and the slow motion Bondi 
time v are related, at uo' by 

(3.13) 

where the remainder satisfies (a /au)O(A 2) = 0(..1. 2). 

As a result, the osculating Newton-Cartan limit condi­
tions (2.6), at uo• take the form in the Bondi frame 

(3.14 ) 

This implies certain slow motion properties of the Bondi 
frame, e.g., a¢/av = 0(..1.) which follows from (3.13) and 
the fact that the ..1.= 0 limit of a¢/au exists. In particular, 
according to (2.12) and (3.13), we have, at uo, 

lim 1-3lP¢,vvv = 3..1. 3Q,uuu + 0(..1. 4) . 
1_0 

(3.15 ) 

This is the key equation relating the quadrupole moment of 
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the background Newtonian system to the exterior field that 
will be used in the next section. 

IV. THE CALCULATION 

In the interior space-time, four of Einstein's equations 
were replaced by the matter equations T J.>v;v = O. In the exte­
rior, although T J.>V vanishes, the remaining hypersurface and 
gravitational evolution equations do not imply the vacuum 
equations unless the supplementary conditions Roo 
= ROA = 0 are imposed on some world tube. 14 With an inte-
rior, all radial integration constants can be fixed by smooth­
ness conditions at the origin but, otherwise, those describing 
the mass and angular momentum must be initially specified 
on a spherical cross section of the world tube. The supple­
mentary conditions then determine their time dependence. 
In the conformal Bondi frame constructed in the last section, 
we can choose this world tube to be f+, with the initial 
cross section at uO' 

An analysis of Einstein's equation in a conformal Bondi 
frame is given in Ref. 14 and the modifications to include In r 
terms are discussed in Ref. 12. A brief A-dependent version 
based upon those references is presented in Appendix B. 

Here we need only consider the leading asymptotic be­
havior. In the conformal Bondi frame, the null data for the 
A-dependent system corresponding to (2.17) has the asymp­
totic form 

(4.1 ) 

where k,v = O(A) and/v = O(A), in terms of the slow time 
v. Integration of r/qB/2YAB,II = 021/1 then leads to 

r/qBYAB = 02[cl + ~(k - i A ])/3 

+~A3jI31n/] +0(/41n /) , (4.2) 

where e(v,xA,A) is a radial integration constant whose time 
derivative determines the Bondi news function. 

The evolution equation (B5) gives/v = 0 and 

02k,v = - !021] , (4.3) 

where 1] is a spin-weight 0 potential for the angular momen­
tum aspect. The supplementary conditions (B6) and (B7) 
give 

M,v =!02d2 (e+e),v - (A 2/4)(02e,v)(d2 e,v) , (4.4) 

o1],v = a [ - 2M - !02 d2(e - e)] + A 2{io [(02e)d2 el,v 

- 20 [( d2e) 02e,v] - ~(03e)d2 e,v +!( od2 c) (!2e,v } , 

(4.5) 

where M is the mass aspect. By taking the second v derivative 
of (4.3), M and 1] can be eliminated via (4.4) and (4.5). 
There results 

02k,vvv = (!2{.i02d2(e + e) + A02 d2(e - e)},v 

+ !A 20{ - ! a [ (02e,v ) d2 e,v ] 

- i 0[ (02e) (d2 c) 1.vv + 20 [ (d2 e){fe,v L 
+ H «!3c)d2e,v L - H (od2e)02e,v ],v}' (4.6) 

We now apply these results to our initial data at uo. Since 
1/1,vvv = k,vvv e + 0(14 In I), (3.15) implies that the right­
hand side of (4.6) must be O(A 3). That requires 
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e v = O(A 3). Similary, since Q is a pure spin-2 electric qua­
drupole, (e - e) = O(A 4) and 02 d2e,v = 24e,v + O(A 4). 
Then (3.15) and (4.6) combine to give 

2ife,v = A 3Q,uuu + O(A 4) . 

Here the left-hand side is the news function (with the 
numerical factor chosen to agree with Bondi's original defin­
ition). We have thus established, at Un' the quadrupole radi­
ation formula 

N (0) = Q,uuu , (4.7) 

where N (0) is the leading order news function for theA-depen­
dent system. By construction of the initial null data, any 
space-time determined by this data must satisfy (4.7) at Uo. 

This establishes the initial Quadrupole Radiation Theorem 
stated in the Introduction. 

V. DISCUSSION 

The theorem just established provides a rigorous model 
for the widely accepted idea that the quadrupole formula 
should approximately describe the radiation from a quasi­
Newtonian system. The theorem gives no error estimates but 
it does point to some possible causes of error. These can be 
separated into truncation error and evolution error. 

Given data at Uo for third-order Newtonian osculation, 
i.e., satisfying (2.6), the truncation error N(A) - N(O), in the 
news function at UO' arises from considering only the leading 
order term N(O). Although a general error bound might be 
difficult to obtain, the error for any specific system could be 
calculated numerically, using already developed codes in the 
axisymmetric case.1O From physical considerations, one 
would expect this error to be significant, say for A = 1, when 
the background Newtonian system had fluid velocities or 
escape velocities comparable to the velocity oflight. And one 
would expect the approximation to be meaningless were the 
background incompatible with a A family of null cones be­
cause of caustics arising from strong light bending proper­
ties. Such nonperturbative effects would not be accessible by 
this approach. Also, there is the degenerate case in which the 
Newtonian Q,uuu vanishes, at UO' so that N(O) = O. On the 
basis of linearized theory, the next order term in the news 
function N (1) should then represent octupole radiation but, in 
our formalism, that would require an additional order of 
osculation with the Newtonian background. 

This leads us to the issue of errors arising in the evolu­
tion. In the future of UO, the A = 0 limit of the space-time 
evolved from the A-dependent general relativistic data no 
longer exactly equals the background Newton-Cartan 
space-time. Thus the quadrupole formula would not contin­
ue to hold exactly. The consequent error in applying the 
formula could be attributed to a basic inadequacy in approx­
imating a general relativistic system by a Newtonian one 
over both large time and distance scales. It would then be 
important to know over what time intervals the quadrupole 
formula remains a good approximation. 

Another possible interpretation of the evolution error is 
in terms of the inadequacy of the initial data. The osculation 
at Uo with the Newtonian background might be imposed to a 
higher order than (2.6). Osculation to all orders might even 
be demanded, as assumed in Ref. 7. A potential problem here 
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is that asymptotic flatness is already weakened to a logarith­
mic version for third-order osculation so that for higher or­
ders the asymptotic behavior might not remain physically 
reasonable. Models of slow motion expansions for the non­
linear wave equation 0\11 + \liP = S, for p;;.3, indicate that 
such drastic asymptotic behavior is inevitable at some order 
of osculation. 15 

Such deviations from asymptotic flatness stem from 
nonlinear, noncompact source terms. These terms are also 
responsible for backscattering, which obscures the degree to 
which the requirement of a Newton-Cartan limit eliminates 
incoming radiation. Can both ofthese difficulties be avoided 
by removing the troublesome nonlinear terms in setting up 
the initial data? (A method for removing logarithmic terms 
at third order was found for the dust modelS but it might not 
generalize naturally.) For example, the linearized version of 
the null cone formulation of Einstein's equations might be 
used for determining initial data, i.e., demand osculation to 
all orders between the Newton-Cartan and linearized space­
times. No logarithm terms would arise at each order since 
the source terms would be compact. Given this data, one 
could compare its full nonlinear evolution with the back­
ground. All these considerations deserve further explora­
tion. 
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APPENDIX A: QUASI-NEWTONIAN FORMULA 

To calculate the J's introduced in Sec. II, Einstein's 
equation is expanded in terms of /3, Z, W, a, p, V j , and p. In 
this process, it is convenient to express the contravariant 
two-metric hAB , in terms of a dyad h AB = 2m(AmB) with the 
expansion 

(Al) 

in terms of the auxiliary variables P and Q. The phase free­
dom in mA is fixed here by the requirements 

To the order required in this paper, only p(O) appears in 
the J's and may be reexpressed in terms of a(O) by 

(A2) 

Straightforward calculation then leads to 

Jp = - 81Tr(p + A 2p) (1 + AV I )2 - ¥ 2r ( <'I2a)lF a + 0(,1 4) , 

<'lJ z = 161TA ~r(p + A 2p) (1 + AV I )qAv A + U 2 (r4/3<'1Z,1 ) ,I 

(A3) 

+ A 2[r4(<'I2a)3 Z 1.1 + rA 2 [P<'I32 a - P<'I3a - 2(<'IP)<'I2a] + 0(,1 4) , (A4) 

J
w 

= -41T[pr+A2p(2r/3+qABvAvB) _A2pr] - (3,1 2/2) <'13 (PP) + (A 2/2)<'I(P3P) + (A 2/2) 3 (P<'IP) 

- A 2/3( 32P + <'I2p) + U 2/3( 1 - <'13)/3 - A 2(<'1/3)3/3 - A 23 (P3/3) - A 2<'1 (P<'I/3) (AS) 

+ (A 2/2r) [r4 3(P3 Z) + r4<'l(P<'IZ) 1.1 - (A 2r4/4) (3 Z.I )<'IZ,I + 0(,1 4), 

<'I2J", = -161TA 2p(vAqA)2- A 2(rw<fa).1 -4A2/3<'12/3-U 2(<'I/3)2-4A2P<'I3/3 +U 2[(<'I/3)3P- (3/3)<'IP] 

+ A 2P<'I3[r(Z + Z) ],1 - (A 2r4/2) (<'IZ,I )2 + A 2r (3<'12a)<'IZ + (A 2r/2) (<'I2a) <'13 (Z - Z) 

+,1 2[ (<'IP)(r3 Z).I - (3p)(r<'lZ).I] + 0(,1 4) . 

It is convenient to have the following combination which appears in S: 

<'I(Jp + JZ,I ) = - 81Tr<'l[ (p + A 2p) (1 + AVI )2] + 161TA ~[r(p + A 2p)( 1 + AV1)qAvA L 
+ A 2{r4[2/3<'1Z,1 + (<'I2a)3 Z n,lI + A 2 [P<'I32 - P<'I 3 

- 2(<'IP)<'I2 ](ra),1 + 0(,1 4) . 

(A6) 

(A7) 

We now investigate the asymptotic behavior of I/Pl, at 
Uo. In accord with (2.11), it satisfies 

Theorem A: Let f (r) be a continuous and bounded 
function. The necessary and sufficient conditions for 
V2f/J = f to have a solution of the form V2t/J(3) = S (3) , 

where 

S(3) = ~ [~t/J~)],I + ~ [r4 (J~3») ] 
~ ~ r ,I ,I 

+ 91(J~3) +J£1>. 

(A8) 

(A9) 

A theorem due to Persidesl6 will be helpful in that regard. 
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ct>(r) = L ct>k(O,f/J) (AW) 
k>O rl + k 

outside some radius r;;.ro are 

(All) 
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fft(O,¢) Ylm (O,¢)df! = o. (A12) 

for r;;.ro. 
Before applying this theorem to the source S(3), we list 

some lower-order results which were established in Ref. 6 at 
any time u for which the Newtonian limit condition (2.6) 
holds. In the region r> ro, exterior to the matter source, 

a(n) = - c(n)lr + 0(1lr4
) , (A13) 

p(n)= _a2(K~n) +C~:»)+O(~), (A14) 

/3(n) =H(n), (A15) 

zen) =L (n) + 2H(n) + (2 + ad)c(n) + O(~) 
r 2r ~ 

(A16) 

for O,n, 1. Here c(n), H (n), and L (n) are independent of r 
and satisfy 

C(O) - c'0) = 0, A (0) = 0, A (I) - A (I) = 0 . (A17) 

In addition, all the remainder terms in (A 13 ) - ( A 16 ) 
are analytic in 1/r. Also, for r;;'ro, 1///;) has the form 

(A18) 

(Recall that neither t/J nor S have I = 0 or I = 1 parts.) The 
critical result is that there is no quadrupole contribution to 
the In r series in (A18). 

Using (A13)-(A17), direct substitution into (A2)­
(A9) leads to as(3) of the form, for r;;'ro, 

S(3) = (2/~) [~t/J,~)ll + O(1/r) , 

where the remainderis analytic in 1/r. Using (A18), we may 
then set 

(A19) 

for r;;'ro (where ro is chosen to be sufficiently large to guar­
antee convergence). Here! satisfies the conditions of 
Theorem A and, furthermore,! = O( 1/r). Thus, for r;;'ro, a 
solution ofV2 <1> =j, which vanishes at infinity, has the ana­
lytic form (AW), with k;;.2. Also, for r;;'ro, a solution ofthe 
Poisson equation, which vanishes at infinity and whose 
source is the Aim series in (A19), is given by 

~ AlmYlm Inr 
- ~ (2/+ 01+1' 

so that it is O(ln r/~) and uniformly smooth with respect to 
r. A corresponding solution for the Blm series in (A19) is 

L BlmYlm [(2/-l) -lnr], 
1>3 211 21 

which, again, is O(ln r/~) and uniformly smooth. 
Summing these individual results, the contribution to 

t/J(3) for the source (A19), in the region r;;'ro, is OOn r/~) 
and uniformly smooth. Since the contribution from the com­
pact region r,r ° is analytic and O( 1/ ~), t/J(3) has the asymp­
totic behavior necessary to establish (2.17). 
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APPENDIX B: A-DEPENDENT CONFORMAL BONDI 
FRAME 

We describe the A-dependent solutions of Einstein's 
vacuum equations in terms of the conformally rescaled 
Bondi metric gjtv = f!2gjtv given by (3.7), with 
hAB = qAB + A 2yAB, in the (v,l,xa) Bondi coordinates. We 
need only terms up to the orders in A and I corresponding to 
the remainder terms in the logarithmically asymptotically 
6at l2 null data 

A 2/2 
YAB = ICAB + -- qABc?ECDE 

4 

+ I: ( kAB - ~ A )AB) + 0(14) 

+ A 3[ (13 In 116)jAB + 0(14 In I)] (B1 ) 

(where indices are raised with respect to q4B; i.e., 
~B = q4DqBECDE)' Here CAB,kAB , and JAB are I independent 
but A dependent, the remainders are uniformly smooth and 
JAB represents the leading order logarithmic dependence. 
The condition that h ABYAB.I = 0 dictates the form of the 
0(12) term in (B 1) and also leads to the trace conditions 
q4BCAB = q4BkAB = q4BjAB = O. Introducing potentials 
q4qBCAB = a2c, q4qBkAB = a2k, and q4qBjAB = a], the data 
(Bl) leads to (4.2). 

The radial integrals of the hypersurface equations 14 

give, for the data (Bl), 

/3= - (A2/2/32)~BCAB +0(14) +A 50(l31n l) , (B2) 

UA = - (rI2)cAB
B + (P/3)NA + 0(14) 

+ A 30(14 In I) , 

W = - 2M + 0(1) + A 30(1 In I) , 

(B3) 

(B4) 
where M and NA are the mass and angular momentum 
aspects, respectively. The evolution equation and supple­
mentary conditions give 

q4qBU- 1YAB,v),1 

= - (l13)q4qBN A:B + 0(12) + J30(l21n l), (B5) 

(B6) 

+ 1 2 [ 5 (DE) I BD 
/l - 16 C CDE ,vA -:2 C :ACBD.v 

_BD BD ] + CABe: ,v:D - C CAD,v:B . (B7) 

After setting a7J = ..rut NA and rewriting in terms of 
spin-weighted quantities, substitution of the null data (B 1 ) 
into the evolution equation (B5) leads to/v = 0 and (4.3). 
Similarly, the supplementary conditions (B6) and (B7) lead 
to (4.4) and (4,5). 
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It is pointed out that a certain class of classical relativistic action at a distance theories contains 
a cutoff which eliminates self-interaction of the particles. This cutoff is put in by hand, but one 
might hope that eventually it may be produced by considerations of space-time in the small. 
This class of theories is extended from models that closely mimic classical electrodynamics to 
models that resemble Yang-Mills and gravity. 

I. INTRODUCTION AND SUMMARY 

Classical relativistic theories that describe the interac­
tion between point particles have been discussed by several 
authors. I Here we shall concentrate on those theories which 
are of the type where the interaction is given by manifestly 
covariant integrodifferential equations. 1-10 

First, in Sec. II, we discuss the familiar vector case, 
which, loosely speaking, corresponds to the exchange ofvec­
tor particles in field theory. This case closely mimics electro­
dynamics, as is familiar from the work of Tetrode and 
Fokker2 and Wheeler and Feynman.3 We show that from 
our point of views a cutoff at short distances, which elimi­
nates self-interactions, is contained in a natural way. The 
precise details of the cutoff are put in by hand (for instance 
that it is related to the Planck length); it would be desirable 
to derive these properties from those of space-time in the 
small. The cutoff may be described briefly in terms of classi­
cal field theory by saying that the particles react to the field 
locally, but do not produce the field locally. 

Section III contains a model that mimics the Yang­
Mills theory. This model is mainly used to facilitate the dis­
cussion of the model of gravity of Sec. IV, which eventually 
turns out to be simpler. Just like the model of Sec. II, the 
Yang-Mills model is defined in Minkowski space, and it also 
contains a similar cutoff. The difference with the model of 
Sec. II is in the "quanta" that are being exchanged. In the 
model of Sec. II the quanta are rather different from the 
particles, thus one has an "action at a distance" theory of 
interactions between particles. The quanta of Sec. III still 
differ from particles: the particles have infinite timelike 
world lines, whereas the quanta have finite spacelike world 
lines and carry infinitesimal four-momentum. The equations 
for those world lines are, however, rather similar and both 
particles and quanta exchange quanta. Thus instead of an 
action at a distance theory one obtains a model where "parti­
cles" are exchanged. 

Section IV contains a proposal for a model of gravity 
which has some similarity to the model of Sec. III. It differs 
from the model of Ref. 8 in several ways, one of which is that 

a) Present address: CERN, CH-1211, Geneva 23, Switzerland. 
b) On leave from the Department of Physics and Astronomy, University of 

North Carolina, Chapel Hill, North Carolina 27514. 

it contains a cutoff. The difference with general relativity is 
small for large distances, but quite striking at short distan­
ces.The cutoff is natural at the Planck length now. Particles 
within that length do not interact. In particular there is no 
self-interaction for particles. Thus one expects no real singu­
larities, no infinite tidal forces as occur in general relativity 
(making classical relativity inconsistent within itself). The 
model of Sec. IV is therefore perhaps of interest in the study 
of black holes. Also one wonders, in view of superstring the­
ory, which claims it provides a finite quantum theory of 
gravity, 11 what the classical limit of that theory might be. 
The quanta of Sec. IV, just like those of Sec. III, take on more 
and more particle properties. One might say that instead of 
an action at a distance model one has a particle model. 

II. VECTOR INTERACTION 

We begin by giving the familiar classical action which 
describes the electromagnetic field in interaction with a rela­
tivistic point particle. The action is 12 

S -_ Jd [ dxl-' dXV] 1/2 1 Jd Fl-'vF -m s 1JI-'Vdsds -4 x 1-'1' 

J dxl-' 
-e dsAI-' (x) -. 

ds 
(2.1 ) 

Here 1JI-'V is the metric of Minkowski space with diagonal 
elements + 1, - 1, - 1, - 1; 

FI-'v = al-'Av - avAI-'. (2.2) 

The parameter s is an arbitrary but monotonously in­
creasing parameter along the world line of the particle. No­
tice that the action (2.1) is invariant for chronometric trans­
formations \3 

s' =g(s), 

as well as for gauge transformations 

AI-' -+AI-' + al-'A. 

The latter transformations lead to 

8S= -Jdsal-'A dxl-' = -JdS.!!....A(X(S») =0, 
ds ds 

(2.3 ) 

(2.4 ) 

where the last equal sign follows if one assumes A (x) to have 
finite support. 

The equations of motion are familiar, 
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mxfL = eFfLVxv' 

FfLv.a + F afL.v + F va.fL = 0, 

FfLV.v =j', 

(2.5a) 

(2.5b) 

(2.5c) 

with 

j' = e J d1' 84(x - x( 1'»)XI'( 1'), (2.5d) 

where we choose S to be the proper time 1'. In classical elec­
trodynamics one limits oneself to retarded wave solutions of 
(2.5c). 

The action at a distance approach2-5 does not attempt to 
treat the electromagnetic field as an independent entity. 
Photons are not emitted but rather exchanged between parti­
cles or between particles and an "absorber." 3.7 This ap­
proach is remarkably successful although there are some 
questions about initial data to which we shall refer briefly at 
the end of this section. 

One may write a formal action for the action at a dis­
tance theory which corresponds to (2.1).6 Limiting oneself 
to two particles it is 

S 1= m l J dSI~'Y/fLVxfxr - m 2 J dS2~'Y/fLVX~X~ 
- 2e le2 J dSI J dS2 'Y/fLvXfx'5f(p2). (2.6) 

HereXf stands for (dldsl)xf(sl); 

p2 = (XI - X2)fL(XI - X2)v'Y/fLV; (2.7) 

the function/, which has dimension (length) -2, is arbitrary 
except that we take it as nonzero only for spacelike values of 
(XI - x 2 ), i.e., for p2 <0. 

What is to be varied in (2.6) consists of the two world 
lines Xf(sl) and X~(S2) of the particles. IfJ (p2) = 0 except 
for p2 < 0, then there is no self-interaction as we shall discuss 
shortly, and the equations of motion may be written with the 
aid of the vector field 

AfL(X) =el J dsl xf(SI)J«(X-XI (SI»)2) 

+ e2 J dS2 ~(S2)J«(X - X2(S2W), (2.8) 

Using (2.8) and using for S I and S2 the proper times 1'1 and 1'2 

one obtains the equations 

(2.9a) 

mzX~ = e2FfLV(X2)X2v' (2.9a') 

FfLv.a + F afL.v + F va.fL = O. (2.9b) 

Comparing (2.9a), (2.9b), (2.8) with (2.5a), (2.5b), 
(2.5c), (2.5d) we see that the two first pairs agree. The par­
ticles in (2.9a) and (2.9b) react locally to the field just as in 
(2.5a) and (2.5b). However, (2.8) replaces (2.5c) and 
(2.5d); the particles no longer produce the field locally, as 
we shall discuss. 

Returning to the functionJ(p2) in (2.6) we will assume 
that it has a cutoff at short distances D: 

J(p2) = 0, for p2> - D 2. (2.10) 

There is an additional condition onJwhich comes from the 
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demand that as the particles separate the forces approach 
zero.5 It is 

J dp2~J(p2) =0. (2.11) 
dp 

Within the conditions (2.10) and (2.11) the function J is 
arbitrary. In fact there is a mapping between the functionJ 
and the nonrelativistic potential function to which it leads.6 

Besides including a rather arbitrary functionJ the type 
of interaction [( 2.10) and (2.11)] has two advantages 
which we illustrate for 

(2.12) 

The first advantage is obvious from Fig. 1. The world 
linex2 is closer to X I ( 1') than D; therefore, there is no interac­
tion (at least for a segment of XI around 1'1)' and we have 
"asymptotic freedom." In particular there is no self-interac­
tion and one may write (2.8) for all x. Wheeler-Feynman 
electrodynamics3 also has no self-interaction, but it is by de­
finition, not built in as with (2.12). In the case of Wheeler­
Feynman electrodynamics this lack of self-interaction leads 
to trouble when quantizing and kinking a world line back­
wards to represent a pair; one obtains a noninteracting elec­
tron-position pair. 14 

The Fokker-Tetrode action which leads to Wheeler­
Feynman electrodynamics is obtained from (2.6) by setting 

J(p2) = 8(p2). (2.13) 

The equation of motion may not be written as (2.9) with 
(2.8), as the self-field must be explicitly excluded. This self­
field is excluded in (2.6), but not in (2.8) and (2.9), which 
may only be written provided (2.10) is satisfied. The choice 
(2.13) thus leads to Wheeler-Feynman (WF) electrody­
namics which is a form of electrodynamics with half-retard­
ed half-advanced Green's functions. This half-advanced 
half-retarded electrodynamics turns into the observed re­
tarded form of electrodynamics if one puts in an absorber. 3.7 

This elegant device ascribes the appearance of retarded 
Green's functions to the increase of entropy in the large. 

D 

2 2 
(x- x ("r;)) = - D 

D 

FIG. 1. No interaction for world lines close together. 
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FIG. 2. For large distance the interaction approaches the WF interaction. 

Notice thatfin (2.6) and (2.8) is symmetric and classical 
electrodynamics withf = 8(p2)O(XO) is not possible, How­
ever, if one is willing to give up the action principle one might 
proceed with this choice in (2.8), 

The second advantage has to do with the fact that obvi­
ously (2.12) is close to (2.13) and thereupon to electrody­
namics. For distances 0" large compared to D of (2.12), the 
interaction rapidly approaches the WF interaction (2.13). 
In Fig. 2 an estimate is made for the length of proper time t::.:r 
between passing through the Iightcone based on 0 and 
through the spatial hyperboloid p2 = - D 2 for a particle 
with wOrldlinex2 (Ref. 5). In the triangle OPR, OP = 0"2I is 
the spatial distance of 0 as seen in the frame of X 2 as it crosses 
the advanced lightcone from O. We have RP = OP = 0"2l' 

where RP is along the time axis of that frame. We assume fl.r 
is so short that we may measure it along the straight RQ. 
Then one has 

PQz Opz _D2 

or 

(OP fl.r)2 - Op2 = _D z, 

hence 

20"2lfl.r D 2 + fl.~ 
or 

(2.14) 

Taking D small, say the Planck length, it is obvious that fl.r 
approaches zero rapidly as 0"2l increases, justifying the as­
sumption made in establishing (2.14). 

Next we wish to discuss the conservation laws of linear 
and angular momentum in a way similar to that of Refs. 5 
and 6. We shall need these results in the next sections. Equa­
tions (2.9) may be written 

itt =2elez f dr2x I 'x2(X l -X2)"'!', 

P'2 = 2ele2 f drl Xl 'X2 (X2 - Xl)"'!', 

wheref' (p2) (d /dp2) f(p2) , and where 
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(2.15a) 

(2.15b) 

/' T2 
/' 

/' 

T
IO 

b,p 
'20' 

'" X 

FIG. 3. Exchange oflinear four-momentum between world lines. 

pit = mx) + 2ele2 f dr2f:fcl2, 

pit = m:fc12 + 2e le2 f dr dxf·· 

(2.16a) 

(2.16b) 

Thus, as illustrated in Fig. 3, the interaction may be seen as 
an exchange of four-momentum between pairs of spacelike 
events Xl ( r 1), X2 ( r 2)' With (2.15) the amount of four-mo­
mentum exchanged is 

fl.?, = - 2(x] - x2)l'eleZ dr l dr2(Xl·X2)f'. (2.17) 

As this four-momentum is in the direction of Xl - Xz, there 
will be conservation of six angular momentum as well as of 
four-momentum. This is quite analogous to Newtonian me­
chanics, which may be described by the (instantaneous) 
transfer of linear momentum between points in Euclidean 
space. If the exchange in Newton's theory has the direction 
of the vector between the points, one has three angular mo­
mentum conservation laws as well as three linear momen­
tum conservation laws. The difference between the relativis­
tic case and the Newtonian one is twofold. First the 
relativistic case has four more conservation laws. Second, 
however, the exchange is not instantaneous. Thus, in Fig. 3, 
when computing the total linear (or angular) momentum of 
the system at t = 0 (intersecting the orbits at rIO and r ZO) one 
must take into account the linear (or angular) momentum in 
transit at that time. For instance, the total linear momentum 
at t = 0 (given by riO and r 20 ) is5,6 

PI'(r lO,r20) = pit (rIO) +pIt(rzo) 

'e lez:kf(rl)xZ(r2)a!'(xf(rt) -~(r2»)' 
(2.18) 

With (2.17) one may check thatPl-'(rlO,r2o) is conserved as 

(2.19) 

G. J. H. Burgers and H. Van Dam 679 



                                                                                                                                    

Before summarizing this section we shall briefly men­
tion two topics: causality and initial conditions. 

If one defines causality to be the condition that small 
disturbances do not propagate with a speed faster than light, 
then the present proposal looks acausal. However, at first 
sight also Wheeler-Feynman electrodynamics looks acau­
sal; actually it is causal with suitable boundary conditions 
(absorber) .3.7 For (2.12) an absorber can be introduced and 
then for D small one would expect that the acausality will be 
hard to observe in a realistic case. 

As for initial condition (2.8), (2.9) suggest a perturba­
tive solution starting with two straight world lines. For a 
limited class offunctions!one can show that this perturba­
tion series converges, suggesting that the appropriate initial 
conditions for these equations for N particles are the 6N spa­
tial positions and velocities of the particles at one instant of 
time. Wheeler-Feynman electrodynamics has an! outside 
this class of functions mentioned. The situation is thus less 
clear and it has often been argued that one needs an infinite 
set ofinitial conditions at one instant of time3

•
4

• 15 (represent­
ing the degrees offreedom of the suppressed A I' field). 

To summarize, let us assume! to satisfy (2.10); for in­
stance let it be given by (2.12) with D small. Then, Eqs. 
(2.9) show particles which react locally to a field which 
resembles the electromagnetic field at distances large com­
pared toD [see (2.14)]. Equation (2.8) shows that the field 
is not produced locally. The field (2.8) is zero along the 
world line of the particle which produces it. Actually it is 
zero inside a tube of radius D around the world line of that 
particle. It is as if in producing the field the charge has been 
pushed out a distance D, whereas in reacting to the field it is 
centered on the world line of the particle. 

III. "YANG-MILLS" INTERACTION 

First, let us review the classical action describing a rela­
tivistic point particle carrying an isotopic spin I a (s) along 
its world line xl-' (s) in interaction with a Yang-Mills field 
A ;. It is given bi6 

Sy = - m f dS[ 1/f'v d;: ~V]I/2 - f dx 4~ G;vGaf'V 

Here 
f dxf' 

- ds-(s)l"(s)A;(x(s»). 
ds 

( 3.1a) 

(3.1b) 

P;V =af'A~ -avA~. (3.1c) 

The action (3.1 a) is in variant under gauge transformation of 
the Yang-Mills field A ~ 

Aa ..... A a +a Aa+gE"'bcAbAc 
1'1'1' 1" 

(3.2) 

provided 

0= f ds dxf' I"(a N + gE"'bcA b N) 
ds I' P 

or 
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0= f ds I" .!!...Aa + f ds dx
P 

I"gE"'bcA !Ac. 
ds ds 

Taking the function A~ of finite support and otherwise arbi­
trary, this implies the constraint 

(3.3 ) 

In other words the equation of motion for the isotopic spin 
needs no separate derivation. The other equations of motion 
are, choosing for s the proper time 1', 

mF = GOILvxJa, (3.4) 

D~bGbpv(X) = f d1'8(x -x(1')jXl-'(1')Ia(1'), (3.5) 

where 

(3.6) 

The fact that Dca on the left-hand side of (3.5) gives zero 
again implies the constraint (3.3). 

Next we attempt to set up a somewhat similar action at a 
distance theory. First, we set up an exchange of linear mo­
mentum and isotopic spin which mimics the structure of the 
preceding section with the additional global conservation 
law of isospin. In analogy with (2.17) and Fig. 3 one would 
suggest as the simplest exchange which conserves total iso­
spin as well as the length of each isospin: 

fl.[I' = - 2(x1 - x2)f'g2x~x2aI~I'if'(p2)d1'1 d1'2, (3.7) 

fl.1" =g2x~x2aIU~E"'bc!(p2)d1'1 d1'2. (3.8) 

The conservation laws of linear four- and angular six-mo­
mentum follow from an argument similar to that given in 
Sec. II near Eq. (2.18). 

Using proper times the equations of motion for the par­
ticles are 

mlx~ = gPaf'v(x1 (1'»)I"( 1'1)x lv (1'1)' 

ja(1' I ) =gE"'bcA ~x~It (1'1)' 

where 

A!(x) =g f dSlxIP(1'I)!t(1'I)!(x-XI)2) 

(3.9) 

(3.10) 

+g f dS2x2f'(1'2)I~(1'2)!(x-x2)2), 
(3.11 ) 

the equations for x2 and I~ being similar to (3.9). 
Equation (3.10) is identical to (3.3), and (3.9) lacks 

theA 2 term of (3.4). As there is conservation of the quanti­
ties of isospin and linear and angular momentum one might 
stop at this point. The equations lack the nice geometric 
structure of the equations that follow from (3.1). 

Equations (3.7)-(3.11) imply a sharp difference 
between particles and quanta. Along the quantum lines fl.[I' 
and Ma are transported without change. Along the world 
lines of the particles the linear momentum mjcf' changes, 
keeping its length, and the isospin is parallel transported 
with a connection 

(3.12) 

It is tempting to remove this particular difference between 
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particles and quanta. The removal of the difference leads to a 
proliferation of quanta, as we shall see. 

An equivalent approach is to restore the invariance for 
local gauge transformation (3.2). This implies replacing 
Fapvin (3.9) with the properly transforming G apv of (3.1a); 

m1xt =gG<lpV(XI(71»Ia(71)Xlv(71), (3.13) 

as well as demanding that the quanta also transport linear 
momentum and isospin as in (3.13), (3.10). The quanta 
have spacelike world lines, which may be parametrized by 
proper length. One has 

(j a) = g€"bcA ~ (xQ )1 ~xQp' 

mQ~ =gGapv(xQ)XQYla . 

(3.14) 

(3.1S) 

Here mQ is the inertia ofthe quantum and Ia is the isospin 
which it carries: 

mQ = 2d(1,2)g2(itPp,p(1,2)~) 

x(/~Pa,b (1,2)I~)f'(d2( 1,2»)d7} d72; (3.16) 

Ia = g2(itPp,p (1,2)~)€"bcPc,d (Q,l )ItPb,e (Q,2) 

XI2f(d 2 (1,2»)d71 d72. (3.17) 

In the last pair of formulas d( 1,2) is the proper distance 
along the world line from XI (71) tOX2 ( 72); Pp,p (1,2) stands 
for Fermi-Walker transport along that world line of the fol­
lowing ~; Pa,b (Q, 1) stands for parallel transport using 
A ~ (x) along the same world line from X I (71) to x Q • As 
lowest order approximation one has d 2( 1,2) = (Xl - X2)2; 
Pa,b = 8ab ; PJL,p = 'T/JLp' describing the properties of the 
quantum (3.7) and (3.8). The generalization of (3.7) is 

t:.pI" = mQx~ + IaA aJL. (3.7') 

But now, (3.14) and (3.1S) imply that other quanta are 
being exchanged between the quanta and the particles, and 
between quanta and quanta, etc. The quanta react to and 
become sources of the field and one has a proliferation of 
quanta. Note that this proliferation does not happen for 
"electrodynamics" as the quanta do not carry charge; Ia is 
then zero in (3.14) and (3.1S). 

Before proceeding with this let us point out another 
complication: G aJLv of (3.14) contains an A 2 term [see 
(3.1a) J. This implies a simultaneous exchange oflinear mo­
mentum between an event on one world line with two events 
on other world lines (triangular exchange). Does this vio­
late the conservation laws? The extra contribution to m lxt is 

g3 f d72 d7~ ~(7~ )XI 'X2 I~I~I~,€,,~((1,2)2)J((1,2')2). 
By symmetry this is perpendicular to it and via a partial 
integration over d7~ (which is allowed as the support ofJis 
nonzero only outside the lightcone and as the world line 2 is 
timelike) this can be put in the form 

t:.]f' = - g3d71 d72 d7~ (XI - x 2 )JLX1 ' X2J(1,2) 

XI~/~€"bc..!!.... J( 1,2')/~" 
d7~ 

which shows that the ten kinematic conservation laws are 
satisfied. 

For particles, the motion in the field A ~ (x) is described 
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by (3.10), (3.13), and for quanta this motion is given by 
(3.14)-(3.17). What we need next is an expression for 
A ~ (x); we propose 

A~(x) =A~p(x) + LA~Q(x), 
Q 

(3.18) 

Here A ~p (x) is the particle contribution: 

A ~p (x) = g f d71 PI'," a,b(x, 1 )xr (1 )/b( I) J(d 2(X, 1») 

+ g f d72 Pp,,, a,b(x,2)xi (2)/b(2) J(d 2(x,l)). 

(3.19) 

Here P PoV a,b (x, 1) combines two kinds of parallel transport 
along the curve from Xl to x, described by (3.1S). The first 
kind is Fermi-Walker transport ofxr (Xl) along that curve. 
The second kind is transport using the connection A ~ (x) of 
r(x l ); d 2 (x,l} stands for the proper distance along the 
curve mentioned between x and x I' 

The quantum contribution is given by an infinite set of 
terms. To l'.QA:Q each quantum line gives a contribution 
similar to (3.19), where the integral is over the proper length 
of the quantum line and where I b ( 1) is replaced by / ~. For 
the quantum line which connects the particle world lines 
Xl (71) andx2 ( 72) we use the symbol [1,2]; 7[1,2 J is the prop­
er length along that world line. In a similar way we use 
[1,12] for the quantum line connecting the particle line 1 
with the quantum line [1,2]. Here [12,12] will stand for a 
self-interaction of [ 1,2] with [1,2], etc. This is illustrated in 
Fig. 4. The contribution of [ 1,2] to l'.QA ~Q is 

A~[l'll=gf d71 f d72 f d7[1,2]PJLva,b(x,[1,2])x[I,2] 

XJ(d 2(x,[ 1,2]») 

xg2(xf Pa,p (1,2)xP(2) ),€"bcPc,d ([ 1,2],1) 

XI~Pb,e ([ 1,2],2)I2f(d 2(1,2)). (3.20) 

./ 
./ 

I 
I 

I 

FIG. 4. Proliferation of interaction lines between world lines and interac­
tion lines. 
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Here we used (3.17); it is straightforward to write any of the 
following terms, such as the contribution of [1,12]. The last 
term on the right-hand side of (3.18) stands for the infinite 
sum over all possible interaction quanta. 

Equations (3.10), (3.13), (3.14)-(3.16), (3.18), 
(3.19), (3.20), ... may be solved order by order starting with 
just two straight world lines for the particles 1 and 2. The 
question of initial conditions is, however, even more compli­
cated than it was in Sec. II. 

We have three remarks to end this section. First, the 
proliferation of quanta is kept somewhat under control since 
as the number of quanta considered grows, so does the order 
in g. Also, the conservation laws will be satisfied as they are 
at every stage of refinement. 

Second, a cutoff at a distance D is included, just as in 
Sec. II through the function /, which is taken to satisfy 
(2.10), and for which one may take (2.12). We feel that this 
cutoff reflects some underlying property of space in the 
small, but have not made progress along that line. 

Third, notice that the distinction between particles and 
quanta is disappearing. Both particles and quanta produce 
and react to the field which curves their world lines and 
parallel transports their isospin. There are still differences: 
the world lines of the particles are timelike and infinite in 
length, and the world lines of the quanta are spacelike and 
finite in length. The number ofpartic1es is finite. The number 
of quanta is infinite, and the amount of charge and linear 
momentum carried by the quanta is infinitesimal. Neverthe­
less, the proposal of this section is not really any longer an 
action at a distance theory, but rather a description in terms 
of particles, the quanta becoming particles. 

IV. A PROPOSAL FOR A MODEL OF GRAVITY WITH A 
CUTOFF 

Section II describes a vector interaction. A scalar inter­
action was given in Ref. 6, and it is not hard to write a general 
tensor interaction, which is a straightforward generalization 
of the vector interaction of Sec. II.17 In writing this general­
ization, the important step is to put in the correct powers of 
xi and x~ to guarantee chronometric invariance. 13

,I7 This 
chronometric invariance guarantees that one may use prop­
er time for the description of the world lines and that using 
proper time xl-'xl-' = O. 

To get a first approximation to a theory of gravity which 
comes as close as possible to the experimental results of Ein­
stein's theory one must take what looks in the present frame­
work like a mixture of symmetric two-tensor interaction and 
a scalar interaction. In field theory this particular mixture 
does not look like a mixture. It follows from unitarity and 
from the fact that the graviton has zero rest mass and helicity 
± 2. 18

,19 Thus, a first-order proposal that is close to the lin-
earized theory of gravity is given by the action 
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where all x2 are defined with 111-'v' 
As G has the dimension of (length) 2 and as/ has dimen­

sion (length) -2, it is tempting to take for G/something like 

G/I(x i -X2)2) = G(b«xi -X2 )2 + G). (4.2) 

In any case,fshould satisfy (2.10). 
In analogy with (2.15) the equations of motion may be 

written as 

P't = 2m l m2G J d82 { (XI 'X2)2 - ~ xixi }(XI -x2)1-'j', 

( 4.3a) 

fr.5. = 2m 1m2G f d81 {(X I 'X2 )2 - ~ xix~} (X2 - xl)I-'f', 

(4.3b) 

with the obvious definitions of PI and P2' The proof of the 
conservation laws is a repetition of that of Sec. II. As there is 
no self-interaction due to the cutoff in (4.2) one may intro­
duce a field hl-'v (x) for all x by 

h (x) = 2m G J d (X21-'X2v - !l1l-'vX~) /( _ )2) 
I-'V 2 82 (x~ )1/2 X X 2 

+ 2m G J d8 (X11-'X2y - !l1l-'yxi) /I(x _ x )2). 
1 I (Xi)I/2 I 

(4.4) 

With this one may write the equations of motion for the 
particles as 

xf = r~(xl)xfxr, 
xi = r~p(X2)X~~, 

(4.5a) 

(4.5b) 

where we must choose for the arbitrary parameters 8 I and S2 

the proper times of the two particles, and where r~p (x) is 
formed in the usual way from first derivatives of hl-'Y (x). 

If one replaces the function/, which is defined by (4.2) 
by b(xi - X2)2), then one obtains, except for self-interac­
tion, the half-advanced half-retarded version of the usual 
linearized theory. As the tests of general relativity (bending 
oflight, gravitational red shift, delay of radar echoes, perihe­
lion precession) involve time translation invariant situa­
tions, it makes no difference for these predictions to have 
half-advanced half-retarded Green's functions. Further­
more, with the arguments given in Sec. II near Eq. (2.14), it 
is obvious that with (4.1) and (4.2) one obtains the usual 
results of the linearized theory. 

Thus, the bending oflight comes out right (approximat­
ing light by a very fast point particle). The perihelion shift 
comes out f, too large20

; in the linearized approach one may 
correct this by including the interaction of the planet with 
the gravitational field between planet and star. 20 This correc­
tion is not yet contained in (4.1), where one only has an 
interaction between particles, not between particles and 
quanta. The required 1/,-2 potential could be put in by hand 
via! A similar problem is that in the present model potential 
gravitational energy is represented as energy on its way as in 
Fig. 3. A third particle interacts directly with two constitu­
ents of a bound system, but not with this energy on its way. 
Thus there is a violation of inertial mass = gravitational 
mass. This leads to trouble; as in stars the contributions of 
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the potential energy can be considerable indeed. 
The gravitational red shift is predicted correctly,20 but 

the time translation invariance of Minkowski space leads to 
a familiar contradiction.2I Either Planck's constant h be­
comes dependent on the gravitational field or one must in­
clude hl'v andgl'v together in a metric that changes the prop­
er time. The radar delay from interior planets may also be 
explained,20 but again suggests inclusion of hl'v into the met­
ric. 

The solution to these problems appears to be the follow­
ing. 

For the action describing the world line of a point parti­
cle in a given Riemannian manifold one has 

f [ dxl' dXV] 112 
s= - mds gl'v(x(s»)dsds ' (4.6) 

where gl'v (x) is the given metric. One obtains, writing:Jci' for 
(d /ds) xl' (s), 

(gl'vX2 - gl'agpvxaJcP)xv 

= !Kap,,txaJcPX"gI'Vxv + xi (gl'v,axaxv - !KaP,l'xaJcP). 
(4.7) 

This equation reflects the chronometric invariance of (4.6): 
:Jci' into either the left-hand side or right-hand side of (4.7) 
gives zero. Choosing the gauge of proper time, 
(d /dT)gl'v:Jci'xv = 0, (4.7) takes as the familiar form 

!:.u _ rl' • a_·1J 
A.' - a{Jx A~, 

with 

the connection of Riemannian geometry. 

(4.8) 

(4.9) 

We shall assume (4.8), (4.9), or (4.7) not only for the 
world lines of the particles, but also for the spacelike world 
lines of the quanta. The metric is determined by all these 
world lines in analogy to the Yang-Mills potentials A: of 
Sec. III. The form (4.8) may be maintained for the quantum 
lines by using proper length instead of proper time. We shall 
use the symbol T also along those lines. Notice, however, that 
x2 = - 1 along quantum lines. The expression for gl'v (x) 
contains three parts: the first part is TJl'v, the second partgl'vP 

J 

is due to the particles, and the third part gl'vQ due to the 
quanta 

gI'V(X) =TJI'V +gl'vP + Igl'vQ' (4.10) 
Q 

gl'vP(x) =2 f dTIPi'A,a{J(X,I)(xfXf - ~ gaP) 
Xm IGj(d 2(x,I») 

+2 f dT2PI'V.a{J(X,2)(X~~ - ~ gaP) 
Xm2Gj(d 2(x,2»), (4.11) 

where Gis Newton's constant; d 2 (x,1) is the proper distance 
along the geodesic of the metric (4.10) which quanta follow 
from x I to X2; Pl'v,a{J (x, 1) and PI'.a (x, 1) refer to Fermi­
Walker transport along this geodesic. 22 (This is for a geodes­
ic equivalent to covariant transport.) If there is more than 
one geodesic between XI and x then contributions from var­
ious geodesics are added. 

For a general quantum linexQ one may write, similarly, 

gl'vQ(x) =2 f dTQPl'v,a{J(X,Q)(xQ~ +~) 
xmQGj(d 2(x,Q»), (4.12) 

where the + ~ga{J in the term on the right follows from (4.4) 
and differs in sign from (4.11) as the world lines of the quan­
ta are spacelike. The mQ is the inertia carried by the world 
line of the quantum considered. Using the labels 1 and 2 for 
the world lines xt ( T I) and x~ ( T 2) , [1,2] is short for the 
quantum line connecting 1 and 2. Similarly, as illustrated in 
Fig. 4, [1,12] is a quantum line connecting [1,2] and 1, etc. 
For the world line [1,2], mQ is given by 

m[I,2] = dTI d1'2 mlm2Gf'(d2(1,2») 

X [(xfPa,{J(l,2)~)2 - !]d(l,2), (4.13) 

which follows from a generalization of (4.3), withPa,{J (1,2) 
standing for Fermi-Walker (or parallel) transport along the 
geodesic [1,2]. The quantum lines oftype [1,2] give a total 
contribution to ~Qgl'vQ of 

gl'v[I,2] = f d1'1 f d1'2 f d1'[1,2] Pl'v,ap(x,[12]) (x[I2]XfI2] +gtrP)Gj(d 2(x,[12]»)'m lm2Gf'(d 2 (1,2») 

X [(XfPa,{J(1,2)~)2 - ~]d(1,2). (4.14) 

For a quantum line [1,1 '2], 

m(l,1'2] = d1'1 d1'[12] ml d1'; d1'2 m lm:zgf'(d
2
(1,2») 

X [(xf,Pa,{J(1',2)x~)2 -!] 
Xd( 1 ',2) Gj'(d 2( 1, [1'2]») 

X [(xfPa,{J (1, [1'2] )XfI2]f - ~]d( 1, [1',2]), 

leading to an order G 3 contribution of type 
fdTi fd1'2fd1'lfd1'[1'2]' called gl'v(I,1'2]' In this way it is 
straightfoward to construct the higher-order terms. 
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Equations (4.7)-( 4.14 ), ... suggest a solution in terms of 
a perturbation series. One starts with the zeroth approxima­
tion that both world lines 1 and 2 are straight, and computes 
gl'v on that assumption, etc. Such a solution is probably simi­
lar to that recently proposed by Turygin23 for a half-retarded 
half-advanced potential, and similar to, but less far reaching 
than that of Ref. 8. 

For the choice (2.13) off, or in Turygin's formulation, 
one expects to find back the eternal Kruskal-Schwarzschild 
black hole solution. This is because that solution is time 
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translation invariant so that a choice of Green's function 
should not matter. Taking the mass of that black hole to be 
one solar mass and taking a spacelike function with cutoff 

.JG as in (4.2) one expects no difference at the Schwarzs­
child radius r = r* of one mile. This is because of arguments 
of the type illustrated in Fig. 2 and (2.14). Taking the cutoff 

at the Planck length, .JG as in (4.2), it will be completely 
unimportant at r = r* and one will have the usual horizon. 
The difference will be inside the horizon; there will be no 
singularity there because of the cutoff which is introduced. 

To summarize: one has a Riemannian metric and test 
particles follow geodesics in that metric (4.8). The Bianchi 
identities will be satisfied, but not Einstein's equations. The 
particles react to the field locally but they do not produce it 
locally if the function! is chosen as in (4.2). The hope is to 
ascribe this property to space-time itself. 24 

Some final remarks: First, notice that one could have 
started with an arbitrary background g~~ instead of with 
1]p,v. The solutions will then be close to those of Einstein's 
theory only if g~~ satisfies Einstein's equations. 

Second, notice that the quanta have become like parti­
cles. The only distinctions are that quanta carry infinitesimal 
"mass," have finite spacelike world lines, and are unlimited 
in number. Thus in a sense one no longer has an action at a 
distance theory, but rather a pure particle theory. 

Third, the split between background and quanta seems 
to depend on the coordinate system. Thus the quanta seem to 
depend on the coordinate system, a phenomenon which 
makes one think of Hawking radiation. 

For explanations of the appearance of the background 
term 1] p,v in (4.10) we refer to Refs. 8 and 19. 
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The quotient of manifolds by discrete subgroups of their isometry group are considered. In 
particular, symmetry breaking due to the quotient structure, topological properties, and 
harmonic analysis of the resultant manifolds are discussed and illustrated by two-dimensional 
examples. New solutions of d = 11 supergravity and the d = 6 Einstein-Yang-Mills theory are 
thus obtained, for which alterations in their spectrum and symmetry breaking are discussed. 

I. INTRODUCTION 

Solutions offield equations of theories involving gravity 
are of considerable interest. In particular, solutions of 11-
dimensional and ten-dimensional supergravity have been 
studied extensively. The former for its uniqueness properties 
and the latter because it is presumably the limit of super­
string theories. Solving these equations in general results in 
the description of the local properties of the manifold and, in 
particular, its Riemann curvature tensor. However, the de­
termination of the curvature tensor does not uniquely deter­
mine the global structure of the manifold solution. In general 
there exist many manifolds that have the same curvature but 
different global structures often obtained by identifying cer­
tain points of a simply connected manifold. 1 As this proce­
dure is unfamiliar to most physicists we will outline the con­
struction of these non-simply connected manifolds and 
describe how, given a simply connected one, other manifolds 
with the same curvature may be obtained. In the case of 
symmetric spaces all manifolds with the same curvature are 

.thus obtained. We will then consider symmetries of these 
manifolds and find how their harmonic analysis depends on 
the manner of identification and how mass spectra of related 
Kaluza-Klein theories are affected. These are discussed in 
the next section. In Sec. III two illustrative simple examples 
of zero curvature and positive curvature in two dimensions 
are treated in some detail. In Sec. IV we apply these ideas to 
S 7 solution of11-dimensional supergravity andS 2 compacti­
fication of the six-dimensional Einstein-Yang-Mills theory. 
It is found that the spectrum in both cases are dramatically 
changed and the symmetry of the resultant S 7 compactifica­
tion of d = 11 supergravity is reduced from SO (8) to U ( 1 ) 4 

without introduction of Higgs particles. 

II. GENERAL PROPERTIES 

To being with, we note that, given a Riemannian mani­
fold M and a discrete subgroup r of isometries of M, the set 
M /r of orbits of M under the action of r is itself a manifold 
provided no points of M are left invariant by any element of 
r, i.e., r acts freely on M. 

To see what goes wrong when r does not act freely on 
M, consider M = R 2 and r the two-element group generated 

a) Permanent address. 

by a rotation of 1T about the origin. It can easily be seen that 
the resulting M /r is the two-dimensional cone which is not a 
manifold. The singularity at the origin is in fact due to the 
invariance of the origin under r. 

In general, it is not difficult to see that the local proper­
ties of M and M /r, such as curvature, torsion, and metric, 
are the same; however, it is not clear that manifolds with the 
same local properties can be obtained from a single simply 
connected one by dividing by discrete freely acting groups. 
In the case of symmetric spaces this is the case and all the 
manifolds with the same curvature are thus obtained2

: one 
takes the simply connected manifold M with the given Rie­
mann curvature tensor and divides it by a subgroup r of 
isometries of M that are discrete and act freely on M. Choos­
ing all such possible nonequivalent subgroups one recovers 
all the possible manifolds with the same curvature as M. Two 
subgroups are considered equivalent if they are conjugate. 
The reason symmetric spaces are more manageable in this 
respect is that, for a symmetric space, the symmetry allows 
one to construct a covering mapping between any two mani­
folds of the same curvature; and enumeration of possible 
manifolds covered by the simply connected manifold of the 
given Riemann curvature leads to enumeration of the possi­
ble nonequivalent discrete subgroups of the isometry group 
of the manifold which act freely on it. The relation between 
Riemannian manifolds of the same curvature tensor have 
been considered for some other cases also and similar results 
obtained3

; however, for the rest of the article we will confine 
ourselves to the case of a simply connected Riemannian 
manifold M and its relation to various manifolds M /r, 
where r is necessarily a discrete isometry group of M acting 
on it freely. 

An important question is the relation between the sym­
metries of M and M Jr. It is easily seen that the group of 
isometriesofM /r, denoted by I(M In, is the normalizer of 
r inI(M), the group ofisometries of M, i.e., the subgroup of 
I(M) consisting of elements which commute with every ele­
ment of r. To see this, we note that if an element of the 
isometry group I(M) did not commute with some element y 
ofr, then forsomexEM, we would haveg(yx) #y(gx), i.e., 
on the space M /r, where yx and y(gx) are, respectively, 
identified with x andgx, the group action g would not be well 
defined. Consequently, the only subgroup of I(M) defined 
on M /r is the normalizer of r in I(M) and 
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I(M /n normalizer of r in I(M) ; 

when additional gauge symmetries are also considered, a 
similar argument4 leads to the same conclusion that the re­
maining symmetry on M /r is the normalizer of r in the 
gauge symmetry of M. 

This reduction of I(M) to I(M /n allows for a mecha­
nism of symmetry breaking in pure Kaluza-Klein theories, 
which, to our knowledge, has not been considered previous­
ly, although the case of Kaluza-Klein-Yang-Mills symme­
try breaking has recently been discussed with the breaking of 
the gauge symmetry. 4 

It is clear that when I(M) is transitive on M, i.e., Mis 
homogeneous,thenM /r is also homogeneous, i.e.,I(M /r) 
is transitive on M /r, if r commutes with I(M). However, 
I(M /n may still be transitive on M and consequently on 
M /r, making M /r homogeneous even if r does not com­
mute withI(M). In general I(M /r) is not transitive on M 
and M /r is not homogeneous. 

The next interesting aspect of the quotient manifold M / 
r is the relation between the topological invariants of M and 
M /r. When M is simply connected, then the first homotopy 
group of M /r is clearly isomorphic with r, which could be a 
non-Abelian group. However, the higher homotopy groups 
of M /r are identical to those of M (see Ref. 5), which are 
necessarily Abelian. The homology groups of M and M /r 
are not so simply related, as can be seen from simple exam­
ples. We will list them for our examples in the next section, 
but will not pursue it any further here other than mentioning 
a simple relation between their characteristic classes when 
they are expressible in terms of geometric quantities. For 
example, due to the Gauss-Bonnet theorem, which relates 
the Euler characteristic to an integral of the curvature over 
the compact manifold, it is easily seen that the Euler charac­
teristic of M /r is smaller than that of Mby a factor equal to 
the number of elements of r (the volume of M /r is that 
much "smaller"). 

To end the discussion of the general properties of M /r 
we will consider harmonic analysis over the manifold M /r. 
For simplicity we only consider scalar functions over M and 
M /r. When M is a homogeneous space,! can be decom­
posed into a direct sum of irreducible pieces under the action 
of the isometry of M, and the decomposition is well known.6 

However, when the same function is considered over M /r, 
one has to make sure that it is well defined, ie., it must be 
guaranteed that!(yx) =!(x), VxEM and VYEr (more gen­
eral transformation properties with some weight associated 
with r have been considered in the literature7

). Then the 
decomposition of ! under the residual symmetry of M /r is 
to be investigated anew. In general, the decomposition 
changes when we go from M to M /r resulting in a signifi­
cant change in the spectrum of the related Kaluza-Klein­
type theories. To illustrate this, we limit ourselves to the case 
of the manifold M being a Lie group G and consider a scalar 
function! under left multiplication of G on itself. 

It is known that the space of scalar functions is decom­
posed into irreducible representations of G with multiplic­
ities equal to the dimension of the irreducible representation 
spaces. When dividing M by r, the space of scalar functions 
on M /r (which are therefore those functions on M which 
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remain fixed under r) decompose under G with a different 
set of multiplicities; each multiplicity now being equal to the 
number of linearly independent vectors in the irreducible 
representation space (of G). 7 Thus not only the number of 
states with the same quantum numbers appearing in a Ka­
luza-Klein theory changes thereby, but some states may 
even disappear altogether from the spectrum of the theory. 

III. EXAMPLES 

To illustrate some of the aspects of the above discussion 
we will go into some detail for the two simple cases of S 2 and 
R 2. In the case of S 2, the simply connected two-dimensional 
manifold of constant positive curvature (Gauss curvature), 
the classification of manifolds covered by it is quite simple. 
There is only one other manifold: RP 2, obtained by identify­
ing the antipodal points, i.e., by dividing S 2 by the subgroup 
of 0 3 consisting of the identity element and the reflection 
about the origin, r {1, - l}. In fact it is possible to prove 
that for all even-dimensional spheres this group r is the only 
discrete freely acting isometry of S 2n and thus RP 211 is the 
only manifold covered by S 2 ... This is because SO (2n + 1) 
has at least one eigenvalue equal to unity. Moreover, it may 
be shown2 that S 211 is the only simply connected 2n-dimen­
sional Riemannian manifold of constant positive sectional 
curvature, thus completing the classification of constant 
positive curvature manifolds. Returning to S 2, we note that 
r = {I, - 1} commutes with 0 3 and therefore Rp2 has the 
same isometry group as S 2, ie., 0 3; and there is no way there­
fore of reducing the symmetry of S 2 by identification of its 
points. As far as their topology is concerned, we have for the 
first homotopy group 1T)(S2) = 0 and 1T)(Rp 2) Zz re­
flecting the double connectedness of RP 2 and 
1Tz(S2) = 1Tz(Rp 2

) reflecting the identity of higher homo­
topy groups discussed above. For purposes of comparison 
we list their homology groups as well: H)(Sz) = 0, 
Hz(Sz) = 0; H) (Rp 2

) = Zz, H 2 (Rp z) = O. Note that the 
first integral homology group of RP 2 is only torsion. The 
Euler characteristics of S 2 and RP 2 are 2 and 1, respectively, 
in agreement with the general discussion in Sec. II. The har­
monic expansion for a scalar function on S 2 is the familiar 
spherical harmonic expansion 

00 I 

!(O,cp) =! ! aim Ylm (O,cp) , 
I=Om I 

(1) 

where (e,cp) are the spherical coordinates of S z and the Ylm 

are the spherical harmonics. Reduction of S 2 to RP 2 elimi­
nates odd-/ spherical harmonics from the decomposition 

I 

!(O,cp) = I I aim Ylm (O,cp) , 
1 even m 1 

(2) 

thus (4n + 3) -dimensional representations of 0 3 do not oc­
cur in the decomposition. 

For the second example we take R 2. Its isometry is E2, 

which is the semidirect product of O2 with the group of 
translations in two dimensions. It is clear that translations 
act freely on R Z and consequently any of its discrete sub­
groups will do. It is not hard to see that the most general 
discrete subgroup r of Ez acting freely on R 2 is a combina­
tion of a translation and a reflection about an axis, say the x 
axis.2 Thus it is straightforward to deduce the possible mani-
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folds covered by R 2: (I) the cylinder, where r is generated 
by a single translation; (2) the torus, where r is generated by 
two independent translations; (3) the Mobius strip, where r 
is generated by the reflection about the x axis together with a 
translation along the x axis; and finally (4) the Klein bottle, 
where r is generated by the reflection about the x axis to­
gether with a translation along the x axis and a translation 
along the y axis. Of course the length of various translations 
here generate different manifolds with different "sizes." The 
above four categories may be shown to be the only flat mani­
folds of dimension 2 (see Ref. 2). For brevity, we will limit 
the rest of the discussion to the compact manifolds torus T2 
and Klein bottle K.B. For T2 the normalizer of r in E2 is a 
subgroup of translations which is the two-dimensional Abe­
lian torus group U ( I ) xU ( I ). For K.B. the isometry group 
is further reduced; the normalizer ofr in E2 being just trans­
lations along the x axis modulo its size which is a single U( I) 
group. It is noteworthy that the K.B. can also be obtained 
from the torus T 2 by cutting T 2 in half and identifying oppo­
site corners, i.e., by dividing T2 by the group generated by 
reflection about the x axis together with a translation along 
that axis. Then the symmetry of T2, i.e., U (1) xU (1) is 
reduced to U ( 1 ), the symmetry of the Klein bottle via the 
above arguments. It is therefore interesting to compare their 
homotopy and homology groups. They are as follows: 
1TI (T2) is an Abelian infinite group generated by two ele­
ments; 1T I (K.B.) is the non-Abelian group of the semidirect 
product of the infinite group generated by two translations 
and a reflection about an axis. Note that the Klein bottIe is 
therefore an example of a manifold with non-Abelian funda­
mental group. Here 1T2 of T2 and K.B. are trivial. Also, 
H I (T

2
) =ZXZ, HI (K.B.) =ZXZ2, H 2 (T

2
) =Z, 

H 2 (K.B.) = O. The Euler characteristics of both T2 and 
K.B. vanish. Harmonic analysis on T2 is the usual Fourier 
series decomposition in two variables; when going to the 
Klein bottle, the odd functions iny, sin ny, are dropped since 
they are not invariant under the reflection part of r. 

IV. PHYSICAL APPLICATIONS 

In this section we apply the procedure of Sec. II to the 
S2-monopole-type compactification8 of the six-dimensional 
Einstein-Y ang-Mills theory by considering the quotient 
spaceRp 2 = S2{1, - 1}, which was considered in Sec. III; 
and to the S 7 compactification 9 of II-dimensional supergra­
vity by dividing S 7 over one of the many appropriate discrete 
subgroups of SO (8). In both cases the spectrum is altered 
drastically. Among other things the "photon" is removed 
from the spectrum of the former theory and in the latter 
theory the 35 massless vector particles is reduced to four 
particles. Moreover the SO ( 8) symmetry of S 7 is red uced to 
U(1 )4. 

In the six-dimensional model of Ref. 8 the manifold 
M4 xs 2 is found as a solution of the coupled Einstein-Yang­
Mills equations. The metric is decomposed into two parts, 
g!'v (x) on theM4 andgmn (y) on theS 2

, where x andy para­
metrize M4 and S2, respectively, 

gij dzi dz j = g!'v(x)dx!' dxV +gmn (y)dym dyn. (3) 

The two-sphere metric has the standard form 

687 J. Math. Phys., Vol. 28, No.3, March 1987 

gmn (y)dym dyn = a2 (dO 2 + sin2 ° dtp 2) , (4) 

where ° and tp are the usual spherical coordinates while M4 is 
found to be an anti-de Sitter space. The U (1) field has non­
zero components only on the S 2 part where it has a mono­
polelike configuration of topological charge n, 

A;(z)d.t=Am(y)dym= (n/2e)(cosO± l)dtp, (5) 

the plus (minus) sign referring to the coordinate patch ex­
cluding the south (north) pole of the sphere. Note that in the 
overlap region the two expressions can be transformed to 
one another by the gauge transformation 

A=ntp (6) 

on the lower half ofthe sphere. 
The identification we apply to S 2 as iIlustrated in the 

previous section is the identification of antipodal points, 
( O,tp ) and ( 1T - O,tp + 1T). Hence a scalar field <I> ( ° ,tp) on S 2 

is well defined on RP 2 provided 

<1>( O,tp) = <1>( 1T - O,tp + 1T) (7a) 

and a vector function is weIl defined provided 

Am = (O,tp) = -Am(1T-O,tp + 1T) . (7b) 

For a gauge field Am on Rp 2 this condition can be imposed 
after making a gauge transformation 

Am (O,tp) = -Am(1T-O,tp+1T)-VmA. (7c) 

Similarly for a second-rank tensor we must have 

(7d) 

Consequently the S 2 metric is well defined on RP 2, while the 
gauge field (5) transforms properly after making a gauge 
transformation, 

Atp (1T - O,tp + 1T) = ( - n/2e)(cos ° + 1) 

= (-n/2e)(cosO± 1) + (lIe)atpA, 

where A = ntp in accordance with (7c). The field strength 
E(Jtp = - n!2e is also well defined and agrees with (7d). 

To obtain the spectrum of1luctuations about theseRp 2 

solutions to the Einstein-Yang-Mills theory one has to start 
from the S 2 solutions and impose the above constraints. 
These constraints will remove the scalars and second-rank 
tensors with odd I 's and the vectors with even I 'so As a result 
the zero mass photon which has I = 0 is removed from the 
spectrum. The spectrum of massive particles similarly 
changes. The S 2 solution has six towers of massive particles 
as given in Table I. In the last column of the table, the 
changes occurring in the RP 2 solutions are specified. To see 
how these changes take place we have to examine the gauge 
constraints that the external sources Tij and Jj coupling to 
gij andAj satisfy. (For details oftheS 2 solution we refer the 
reader to Ref. 8.) These constraints are J;, i = 0, and T. .. I),] 

= KF';j~' which, after combination with (7a)-(7d), imply 
T + + = T __ and T; + = T; _ (± refer to Ys ± iY6 coordi­
nate on the sphere). This result removes all the A = 2 sca­
lars, deleting the first tower of massive particles. The next 
two towers of scalars for A = + 1 and - 1 are restricted to 
even l's and therefore half of them are absent in the case of 
RP2. To obtain this last result we have used J + + J _ = 0, 
which is again a consequence of the constraints. The vector 
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TABLE I. Massive particle spectrum for S 2 compactification of the six-dimensional Einstein-Yang-Mills theory and its RP 2 modification. 

Space-time 
type (Mass) 2 lill Rp2 modification 

Scalar M~ = (I-l)«(1+2)/a2 2 1>2 Removed from 
the spectrum 

Scalar M~± = [2/(1 + 1) + 1 ± ~l + 21(1 + 1) ]/a2 0 1>0 1= even 
Vector Mi ± = [/(1 + 1) ± ~21(1 + 1) ]/a2 1>1 1= odd 
Second-rank tensor M~ =1(1+ 1)/a2 

particles are restricted to odd I's and the spin-2 particles to 
even I's. 

This RP 2 solution, having a different spectrum of parti­
cles, has not been considered in the study of the solutions of 
six-dimensional Einstein-Yang-Mills theory. 

Our second example is a solution to d = 11 supergra­
vity. Compactifying solutions to this theory are classified.9 

In particular the most symmetric solution where the metric 
I 

where R (a) is a 2 X 2 matrix in SO (2) signifying a rotation 
by angle a. We note that a2, a 3, a 4, and n are relatively prime. 
The centralizer ofr in SO(8) consists ofa set of elements of 
the form 

This is an Abelian group U ( 1 ) 4 consisting of independent 
rotations in the planes (1,2), (3,4), (5,6), and (7,8). The 
manifold s7/r has the same curvature as S7, but globally 
admits only the group U( 1)4 as its isometry group. Hence 
upon this identification the gauge group of the four-dimen­
sional theory is broken from SO (8) to U ( 1 ) 4 • Closer exami­
nation of the massless vector states shows that from 28 gauge 
particles in the S7 solution only four will survive in s7/r 
solution. Note that this "symmetry breaking" takes place 
without the introduction of Higgs bosons and the vector par­
ticles corresponding to the broken symmetries do not be­
come massive, but are totally eliminated from the theory, 
similar to the symmetry breaking pattern of the Calabi-Yau 
compactification in the superstring theory. 

Now we consider the change in the spectrum of scalars 
when we go from S 7 to S 7 /r. Several authors 10,11 have stud­
ied the spectrum of S 7. Sezgin II has considered them in de­
tail. Scalars can be expanded in functions of S7, which are 
eigenfunctions of eight-dimensional angular momentum. 
They correspond to homogeneous polynomials in eight vari­
ablesXI,X2, ... ,xs (see Ref. 12). Thedegreeofthepolynomi­
al is denoted by I. Sezgin finds that for I = 2 we obtain a 35 
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0 1>0 1= even 

of the compact space is that of S 7 is studied in detail, 10,11 but 
the point that the metric does not specify the global structure 
has been overlooked. In Ref. 9 we pointed out that S 7 is the 
simply connected manifold with the standard spherical met­
ric. Now we wish to look at other spaces with the same met­
ric as S 7. Among several identifications of S 7 (see Ref. 2) we 
choose one that is implemented by the discrete subgroup r 
ofSO(8) generated by reSO(8): 

SO(8) multiplet of massless scalars, corresponding to 35 
linearly independent second-order homogeneous polynomi­
als in eight variables. (Note that r = }; x7 is invariant under 
rotations and is a singlet, so the 36-dimensional space of 
second-order homogeneous polynomials decomposes into 
two parts, a singlet and a 35 multiplet.) In S 7/r only those 
polynomials that are invariant under r survive. To find 
them it is useful to define new variables 

s~ =X2j _ 1 ± iX2j , i = 1,2,3,4, E = + or - . 

A suitable basis with definite transformation property under 

r for the I = 2 functions are monomials P ~f = s fs r. 
Under r, P~f transforms as follows: 

pli/ ..... exp(21Ta/n)E + (21Taj /n)E')Pf/ 

(where a l = 1). The monomial is invariant under r if and 
only if 

ajE + ajE' = 0 mod(n) . 

Since a j < n and the aj's and n are relatively prime the above 
condition can hold if (1) i = j and E = - E' or (2) 
aj + aj = nand E = E'. From the first possibility we obtain 
three independent zero mass scalars. The second possibility 
does not happen all the time. Simple reasoning shows that 
(2) can give at most two massless scalars. So we will be left 
with three, four, or five massless scalars from the original 35 
ones. 
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This paper generalizes the results obtained by Kotecky. The free energy of the gauge Potts 
model in the external field in the many component limit has been calculated. This is done in 
two cases: (a) the external field is switched on after the gauge fixing or (b) the external field is 
switched on before the gauge fixing. In both cases, the free energy can be calculated using the 
mean-field method, if, in case (b), the larger class of trial measures is allowed. The mechanism 
of phase transition is also discussed. 

I. INTRODUCTION 

One of the most useful methods of obtaining a least 
qualitative insight into a phase structure of various lattice 
models is provided by the mean-field theory. The core of this 
method consists of rewriting the expression for the partition 
function in equivalent form with the help of some trial prob­
ability measure, and then neglecting the correlations with 
respect to this distribution (this is achieved by use of the 
Jensen inequality). To make the problem tractable, the trial 
measure is chosen in such a way that all dynamic variables 
are distributed independently. 

The mean-field method gives an upper bound for the 
free energy. The old question is whether there exist models 
for which the mean-field theory gives an exact expression. 
This was shown to be the case for the Ising, 1 n-vector,2 aniso­
tropic Heisenberg,3 and Potts4 models in the long-range lim­
it, and for Ising,5.6 n-vector, spherical, and quantum spin5 as 
well as Potts4 models in the high-density limit. The many­
component limit of the Potts model was also considered 
from this point of view7

; the conclusion again was that the 
mean field method gives an exact answer. 

In all of the above cases, after the appropriate choice of 
the trial measure, all correlations that should disappear in 
order to provide the exactness of the mean-field expression 
do indeed vanish after the high-density, long-range, or 
many-component limits have been taken. An important 
point is that one has succeeded with the very simple form of 
trial probability measure. However, this need not always be 
the case. If the trial distribution is not consistent with the 
properties of the system implied by some large symmetry 
group, the mean-field method may fail. This can be illustrat­
ed using the gauge Potts model as an example. It was shown 
by Kotecky8 that one can calculate the free energy of this 
model in the many-component limit by the mean-field meth­
od only after the gauge symmetry has been explicitly broken 
by the appropriate choice of gauge. 

In this paper we generalize the results obtained by Ko­
tecky. We calculate the free energy of the gauge Potts model 
in the external field in the many-component limit. We do this 
in two cases: (a) the external field is switched on after the 
gauge fixing or (b) the external field is switched on before 
the gauge fixing. We show that in both cases we can calculate 
the free energy using the mean field method, if, in case (b), 

we allow a larger class of trial measures. We can also calcu­
late the minimal value of the external field above which the 
standard mean field theory is applicable and discuss the 
mechanism of phase transition. 

The paper is organized as follows. In the rest of this 
section we introduce some necessary notions and present the 
results obtained by Kotecky. Finally, we state our main re­
sults in Theorem 1.1. The proof of this theorem is given in 
Sec. II. 

Section III is devoted to some remarks and final conclu­
sions. Some technicalities are relegated to the Appendix. 

Let us consider ad-dimensional hypercubic lattice. We 
label the unit coordinate vectors by,u ( j.-l = 0, 1, ... ,d - 1). If 
ieZ d is a lattice site, we denote a nonoriented link connecting 
sites i and i + ,u by a pair (i, j.-l), and a plaquette bordered by 
links (i,j.-l), (i + ,u,v), (i + V,j.-l), (i,v) , by a triple (i,j.-l,v), 

j.-l < v. Generically, the links will be denoted by I and the 
plaquettes by p. To any link I we attach the spin variable 0'/, 

taking values in Zq = {O,l, ... ,q - n. Given any configura­
tion a={a/}, we introduce the plaquette variable by 
ap =a(i.l") + a(i + (i.v) - ao+v.l") - a(i.v) (mod q), for 
p = (i,j.-l,v). Consider a hypercube A consisting of IAllat­
tice sites. First we define version (b) of the model. The Ham­
iltonian reads 

HA(aA ) = - I Dup'o -h I Du/oo' (1.1) 
p / 

The free energy is then defined by the formula 

exp[ -PIAlf(fJ,h,q)] 

= Z A ( p,h,q) = I exp [ - PH A (a A )] • ( 1.2) 

To introduce the second version (a), we follow the standard 
method used in the perturbative theory of continuum gauge 
fields. To fix the gauge following Kotecky, we will use the 
temporal one: a/ = 0, for alII = (i,O); then integrate out the 
gauge group volume and finally couple the external field to 
the remaining variables. The modified Hamiltonian reads 

HA(UA ) = - I Dup.o -h L Du,.o. (1.3) 
P /-horiz 

The second sum on the right-hand side runs over all horizon­
tal links. The appropriate free energy is defined by 
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exp( - f3IAlf( f3,h,q») 

= Z A ( f3,h,q) = L exp( - f3H A (U A ) ). (1.4) 
uA 

Let US remark that the following simple relation holds as a 
consequence of integration over the gauge group: 

f(f3,O,q) =f(f3,O,q) -f3- 1 logq. (1.5) 

The following fact was proved by Kotecky. The limiting free 
energy has the form 

f~ ( f3) = lim f ( f3log q,O,q) 

= min( _ d(d;- 1) ,_ (d; 1») , ( 1.6) 

and can be obtained by the standard mean-field method (i.e., 
with trial probability distribution treating all variables as 
independent) . 

It follows from Eqs. (1.5) and (1.6) that 

f~ (f3) = lim f (f310g q,O,q) 

=min(_d(d;-l)_~,_~). (1.7) 

However, for the model defined by Eqs. (1.1) and ( 1.2), the 
mean-field method in its usual form gives 

lim fMF (f310g q,O,q) = min( _ d(d - 1) ,_!!...), 
q-~ 2 f3 

( 1.8) 

and for small temperatures one does not obtain the right 
answer. 

Let us now state our main result. 
Theorem 1.1: The following limiting relations hold: 

- - ( d(d - 1) d(d - 1) d - 1) (a) f~ (f3,h) == lim f( f3log q,h,q) = min - - h(d - 1), - ,--- , 
q-~ 2 2 f3 

(b)f~(f3,h)==hmf(f310gq,h,q)=mm - -hd,- --,--. . . (d(d-l) d(d-l) 1 d) 
q-~ 2 2 f3 f3 

We prove this theorem in the next section and postpone its 
discussion to Sec. III. 

II. THE PROOF OF THEOREM 1.1 

A. An upper bound 

To obtain an upper bound we follow the standard meth­
odology of obtaining the mean field approximation. Let {i} 
be the set of all states of the system under consideration, 
HU) the corresponding Hamiltonian, and pU) any prob­
ability distribution fulfilling the condition p U) > 0 for all i. 
Then 

Z = L exp( - f3HU») 
i 

== LP(i)exp[ - f3HU) -logpU)] 
i 

and consequently 

f= -f3- 110g Z «H)p + (lIf3)(logp)p. (2.1 ) 

Now, the right-hand side is the continuous function of pin 
the domain pU);.oO. Consequently we obtain the following 
upper bound: 

f< min [(H)p + (l/f3)(Iogp)p] . 
p:p(I»O 

(2.2) 

To apply the bound (2.2) to our case we consider the two 
versions separately. 

(a) Let us first assume h;.oO. Putting 

p(UA ) =IIpI(UI)' 
lEA 

691 J. Math. Phys .• Vol. 28. No.3. March 1987 

I 
choosing api that prefers ai = 0 with probability p, and dis-
tributing the remaining values uniformly we can follow the 
calculations performed by Kotecky to obtain 

- . [ d(d - 1) d - 1] f~(f3,h)<mln - 2 -h(d-1),--p 

. [ d(d - 1) = mm - 2 - h(d - 1), 

_ d(d - 1) _ d - 1 ] 
2 ' f3 . 

If h < 0, we choose p I preferring UI = 1 with the probability p 
and distributing the remaining values uniformly. Then we 
obtain 

f~ (f3,h) <min [ _ d(d;- 1), _ d; 1] 

= min[ - d(d - 1) _ h(d - 1) 
2 ' 

_ d(d - 1) _ d - 1] 
2 ' f3 . 

(2.3) 

(b) Applying the same reasoning to the second model 
we find 

f. (f3 h)<min[ _ d(d - 1) _ hd _ d(d -1) _!!...]. 
~ , 2' 2' f3 

(2.4) 

However, we can also use another trial distribution function. 
Namely, let p(uA ) = 0 for all configurations such that 
up #0 for at least one plaquette and all other configurations 
(i.e., those for which up = 0 for all plaquettes P) are distrib­
uted uniformly. The number of the latter equals the order of 
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the gauge group, i.e., qlAI. The corresponding entropy is easi­
ly calculated: 

< -logp)p IAllogq. (2.5) 

The mean plaquette energy equals IAld(d - 1 )/2. Consider 
finally the energy of interaction with the external field. Tak­
ing into account the fact that the transformation u/ ---+ u/ + c 
with the same constant c for all links does not change the 
value of any plaquette, we conclude that, given any link I, to 
every state in which this link contributes an amount h of the 
energy, there correspond the q 1 states in which the link 1 
does not contribute. 

Consequently, the mean energy of the external coupling 
is IAldh Iq. Collecting the above values we get 

/,.,(/3,h)<.-d(d-I)/2 11/3. 

The above inequality together with Eqs. (2.4) and (2.5) 
gives 

f", (/3,h)<.min[ d(d;- 1) - hd, 

d(d 1) 1 
---'--2 ----'-- - 7i ' ;] . (2.6) 

B. A lower bound 

Again we consider the two cases separately. 
(a) We adopt the strategy developed by Kotecky and 

evaluate the partition function by collecting the terms that 
have the same sets P of nonfrustrated plaquettes and sum­
ming over all subsets P. We have 

ZA ~ exp( /3IP I) o-A:(TP~~pEP exp0h -f- 00-1.0) 

<.~exp(/31PI) o-A:pEP~(TP=o exp0h -f-Oo-I'O)' (2.7) 

Now one has to estimate the last sum on the right-hand side. 
Let us assume that h>O. Following Kotecky we can choose 
the set L (P) of horizontal links such that (i) for each config­
uration on L '\L (P) there exists at most one configuration 
iT such thatu = OwheneverpeP; and (ii) IL(P) I >21P lid 
with modulo b~undary terms (O(BA»). Condition (i) means 
that in the sum 

o-A:pEP~o-P=o ex
p

(/3
h -f- 80-/00). 

the links from L '\L(P) can be viewed as independent. 
To any configuration on L '\L (P), we can overestimate 

the contribution of the links in L(P) by exp( /3h IL(P) I); 
then those from L '\L (P) act as the set of independent spins 
in external field. Consequently 

o-A:pEP~o-P=o exp0h -f- 00-/00) 
<.[ (q - 1) + exp( /3,h)] IAI(d-l) - (Wild) 

Xexp[ /3h(2IP lid)]. (2.8) 

From the inequalities (2.7) and (2.8) we finally get 

_ IAld(d 1)/2 (IAld(d - 1 )/2) 
ZA (/3,h,q) <. 2: IP I 

IPI 0 
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x [q + exp( /3h) ] (2Id)(IAld(d - 1)/2 IP I) 

= [exp/3[l + (2hld)] 

+ (q + exp( /3h) )2Id] IAld(d - 1)12. (2.9) 

From the inequality (2.9) the needed lower bound 

- [ d(d-I) d 1] fro (/3,h»min - 2 - h(d - 1), - P 

= min[ - d(d;- 1) _ h(d - 1), 

_ d(d 1) _ d - 1 ] 
2 ' /3 

follows immediately. 
Finally, let us remark that for h < 0 we can estimate the 

left-hand side ofEq. (2.8) by the number of configurations. 
Therefore 

I", (/3,h»min[ d(d;- 1) d; 1] 
= min[ - d(d;- 1) h(d - 1), 

_ d(d - 1) , _~] . 
2 /3 

This concludes the proof for case (a). 
(b) This case is a bit more complicated. Again we write 

out the basic inequality 

Z( /3,h,q) = ~ exp( /3 IP I> (TA:"P~~pEP exp(/3h -f- 8"/00) 

<.~ exp( /3 IP I) "A:pEP~"P 0 exp(/3h -f- 80-/.0 ). 

(2.10) 

Again we assume first h>O. In order to estimate the last 
sum on the right-hand side, let us call BP the set of all links 
bordering the plaquettes from P. Together with the sites be­
ing their end points, the links from BP form a graph, possibly 
nonconnected which is embedded into the d-dimensional 
lattice. We denote this graph also by BP. Any vertex belong­
ing to this graph is the end point of at least two and at most 
2d lines. The number of lines of BP can be easily estimated. 
To any plaquette there belong four bordering links and any 
link borders at most 2(d - 1) plaquettes. Consequently 
21BP I (d - I »4IP I and finally 

IBPI>2IP I/(d 1). (2.11) 

Now it is obvious that evaluating the expression under 
consideration we may treat the spins sitting on links not be­
longing to BP as independent spins in the external field. As a 
result we get 

aA:pEp~VP 0 exp0h -f- 8,,/.0 ) 

< (q + exp/3h)IA1d-2IPI/(d-I)(q + exp/3h) a 

X (Tap:pE~(Tp=o exp [/3h /J;", 8",,0 ]. (2.12) 
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Here (Tap denotes any configuration on ap, and 
a = lap I - 21P I/(d - 1»0. Passing to the last expression 
on the right-hand side ofEq. (2.12), let us first consider the 
special form of the set P that corresponds to the set contracti­
ble to a point in the continuum version of Poincare lemma. 
Namely, we demand that in each connected component ap' 
of ap, there exists a Cayley tree Twith the following proper­
ty: for any lEiJP', II$.T, the (unique) loop in {I}U T is the 
boundary of some orientable surface consisting solely of pla­
quettes from P. It is trivial to see that for such sets P the 
configuration (Tap is a pure gauge, i.e., 

(2.13) 

where i andj are the end points of I. 
Then we obtain the partition function for the usual 

(non-gauge) Potts model 

uap:peP~up = 0 eXP(Ph ~ OUbO
) 

= q - c(ap) L exp( Ph ) OUOU}) . (2.14) 
UY(ap) t:fp 

Here V(ap) is the set of all vertices of ap and c(ap) is the 
number of connected components of ap. The extra factor 
q - c(ap) appears because, due to the global symmetry (T; --+(T; 

+ const, Eq. (2.13) has q solutions with respect to (T;'S in 
each connected component of ap. 

We prove the following inequality: 

q-C(ap) L exp[ Ph L Ou,.U}] 

UY(ap) I 

0;;; [q + exp( Ph)] lapl- 2IPI/(d- I) 

X (ql/d + exp( ph»)2JP1/(d-l). (2.15 ) 

Taking into account that the statistical sum for any graph is 
the produci of the corresponding sums for its connected 
components, we conclude that it is sufficient to prove that, 
for any connected ap, 

q-I L eXP(Ph L Ou,.U}) 
CTY(ap) 1 

0;;; [q + exp( Ph)] lapl- 2IPI/(d-l) 

X [ql/d + exp( Ph) j2IP I/ (d-l). (2.16) 

It is easy to verify (2.16) if the number of independent loops, 
Ih(ap) I, is not less than 21P I/(d - 1). Indeed, we can then 
estimate the left-hand side of (2.16) by the similar method as 
in the case (a). We choose an arbitrary Cayley tree Tin ap 
and write 1 instead of any ouu ifi andj are the end points of 

,. J 

the link II$.T. Then the resulting statistical sum on T can be 
easily calculated, and we get 

0;;; [q + exp( Ph)] lapl- 2IPI/(d- I) exp( Ph Ih(ap) I) 
0;;; [q + exp( Ph)] lapl- 2IPI/(d-l) 

X [ql/d + exp( Ph) ]2JP1 / (d-l). (2.17) 

Let us now assume that Ih(ap)1 <21P I/(d - 1). It is also 
shown in the Appendix (LemmaAl) that Ih(ap) 1>21P lid. 
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For simplicity, we assume first that 21P lid and 21P II 
(d - 1) are integers. Then 

Ih(ap)1 =2IP I/(d-l) -k, kaninteger>O, 

21P I/(d - 1) - 21P lid = n, n>k, (2.18) 

21P I/(d - 1) = nd, Ih(ap) I + k = nd. 

Let us order the set of lattice sites in A lexicographically: 

d-I 

iO;;;jwheneverj = i + L Ijl, 
1-'=0 

and the first nonvanishing I,.. is positive. 
We choose the Cayley tree Tin aPin the following way. 

For any site iEiJP, we connect with the minimal site j such 
that j> i and the link (i,j) belongs to ap. Now, it is shown in 
the Appendix (Lemma A2) that there exist k sites such that 
they are the smaller with respect to the lexicographic order­
ing end points of exactly d links. We call these sites i I, ... ,ik • 

Let L L be the set of links having i L as the smaller end point. 
We also let 

G2=T\(TnC~ILa)) 
and G1 = ap \G2• Then 

k 

G1 = U LaUL, 
a=1 

where LeG 1 is the set of all links such that their end points 
belong to G2 • 

The La's and L are pairwise disjoint. To estimate the 
left-hand side of the formula (2.16) let us first write 1 instead 
of ou;.U} for all links lEI.. Then we can estimate the resulting 
statistical sum on ap \L in the following way. We take the 
smallest site i belonging to ap and fix the spins on other sites. 
Then either there is exactly one line lEiJP \L n T connecting 
the site i to the rest of the graph, or i = i I' In the former case 
we get the factor q + exp( Ph), and in the latter, the factor 
[ql/d + exp( Ph)]d (Lemma A3) multiplying the statistical 
sum for the graph obtained from aPby deleting the site i and 
all links from ap having i as their end point. Proceeding in 
this way we obtain finally the following bound: 

But 

0;;; [q + exp( Ph)] IG,I [ql/d + exp( Ph)]kd [exp( Ph)] IL I. 

(2.19) 

IG2 1 = lV(ap)l- 1 - k 

= lapl-lh(ap)l-k= lapl- (2IP lld-1), 

kd + IL I = 21P lid - 1, 

so that we again get the inequality (2.16). One can easily 
verify that (2.16) is also true in the case when 21P lid - 1 
andlor 21P lid are not integers. This can be done by taking 
the appropriate integer parts. 

From the inequalities (2.12) and (2.15) we find 
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UA:pEP~UP~O exp~h ~ 8u/>0) 
< [q + exp( {:Jh) ]IA ld-2IPI/(d-l) 

x [ql/d + exp( {:Jh)] ZIP I/(d - I). (2.20) 

Finally, let us consider the sets P that are not "contracti­
ble" to a point in the sense defined above. Let us choose any 
Cayley tree Tin JP. According to our assumption, there are 
links lET such that the unique loop in {l}u Tis not a bound­
ary of any oriented two-dimensional surface consisting of the 
plaquettes belonging to P. We call the set of such links ll.. We 
call two links II' 12Ell. equivalent if some linear combination 
of the loops in {Ii} u T is the boundary of two-dimensional 
oriented surface consisting of plaquettes from P. The general 
solution of the equations up = ° for pEJP now reads 

U l = U i - uj + u7. (2.21) 

Here u7=1=O if and only if IEll.; moreover, u7, = u~ if II and 12 

are equivalent. 
Corresponding, we have 

uap:pE~Up~O exp~h I{;P 8u,.0) 

I q - c(ap) I exp( {:Jh I 8 u7,uJ 
_ U;) 

{u7} Uv(ap) lEap 

lefJ.:u?t = u~2 
if 1,.l2 are equivalent 

< I q - c(ap) I exp( {:Jh I 8 u7.uJ 
_ u;). 

{u7} Uv(ap) lEap 

(2.22) 

lEA 

Now we can sum over all dl using the fact that 

The right-hand side of the inequality (2.22) then becomes 

q - c(aP) exp ( {:Jh I ll.1 ) I exp({:Jh I 8 u;,UJ) . (2.23 ) 
Uv(ap,a) leap 

The last sum can be estimated as previously. Indeed, the 
graph obtained from JP by deleting the lines from ll. is the 
boundary JP' of the subset P' CP plus some lines that are 
parts of the borders of plaquettes from P \p , and do not form 
the additional loops. It can be immediately shown that the 
same estimate applies 

q - c(ap) I exp({:Jh I 8u;,uJ) 
Uv(ap,tJ.) leap 

< [q + exp( {:Jh)] lahAI-2IP'I/(d-l) 

X [ql/d + exp( {:Jh) ]ZIP'I/(d-l). 

Letting 2/(d - 1) (IP 1- IP'I) = r and writing 

exp( {:Jh 1ll.1) = exp [{:Jh ( 1ll.1 - r) ]exp( {:Jhr) 

< [q + exp( {:Jh)] IAI- [2I(d-I)](IPI-IP'I) 

X [ql/d + exp( {:Jh)] 2I(d - 1)( IP 1- IP'Il, 

(2,24) 

We conclude from Eqs. (2.22)-(2.24) that the estimate 
(2,20) applies again. 

Finally, by combining (2.20) with (2.10), we get 
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IAld(d - 1)/2 
Z( {:J,h,q) < I (1~ltd-1)/2) 

IPI ~O 

and 

X [eP(ql/d + e Ph )2/(d-l)] IPI 

X [(q + ePh )2Id - I] IAld(d - 1)/2 -IPI 

= [eP(ql/d + ePh )2/(d-l) 

+ (q + ePh)2/d - I] IAld(d - 1)12, (2,25 ) 

f ( {:J,h,q) > - (d(d - 1 )12{:J) 10g[eP(ql/d + ePh )2/(d - I) 

(2.26) 

Again after rescaling {:J-+{:J log q and letting q-+ 00 we get 
the needed lower bound, For h < 0, we estimate the statistical 
sum by Z ({:J,O,q) and use the above result. This concludes 
the proof. 

III. CONCLUSIONS AND SUMMARY 

(i) As it is well known, the phase transition occurs as a 
result of a competition between the energy and entropy in 
expression for free energy F = E - TS. For low tempera­
tures T, the energy is important and has to be minimalized, 
In the "ferromagnetic" case, this favors an order. On the 
other hand, for high temperatures the second term is the 
dominating one and one has to maximalize the entropy. This 
fact, in turn, favors nonordered states. In the limit q -+ 00, the 
competition between energy and entropy appears in its ex­
treme form. For the usual (nongauge) Potts model and for 
the gauge Potts model in the version (a) there are two 
phases. In the low-temperature phase, the free energy simply 
equals the energy of the lowest lying state. All excited states 
are irrelevant and give no contribution. On the other hand, 
in the high-temperature phase, the energy factor is irrelevant 
and all states are equally probable. Consequently, the free 
energy simply equals Tmultiplied by total entropy. 

The gauge Potts model in version (b) above is a bit more 
complicated. There are three phases. For a strong magnetic 
field (or for low temperatures), the free energy is dominated 
by the energy of the ground state (vacuum). This is the 
maximally ordered state with all U l = O. As the magnetic 
field decreases (or the temperature increases), the phase 
transition occurs. In the new phase we meet the following 
situation. There are many states with the same plaquette 
energy as the vacuum state. These are simply the configura­
tions gauge equivalent to the vacuum. Their energies are a bit 
greater than the ground state energy due to the coupling with 
the external field h. However, contrary to the ground state, 
which is unique, their number is quite large, ~qIAI, and, 
being macroscopically significant, it does contribute to the 
entropy per site by 1. In the phase under consideration this 
effect prevails the one following from the energy difference. 

There exists also a third phase, the high-temperature 
one, in which the energy differences are again irrelevant and 
the free energy equals - Tmultiplied by the total entropy. 

(ii) From the consideration of Sec. II, the following in­
teresting picture of the phase transition in case (b) emerges. 
For low temperatures, all the plaquette degrees of freedom 
are frozen to their vacuum value, up = O. They contribute an 
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FIG. I. (a) The phase diagram for version (a) of the gauge Potts 
model: fi = - (d - 1 )IP, fi, = - d(d - 1)/2 - [h(d - 1)], fill 
= - d(d - 1)/2. (b) The phase diagram for version (b) of the gauge 

Potts model:fi = - d IP,fi, = - d(d - 1 )/2 - hd,fi" = - d(d - 1)1 
2 - (1!P). 

amount - d(d - 1 )/2 to the free energy per site. Only the 
gauge degrees of freedom are unfrozen and, due to the cou­
pling to the external field, they form a usual (nongauge) 
Potts model with the coupling constant equal to h and with 
the vanishing external field. Consequently, according to the 
results obtained in Ref. 7, those gauge degrees of freedom 
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contribute an amount - hd or - 11/3 to the free energy in 
the low- or high-temperature phase, respectively. This gives 
the first two terms in the expression for the free energy. The 
third term is, as was stressed above, simply proportional to 
the total entropy of the system. 

(iii) The phase diagrams for both cases are sketched on 
Fig. 1. We see that they are [especially in case (b)] fairly 
nontrivial. They both possess the triple point Pt ; 

P, = (2Id,0) or P, = (2!d,1I2) in case (a) or (b), respec­
tively. All of the phase transitions are of the first order. Let 
us also note that (a) shows a spontaneous magnetization for 
/3> 2!d and h ->0+; the second case cannot magnetize spon­
taneously. 

(iv) Let us conclude our considerations by the remark 
concerning the applicability of the mean-field method. As 
we indicate in the Introduction, the mean-field method in its 
wider sense, gives the proper answer for both cases. How­
ever, if by the mean-field method we also understand the 
specific choice of the trial probability distribution that treats 
all link variables as independent, then we will fail to give the 
right answer for phase III of the second model. The reason 
for this is quite obvious. In this phase the correlations follow­
ing from the gauge invariance play the dominant role. On the 
other hand, they are disregarded in the mean field theory in 
its narrow sense. 

Note added in proof Professor R. Kotecky kindly point­
ed out to me that there is an error in the proof starting from 
formula (2.22). This error can be corrected at the price of 
considerable lengthening of the proof. Meanwhile, I discov­
ered that the whole proof can be simplified if we use the set· 
I(p) constructed by Kotecky8 and consider two cases: (i) 
II(p) 1>21P I/(d - 1), (ii) 21P I/(d - 1) > II(p) 1>21P II 
d. The corrected version appeared in the preprint and can be 
sent on request. No statement or conclusion should be 
changed. 
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APPENDIX: SUBSIDIARY LEMMAS 

Lemma AI: Let P be any set of plaquettes on the d­
dimensional hypercubic lattice, and let ap be the graph 
spanned by the links bordering the plaquettes from P. Then 
the following inequality holds: 

Ih(ap) 1>(2Id) IP I· 

Proof Instead of giving an independent proof we may 
appeal to the results obtained by Kotecky.8 From his con­
struction of the set I(p) in the notation used in Ref. 8, it 
immediately follows that I(p) cap, the graph ap \I(p) 
has the same number of connected components as ap, and 
contains all vertices of ap. Consequently, 

II(p) I = lap I - lap \I(p) I 
<lapl-lV(ap)1 +ccap) = Ih(ap)l, 

but Kotecky proved that II(p) 1>(2!d) IP I· 

Lemma A2: In the notation of Lemma AI, the following 
statement is valid. If 
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Ih(ap) 1= 21P I/(d - 1) - k, 

then there exist at least k vertices such that they are the 
smaller (with respect to the lexicographical ordering) end 
points of exactly d links belonging to ap. 

Proof By inspecting again the construction given by 
Kotecky, we conclude that if the numbers of links of ap 
"emanating" from any vertex does not exceed d - 1, then 

Ih(ap) 1>21P I/(d - 1). 

Let us further note that if we delete one link belonging to 
ap, and start from the site that is the smaller end point of 
exactly d links, then Ih (ap) I decreases by 1 while IP I de­
creases at most by 2 (d - 1). This fact concludes the proof. 

Lemma A3: Let O'!, ••• ,O'd be any fixed values from Zq. 
Then the following inequality holds: 
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Jz. exp~h it! £5U •Ui ) < (qlld + exp( /3h))d. 

The proof is straightforward. 
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Let ¢ be a relativistic scalar field fulfilling canonical commutation relations (CCR). 
Furthermore it is assumed that the time zero fields and momenta form an irreducible set. 
Based on estimates given by Herbst [I. W. Herbst, J. Math. Phys. 17, 1210 (1976)], and by 
methods developed by Powers [R. T. Powers, Commun. Math. Phys. 4, 145 (1967)], it is 
shown that ¢ has to be a free field in n > 3 space dimensions. For n = 3 (resp. n = 2) 
restrictions that look similar to the restriction in a formal :¢4:3+) (resp. :¢6:2+) theory are 
obtained. 

I. INTRODUCTION 

In 1967 Powers) showed that a relativistic Fermi field, 
which fulfills canonical anticommutation relations (CAR) 
and is irreducible, does not interact (it is even a free field2

) if 
the number of space dimensions is greater than 1. 

We want to analyze the analogous situation for Bose 
fields. We consider a relativistic scalar field ¢ which fulfills 
canonical commutation relations (CCR). Furthermore, we 
assume that the time zero field ¢ ( f) together with the time 
zero momenta 1T(f) = ;P(/) form an irreducible set. Bose 
fields are represented by unbounded operators, but Froh­
lich's commutator theorem3 provides a powerful tool for 
dealing with this unboundedness. 

In the case of fermions CAR imply the bound 
"t/'(t,J) " <: II f" 2 for the field operator. Powers) uses locality 
and these operator bounds to show that 

[t/'(f) {t/'(g),,j,(h)} ] = 0 for n > 1 space dimensions. 

In the Bose case we also use locality but instead of 
II t/'(t,J) ,,<: II f" 2 we use bounds for n-point functions given 
by Herbst4 to estimate 11[1T( f) [1T(g),ir(h) ]]0". 

Based upon "aj ¢-bounds" we show in Sec. II that 
[1T(gN)["'[1T(g),ir(h)]"']O=O for n>(N+3)/ 
(N - 1) space dimensions. From irreducibility we conclude 
in Sec. III that ¢ has to be a free field in n > 3 space 
dimensions. In n = 3 (resp. n = 2) space dimensions 
we get restrictions on mUltiple commutators 
[1T(gN) [". [1T(g),ir(h)]"'] which are similar to the re­
strictions one would expect in a formal :¢4:3+) (resp. 
:¢6:2+) theory. 

These results have to be compared with the known mod­
els: P( ¢ ) ) + ) fulfills CCR and so does the sine-Gordon mod­
el. In two-space dimensions :¢4:2+) is a canonical theory. 
The models with exponential interaction :exp a¢: are very 
interesting (see Ref. 5). In two or more space dimensions the 
regularized Schwinger functions converge to the Schwinger 
functions of a free field. In one-space dimension the same 
phenomenon occurs for large I a I. For a 2 < 41T we have non­
trivial Schwinger functions. In all cases the Wightman func­
tions fulfill CCR. 

In the references we have also listed the pioneering work 
by Araki6 because it is fundamental for the estimates given 

a) Address after September 1986: Institut fUr Theoretische Physik, Bunsen· 
strasse 9, D-34 Giittingen, Federal Republic of Germany. 

by Herbst. 4 Furthermore, we want to mention the unpub­
lished thesis by Sinha,? in which he tried to adapt the meth­
ods developed by Powers) to the Bose case. But at this time 
the very strong estimates given by Herbst4 were not yet avail­
able and Sinha had to replace these estimates by assump­
tions. 

Throughout this paper we make the following assump­
tions. 

(i) Relativistic quantumjield theory (QFT). 
(a) ¢(t,x) fulfills the Wightman axioms for a scalar, 

neutral field in n + 1 space-time dimensions. The self-ad­
joint Hamiltonian H>O is the generator of time translations. 
We assume (O,¢ (t,x) 0) =0. 

(b) Existence of sharp time fields. For fEY (R n) and 
t/JED we assume 

¢(t,J)t/' = lim ¢(~~,J)t/', (1.1 ) 
E-O 

and 

1T(t,J)t/' = i[H,¢(t,J) It/' = lim ¢( - tJ~,J)t/' (1.2) 
E_O 

exist, where ~~EY (R) is a ~-sequence and D is an invariant 
domain, i.e., ¢(t,J)DCD and 1T(t,J)DCD. By ¢(f) 
[resp. 1T(f)] we denote the time zero fields ¢(O,J) [resp. 
1T(0,J)] . 

(c) We assume that 

is dense in the Hilbert space:Jr and furthermore is a core for 
the Hamiltonian H. 

In the following we assume always real test functions! 
Remark 1:1: Assumption (c) is necessary because many 

estimates are based on Araki's formula6 

and we want H to be uniquely determined by (1.3). 
(ii) Canonical commutation relations (CCR). For the 

symmetric operators ¢(t,J) and 1T(t,J) we have (a) form 
bounds, 

± ¢(t,J)<:lfl)(H + 1), ( 1.4) 
± 1T(t,J) <: I I 12(H + 1) as forms on Q(H), 
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where I'll and 1'12 are norms on Y(Rn); and 

(b) [ifJ(t,f),ifJ(t,g)] = ° = [1T(t,f),1T(t,g)], 

[ifJ(t,f),1T(t,g)] = i ( dnx/(x)g(x) 
JR" 

weakly on D(H) XD(H). 

( 1.5) 

Remark 1.2: By Frohlich's commutator theorem3 the 
CCR for the Weyl operators eit/>(t,f) and ei1T

("g) follow from 
(a) and (b). 

(iii) Irreducibility. 
A bounded operator B which commutes with eit/>( fl and 

ei1T
(g) for all/,geY(Rn) (remember we take only real test 

functions!) is a c-number, i.e., B = (O,BO). Again by Froh­
lich's commutator theorem we can reformulate irreducibi­
lity as follows. 

Proposition 1.3: Assume the symmetric operator e ful­
fills 

(a) the form bound ± e<.co(H + 1) on Q(H), (1.6) 

and 

(b) [ifJ(/),e] = ° = [1T(/),e] on D(H) XD(H) 

for all /EY(Rn), (1.7) 

then e = (O,eo). 
Proof' See Ref. 3 for details. Because of the form bounds 

(1.3) and (1.6) it follows from (1.7) that 

eit/>(j)eiA.Ce - i<l>(fl = eiA.C, 

ei1T(fleiA-Ce - i1T(j) = eiA.C for AER. 

From irreducibility we conclude 

( 1.8) 

( 1.9) 

( 1.10) 

and from this e = (O,eO) follows. This formulation of irre­
ducibility is much more convenient for the applications even 
if we have to assume a form bound (1.6). 

(iv) Existence 0/ ir(t, /). 
(a) For/EY(Rn

) and t/JED, 

ir(t,f)t/J = i[H,1T(t,f)]t/J = lim ifJ(8~,f)t/J 
E-O 

exists and D is an invariant domain. 
(b) We have the form bound 

± ir(t,f)<.1/13(H + 1) on Q(H), 

where 1'13 is a norm on Y(Rn). 

(1.11) 

( 1.12) 

Remark 1.4: The assumed existence of ifJ (/ ) 0,1T( /) 0, 
and ir(/)O can be expressed by the Kallen-Lehmann 
weight functionp(m2) as follows: 

lIifJ(/)01l2 

= ("" dm2p(m2) (dnp Ij(pW < 00, (1.13) 
Jo JR" 2.) m2 + p2 

111T(/)01l2 

= ("" dm2p(m2) ( dnp .)m
2

+p2 Ij(p)12<00, 
1 Jr 2 

(1.14 ) 
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lIir(/)01l2 

= ("" dm 2 p(m2) ( d np [m
2 + p2]3/2 I j( p) 12 < 00. 

Jo JR" 2 
(1.15 ) 

Therefore the moments S({'dm2 p(m2)m k exist for 
k = 0,1,2,3. 

For the vacuum expectation value of the commutator 
we have the representation 

(0, [ifJ(t,x),ifJ(s,y) ]0) 

= -il"" dm2p(m2)D(t-s,x-y;m2), 

where 

(0 + m2)D(t,x;m2) = 0, 

with the initial conditions 

D(0,x;m2) = 0, (J,D)(0,x;m2) =8(x). 

The canonical commutation relations imply 

1"" dm2 p(m2) = 1. 

II. ESTIMATES FOR MULTIPLE COMMUTATORS 

In this section we want to get estimates for 

[(1T(gN) [1T(gN-l) [ ... [1T(gl),ir(h)]··· ]0. 

(1.16) 

(1.17) 

(1.18) 

( 1.19) 

Our main tool is the combination of methods developed by 
Powers I for analyzing CAR with estimates given by Herbst4 

for a Wightman field fulfilling CCR. 
From the paper by Herbst4 one can easily extract the 

following estimates. 
Proposition 2.1: Let ;k = Sk + i7lkER + iR+, 

k = 1, ... ,N,andlet/k EY(Rn),k = 1, ... ,N. Then the analytic 
vector-valued function 

FN(~;(a·V)/): = ei"HifJ(aV/I)ei"H .. . ei'NHifJ (aV/N )0, 
(2.1 ) 

where aER" is a unit vector, is bounded by 

IIFN(~;(a'V)/)II<.A N(N!) 1/2{ 1 + k~2~~'N('!: I YN-I)12} 

XkQI (A II (a'V)/k 112 + ~ lI/kIl2)' 
(2.2) 

for all A > 0. 
Sketch 0/ the proof' The starting point is the "VifJ" 

bounds (see Theorem 2.6 in Ref. 4) 

± ifJ(a·V/)<.H +! II/II~. (2.3 ) 

From this the estimates for n-point functions [see Theorem 
2.5 (B) in Ref. 4], 

(O,lifJ(aV/) INO)<.B N(N!) 1/2( 4I1a'V/1I211/112)N12, 
(2.4) 

can be easily derived. But of course 

2(lIaV/lbll/1I2)1/2<.AllaV/lb + (1IA) 11/112 

Klaus Baumann 
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for all A > 0 and therefore we have 

1(0,t,6(aVf)NO)I..;;B N(N!) 1/2[A lIaVfll2 + (l/A)lIfllz]N. 

(2.6) 

As explained by Herbst4 after the proof of Proposition 3.7 
from the bound (2.6) the estimates (2.2) follow. This is so, 
because e - tH is a positivity preserving contraction semi­
group and therefore the Schwinger functions exist. Further­
more, one can do the analytic continuation in a similar way 
as Herbst4 does it in the proof of Proposition 3.7. 

The main result of this section is the following lemma. 
Lemma 2.2: For go,gI, ... ,gNe2& (Rn 

) we have 

[1T(gN) [1T(gN_l)'" [1T(gl),1i"Cgo)]"']O 

=0 ifn>CN+3)/(N-l). (2.7) 

Proof: (a) As we shall see later we only need the cases 
N = 2, 3, 4, and 6. The corresponding values of n, the num­
berofspacedimensions for which (2.7) is true, aren>6, 4,3, 
and 2. 

(b) Remember that 1T(gk) = <,6 (O,gk ) and 1i"(go) 
= ~(O,go). By using o-sequences f~,f1 , ... ,frve2& (R) we 

write 

[1T(gN) [ ... [1T(gl),1i"(gO)]"']O 

= lime - l)N [t,6( irv,gN) 
E-O 

Let us chooseJ;e2& (R),j = O, ... ,N, such that 

(i) suPpJ; C [ - _1_, _1_], (ii) ( J; (t)dt = 1, (2.9) 
- 5N 5N JR 

and for E> 0 we define 

(iii) fj(t): = (l/E) J; (t IE). (2.10) 

(c) For 0 < E";; 1 let E L keZ", be a smooth partition of 
the unity as defined in Appendix A. For ~ = (kl, ... ,kn )eZn 

we have 

supp E~ k [(k 1 - 'vE,(k l + ~)E] 
X .. · X [(kn - ~)E,(kn + ,VE]. (2.11 ) 

By linearity we get 

. [t,6(irv,gN) [ ... [t,6(i~ ,gl),t,6(j~,go)]"']O 

= 2: [t,6(irv,E;(N)gN) [ ... [t,6(iL 
k(N} ..... k(O)eZ· 

(2.12) 

This is a finite sum becausego, ... ,gNe2& (RN). 
(d) As Powers 1 has done in the case of CAR we now use 

locality to reduce the number of terms. The support of 
fjXE;gj is by construction contained in 

O~:=[ - 5~' 5~]X[(kl- !)c'(kl + !)c] 
X"'X[(kn - !)c,(kn + !)c]. (2.13) 

This Ok is spacelike separated from 0 1 if Ik j -1;1>2 for 
some ie{l, ... ,n}, because if we assume kt>lj + 2, then for 
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xeO~ and yeO!. we have 

(x - y)2";;(2/5N) cf - [(kj - a - (lj + a))] 2 

..;;c2[ (2/5N)2 - (!)2] <0. (2.14) 

Therefore we get by locality 

[t,6( irv,gN) [ ... [t,6( ir,gl ) ,t,6 ( j~,go) ] ... ] 0 

= 2: [t,6(irv,E k(N),gN} 
~(N) ..... ~(O}EZn -

X [ ... [t,6(ir ,Ek(l}gl),t,6(j~,Ek(O}gO)] ... ] 0, 
- - (2.15) 

and I(k(j) - k(O});I..;;lforalli = 1, ... ,n andj = 1, ... ,N. Let 
L denote the sidelength of a cube in an containing supp go' 
Then the number of N-fold commutators appearing on the 
rhs ofEq. (2.15) is at most 3nN(L + 2}/E)". 

(e) Proposition 2.3, which we shall prove later, provides 
a bound for each of these N-fold commutators. Therefore we 
have the estimate 

II [t,6(irv,gN) [ ... [t,6(ir ,g1)'t,6( j~,go)] ... ] 011 

";;3nN(L; 2y D(n,N)(f( max lgj l) 

I
dK+%1 

Xmax K 2 
dt + 

X (VI maxi :~:;; I) €(1I2)[n(N+ 1) -N-31 (2.16) 

= C(n,N)(L + 2)nE /(N-1)/2l(n- (N+3)/(N-I)l 

N N 

X II maxlgjlmaxlf~K+2)1 II maxlfJK+ 1)1, 
j=O }=I 

(2.17) 

where C(n,N) is a constant and K = [N /2]( ~ smallest 
natural number greater than N 12). As c goes to zero Lemma 
2.2 follows from (2.17). 

Proposition 2.3: For go, ... ,gNe2& (Rn) and fo, ... INE 
2&([ -l/5N,l/5N]) we have 

II [t,6(irv,E;(N)gN) [ ... [t,6(ir ,E;(l)gl)' 

t,6(j~,E;(o)go)]'" ]011 
N 

..;;D(n,N) II maxlgjlmaxlf~K+2)1 
}=o 

N 
X II maxlfJK+ I)lc(1I2)[n(N+ I) -N- 3J 

j= 1 

(2.18 ) 

provided I(~(j) - ~(O) ld..;; 1 for all j = 1,2, ... ,N, where 
D(n,N) is a constant and K = [N /2] ( ~ smallest natural 
number greater than N 12). 

Proof: (a) In a first step we replace the test functions 
E;(j)gj by test functionsa1h j,~(j) and we show that because 
of locality this does not affect the N-fold commutator. The 
idea is the following. Consider the commutator 
[t,6(s,f),t,6(t,g)], where f,ge2& (Rn). Define fa (x): 
= f(x - a) (translation by aeRn). For aeRn large enough 
we have 

[t,6(s,f ),t,6(t,g)] = [t,6(s,f -fa ),t,6(t,g g - a)] 

by locality. If we take aeRn parallel to the Xl direction and 
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define 

F(x): = f:' '" [f( y,x2,···,xn ) - f( y - a,x2,···,xn ) ] dy, 

then FEfii (Rn) andf -fa al F. With a similar definition 
for G we finally get 

[t{J(s,J),t{JU,g)] = [t{J(s,a l F),t{Ju,alG)]. 

(b) To apply the above idea to our problem we define 

h ~.~(O) (x): = f:'"" dy{(E;(o)go)( y,x2,· .. ,xn) 

- (E;(o)go)( y + 3€,x2,""Xn )} (2.19) 

and fori = 1, ... ,N 

hJ.~(j)(x):= f:'"" dy{(E;(j)gj)(y,x2, ... ,xn) 

- (E k(j)gJ)( y - 3€,x2, ... ,xn )}. (2.20) 

From this definition we get with a: = 3€e l 

alh ~.~(O) = E;(o)go - (E;(o)go) -a' 

and fori = 1, ... ,N 

(2.21) 

alhJ.'!.(j) =E;(j)gj - (E;(J)gjL. (2.22) 

Because of the constraint l(~(j) - ~(O) )11 < 1, j = 1, ... ,N, 
our choice of a = 3€el , the support properties offiXEk(j) ' 
fiX (Ek(Jl )a,andf~ X (Ek(O) ) -a [see (2.13)], and local-
ity we get -

[t{J( i~,E;(N)gN) [ ... [t{J(iLE;(1)gl)' 

t{J(h,E~(o)go)]'" ]0 

= [t{J(i~,alh ~.'!.(N» [ ... [t{J(i~ ,alh t'!.(1»' 

t{J(j~,alh~.'!.(o»]"·]O. (2.23) 

(c) For later use let us estimate the L 2-norms 
lIa lh J.'!.(j) Iz and IIh J.'!.(J) b 
lIa1h J.'!.(J) liz 

= IIE;(j)gj - (E;(j)gj)allz<.J2I1E ;(j)gjI12 

<.J2 maxlgjIIlE;U) 11z<.J2 maxlgjl~l2, 

Ih J.'!.(j) (x) I <f-+",,"" dyIE;(j)gj( y,x2, .. ·,xn) I 

(2.24) 

< maxlgj1f_+",,"" dyIE(-;)! < maxlgjl€. (2.25) 

And because the support of h J.kU) with respect to x I is con­
tained in [(k l (i) - a) €,(k l (j) -+ 3 + al€] we have' 

IIh J.~(j) 11z«n l/2 maxlgjl€(n/2) + I. (2.26) 

These estimates are true fori 1, ... ,N and also fori = 0 if we 
replace a = 3€e I by - 3ee I' 

( d) The second step consists in using Proposition 2.1 to 
estimate the rhs of Eq. (2.23). The N-fold commutator is 
built up by 2N terms, each of which is the boundary value of 
an analytic vector-valued function. Consider for example the 
first term 

t{J(i~,alh ~.~(N»·· ·t{J(i~ ,alh t~(l) )t{J(j~,alh ~.'!.(O»O 

(2.27) 
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XFN+ I (€ + iQ;a1h ~.'!.(N), ... ,alhg.'!.(o», 

where we have introduced new coordinates 

(2.28) 

€= (51"",5N+I) (tN,tN_ 1 -tN, .. ·,tO-t1 ), (2.29) 

and defined the functionfE(€)E(RN+ I) as 

r(€.> =i~(51)i~-1 (51 + 52)" ·h(51 + . "5N+ I)' 

(2.30) 

From (2.10) we derive the following scaling behavior: 

r(€) = €- (N+Z)€- (N+ 11(0/€)€), (2.31) 

with 

f(€): =iN(51)iN- d51 + 52)" -fo(51 + '" + 5N+ I)' 
(2.32) 

(e) Now we are able to use Proposition 2.1. We claim 
that 

II iN+' d N
+ 15r(€>FN+ I (€ + iQ;alh~.'!.(N), ... ,alh~.'!.(o» II 

N 

<DIT max\gjlmaxlfC:K+Z)1 
j=O 

N 
X IT maxlf/K+ llle(1I2)(N+ I)(n+ I) - (N+2), 

j= I (2.33) 

where D is a constant (depending on nand N) and K = [N / 
2]. From estimate (2.2) we know that for any A > 0 

IIF N + 1 (€ + i7J.;alh ~,'!.(N) , ... ,alh ~,'!.(O) ) II 
<AN+1[(N+ 01]1/2 

X l( 011a1h J.'!.(j) liz + ~ IIh J.'!.(j) liz) 

X {I + j=~a.;+ 1 ('~lr/2} . (2.34) 

From the estimate (2.24) and (2.26) we get for the special 
choice A = €112 

A lIa1h J.'!.(J) liz + ~ IIh J.'!(j) Ib 
<maxlgjl€(n+ ll/2[21/2 + (l)1/2] 

< (lj) 1/2 maxlgj le(n + 1)/2, (2.35) 

and this explains the factor nf= 0 maxlgj 1€(1I2)(N + I)(n + I) 

in (2.33). Finally we have to estimate 

r d N+ 15r(€)FN+ 1 (€ + iQ), 
JRN+ 1 

where 

rEfii (RN + I), 

IIFN+ 1 <f + i7J.)II<C {I + Nil (15
j
l)NI2} . 

J = I '1Jj 
(2.36) 

In Appendix B we derive under the above assumption the 
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bound 

II iN+, d
N

+ 15r(€)FN+ I (€ + iQ) II 
<;c1toiN+' d

N
+ 151(~·~)lr(€)1 

{ 
N+ I (1S'-I)NI2} 

X 1+ L -+- ' 
j= I 'T/j 

(2.37) 

where ~ER~ + I can be any point and K = [N /2] denotes the 
smallest natural number greater than N /2. If we take 
~: = E( 1, ... ,1) = E'! and remember that 

r(€) = E- (N+2)E- (N+ 11((1/E)€), (2.31) 

we get 

II iN+, d
N

+ 15r(€)FN+ d€ + iQ) II 
<;CE- (N+2) f f d N+ lsi (!'~s)1(€)1 

1=0 JRN + I 

x {I + ~~ll 15j 1
N12

} . (2.38) 

Because 

/(€) =iN(51)iN- d51 +'52)" -10(51 + ". + 5N+ I) 

has compact support the rhs of (2.38) is bounded by 
A N 

<;C'E- (N+2) maxl/o(K+2)1 II maxl/}K+ 1)1. (2.39) 
j= I 

This proves the bound (2.33) and for a suitable C the esti­
mate (2.39) applies for each of the 2N terms building up the 
N-fold commutator on the rhs of Eq. (2.23). This proves 
Proposition 2.3. 

Remark 2.4: Instead of Proposition 2.1 we could have 
used the following estimate (see Proposition 3.7 in Ref. 4): 

FN (;.;[) <;A NN! JJI II/kIl2{ 1 + k~~~.NC!:1 )N-l}, 
(2.40) 

which is valid under the additional assumption of a mass gap 
but for all/kEY (Rn) and not only for/k 's which are deriva­
tives of test functions, i.e., /k = (aV)gk,gkEY(Rn). But 
(2.40) is weaker than (2.2) and we would only get 

[11'(gN) [ ... [11'(gl ),ir(go)] ... ] 0 

=0 if n>2(N + 2)/(N - 1), 

instead of the stronger result (2.7). 

(2.41) 

III. IRREDUCIBLE FIELDS FULFILLING CCR ARE FREE 
IN n>4 SPACE DIMENSIONS 

Now we shall show how we can use Lemma 2.2 to prove 
that irreducible fields fulfilling CCR are free fields in n>4 
space dimensions. First let us consider multiple commuta­
tors which also contain a time zero field t{J (/). 

Lemma 3.1: For/,go, ... ,gNEY(Rn), NEN, and all t/JED 
we have 

[t{J(/),ir(go)]¢' = 0, (3.1a) 
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and 

[t{J(/) [11'(gN) [ ... [11'(gl),ir(gO)]"']¢, = O. (3.1b) 

Proof From CCR and the existence of ir(go) it follows 
that 

(~t [t{J(t,f ),11'(t,go)] )¢' 

= 0, for t/JED 
= [11'(t,f),11'(t,go)]¢' + [t{J(t,f),ir(t,go) ]¢'. (3.2) 
~ 

=0 
This proves (3.1 a). If we use the Jacobi identity 

[t{J(/)[11'(g),A ]]¢' = [11'(g) [t{J(/),A ]]¢' 

- [A [t{J(/),11'(g) 11¢', 
~ 

=0 (3.3) 

and take A successively as ir(go),[ 11'(gl)' 
ir(go) ], ... ,[ 11'(gN_I) [ ... [11'(gl),ir(gO)]"'] we get (3.1b). 

Let us define the following form bounds for N-fold com-
mutators. 

For go, ... ,gNE~ (Rn) there is a constant CgN"'go such 
that 

(ON): ± iN[ 11'(gN) [ ... [11'(gl ),ir(go)] ... ] 

<;CgN"'g.,(H + 1), (3.4) 

as a quadratic form on Q(H), where H is the Hamiltonian. 
With these form bounds (ON) we can exploit irreducibi~ 

tity via Frohlich's commutator theorem3 as follows. 
Lemma 3.2: Assume for allJ,go,"" gNE~ (Rn) 

[11'(/) [11'(gN) [ ... [11'(gl),ir(gO)]"']0 = 0, (3.5) 

then the form bound ( ON)' CCR, and irreducibility imply 

[11'(gN) [ ., . [11'(gl ),ir(go)] ... ] 

= (0,[ 11'(gN) [ ... [11'(gl),ir(gO)]'" ]0). (3.6) 

Proof: For fixed test functions the (N + 1 )-fold commu­
tator [11'(/) [11'(gN) [ ... [11'(gl),ir(gO)]"'] is an element of 
the algebra P(O), OCRn + 1 compact, and by the Reeh­
Schlieder theorem (see Theorem 4.3 in Streater-Wight­
man8

) we get from Eq. (3.5) 

[11'(/)[11'(gN), ... ,ir(go)]"·] =0. (3.7) 

From Lemma 3.1 we know that 

(3.8) 

This remains true even for /EY(Rn) because as long as 
goE~ (Rn) locality acts as a cutoff for supp f Because of the 
form bound ( ON) and the corresponding form bounds for 
t{J( /) and 11'( /) we conclude from irreducibility that (3.7) 
and (3.8) imply (3.6). 

If we combine Lemma 2.2 with Lemma 3.2 for the case 
N = 1 we get that in more than five-space dimensions the 
commutator [11'(g),ir(h)] is a c-number, i.e., 
[11'(g),ir(h)] = (0,[ (g),ir(h) ]0). As shown in the follow­
ing lemma irreducibility and the Kallen-Lehmann represen­
tation imply that t{J is a free field. 

Lemma 3.3: Assume that for allg,hE..@(Rn) 

[11'(g),ir(h)] = (0,[11'(g),ir(h)]0), (3.9) 
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then irreducibility implies and assume the form bound (0,) then 

irCh) - tPcah) + M2tP(h) = 0, 

with 

(3.10) [1T(g2) [1T(g,),ir(go)]] =0. (3.17 ) 

M2 = LX> dm2 p(m2)m2. (3.11 ) 

Proof (a) From the Kiillen-Lehmann representation 
for two-point functions we know that 

itO, [1T(g),ir(h)] 0) 

= ("" dm2 p(m2) ( d nx g(x){(ah)(x) - m2h(x)} 
Jo JR" 

(3.12 ) 

= ( dnxg(x)(ah)(x) _M2 ( dnxg(x)h(x), 
JRn JR" 

(3.13 ) 

because CCRimplies fO"dm2 p(m2) = 1 and the existence of 
ir(h)O implies fO"dm2 p(m2)m2 = M2 < 00. By the canoni­
cal commutation relations we can write the rhs ofEq. (3.13) 
as i[ 1T(g),tP(ah) - M2tP(h) ] and therefore using (3.9) we 
end up with 

[1T(g),ir(h) -tP(ah) +M2tP(h)] =0. (3.14) 

(b) Lemma 3.1 and CCR imply that also 

[tP(g),ir(h) - tP(ah) + M2tP(h)] = O. (3.15 ) 

From the bounds for tP (I), 11'( I), and ire I) and from irre­
ducibility we conclude 

ir(h) - tP(ah) + M2tP(h) = 0, (3.10) 

because (O,tP(t,x)O)=O by assumption. Furthermore, 
(3.10) shows thatp(m2) has to be £5(m2 - M2). By contin­
uity Eq. (3.10) can be extended to all hEY(Rn

). 

Remark 3.4: The above proof also shows that among all 
generalized free fields tP, which fulfill CCR and for which 
1I<I>(t,h)011 < 00, only fields of a definite mass M are irredu­
cible. 

Ifwe combine Lemma 2.2, Lemma 3.2, and Lemma 3.3 
we get the following as a first result. 

Theorem 3.5: Under our general assumptions (i)-(iv), 
and the additional assumption of a form bound (0,) for 
i[ 1T(g, ),ir(go)] we have that in n > 5 space dimensions tP is a 
free field. 

To get a result only in more than five space dimensions is 
not quite satisfactory. How can we improve this? From 
Lemma 2.2 it follows that 

in n > 3 space dimensions. If we also assume a form bound 
(02 ) then Lemma 3.2 tells us that 

But as we shall show in the next lemma the positivity of the 
Hamiltonian H implies under the above circumstances that 
[1T(g2) [1T(g,),ir(go)]] vanishes. 

Lemma 3.6: Assume that for go, g" g2E!!iJ (Rn) 

[1T(g2) [1T(g,),ir(go)]] = (0,[1T(g2) [1T(g,),ir(go)] ]0), 
(3.16) 

702 J. Math. Phys., Vol. 28, No.3, March 1987 

Proof By the positivity of H we have for all/E!!iJ (Rn) 
and allAER 

= H -Air(/) - (A 212!)i[1T(/),ir(/)] 

- (A 3/3!)P[1T(/)[1T(/),ir(j)]]. 

(3.18 ) 

(3.19 ) 

All higher commutators vanish by (3.16) and because of the 
form bounds for ir(/) and i[1T(/),ir(/)] we can apply 
Frohlich's commutator theorem3 to write (3.18) as a series. 
By taking the vacuum expectation value of the inequality 
(3.18) we get 

0,;;; - (A 2/2!)(0,i[1T(/),ir(/) ]0) 

- (A 3 13!)(0,P[1T( 1)[ 11'( I ),ir( j) ]]0), (3.20) 

because HO = 0 and (O,ir(/)O) = O. For this to be non­
negative for all AER the coefficient of A 3 has to vanish! If we 
now take 

I = f-l~o + f-l,g, + f-lzg2' f-ljER, 

and use the Jacobi identity we get 

(0,[1T(g2) [1T(g,),ir(go)] ]0)=0, 

(3.21) 

(3.22) 

and by (3.16) we have shown Lemma 3.6. This improves 
Theorem 3.5 as follows. 

Theorem 3.7: Under the assumptions of Theorem 3.5 
and assuming the additional form bound (02 ) for double 
commutators i2[1T(g2)[1T(g,),ir(go)]] we have that tP is a 
free field in n > 3 space dimensions. 

Proof Follows from Lemma 2.2 for N = 3, Lemma 3.2, 
Lemma 3.6, again, Lemma 3.2, and finally Lemma 3.3. 

What can be said about the remaining cases n,,;;3? From 
(2.7) it is obvious that always n > 1 no matter how large N is 
chosen. The following lemma shows how the interaction is 
restricted in two- and three-space dimensions. 

Lemma 3.8: Under our general assumptions (i)-(iv) 
and assuming in addition the form bound (a) (°3 ), we have 
for n = 3 

[1T(g3) [ ... [1T(g, ),ir(go)]]] 

= (0, [1T(g3) [ ... ,ir(go)] ]0) 

("tP4 interaction"); 

or (b) (05), we have for n = 2 

[1T(gs)["'[1T(g,),ir(go)]"'] 

= (0, [1T(gs) [ ... ,ir(go)] ... ] 0) 

("tP6 interaction"). 

(3.23) 

(3.24) 

Proof Combine Lemma 2.2 with Lemma 3.2. With a 
little bit more effort we can conclude more, e.g., assuming 
also a form bound (02), we have for n = 3 

i2[1T(g2) [1T(g,),ir(go)]] 

= AtP (gzg,go) + (0,;2 [1T(g2) [1T(g, ),ir(go)]] 0) 

= AtP(gzg,go) + f-li[1T(g2),tP(g,go)]' (3.25) 

and we can even derive bounds on .-l,;;;.0 if we explicity esti­
mate all constants involved in the proof of Lemma 2.2. For 
going beyond (3.25) it is necessary to define operator prod-
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ucts :t/i: and :(p3: but we did not succeed in solving this prob­
lem. 

IV. DISCUSSION 

First of all we think that the estimates of Proposition 
2.1-extracted from Herbst's paper4 -are very strong and 
therefore the final results are quite optimal. For example 
even if one assumes the bounds 

N 

IItfo(tN,fN),,·tfo(tI,fI)flll,,;CN IT Iltfo(tk,fk)flll, (4.1) 
k=1 

which are modeled after a free field theory and which look 
terribly restringent, one does not get better results than the 
ones listed in Sec. III. 

Second to get rid of certain assumptions which were 
necessary because we dealt with unbounded field operators 
one should modify the method such that only Weyl opera­
tors eit/>U), eirr( f), and eiHt enter in the proof. Or even better 
one should give a proof within Euclidean field theory, be­
cause Herbst4 got his estimates by first constructing Euclid­
ean fields. 

Finally let us summarize our results as follows. In more 
than four space-time dimensions only free fields can fulfill 
CCR and irreducibility. In four space-time dimensions the 
same is true with the possible exception of a formal :tfo4:3+ I 
theory. In three space-time dimensions :tfo4:2 + l fulfills CCR 
and we ruled out any other but the :tfo6:2 + I interaction as 
possible candidates for CCR. In two space-time dimensions 
our analysis does not impose any restriction on the interac­
tion. This fits nicely with the constructed models, because 
P( tfo) 1 + I' sine-Gordon model, and exponential interaction 
all fulfill canonical commutation relations. 
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APPENDIX A: A SMOOTH PARTITION OF THE UNITY 

TakepEfiJ ([ -l, ll) such that 

(i) p(x):>O, 

(ii) p( - x) =p(x), 

and 

(iii) iP(X)dX = 1. 

For 0 < E"; 1 and kEZ we define 
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E~(x):= f:oo {p(;-k- ~) 

-p(;-k++)};. 
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(AI) 

(A2) 

This E ~ has the following properties: 

(i) E~EfiJ (R), supp E~ ~ [(k - VE,(k + VEl. 

(A3) 

(ii) O..;EUx)..;I, EUx) = 1, 

for XE[ (k - l)E,(k + l E)], 
L 

(iii) I E~(x) 
k=K 

for XE[ (K -l)E,(L + l)E], 

(A4) 

= {I, 
0, for x< (K - VE or x> (L + a)E, 

(AS) 

(iv) IE~(x)==1, (A6) 
kEZ 

(v) iIEUxWdx..;iE~(X)dX=E. (A7) 

In n > 1 dimensions we define for O";E < 1 and 
~ = (kl, ... ,kn )EZn 

, 

E~ (x): = Et (Xl)" 'E~" (x n )· 
(A8) 

We call E~ a smooth partition of the unity of width E. We 
have the estimate 

(A9) 

APPENDIX B: AN ESTIMATE FOR BOUNDARY VALUES 

(a) Let F(~) be a function analytic in ~E[R 

+ i (0,00 ) ] ® n which fulfills the estimate 

{ n (Is I )a} 1F(€+i![)I..;C 1+ I _k , O<a<oo, 
k = I TJk 

(Bl) 

thereforeF(€ + iQ) is a distribution over Y(Rn). 
(b) Define K: = [a] (~smallest natural number 

greater than a). We expand F(€ + i!]) in a Taylor series 
around € + if!, 

+ 1 ( dA{1 - A)K-I(i(![- !lhlsf 
(K - I)! Jo 

XF(€+i![+Ai(![-![»). (B2) 

Ifwe integrate by parts we get for fEY (Rn) 

iJ(€)F(€ + i![)dnS 

= Ki
l 

~ f F(€+i![)( -i(![-![)iJ.s)1j(€)dnS 
1=0 l! JR" 

+ 1 (dA{1-A)K-I f F(€ + i![ 
(K -I)! Jo JR" 
+ Ai(![ - ![))( - i(![ - ![ )iJ.s )Kf (€)d nS. (B3) 

(c) From estimate (Bl) we get 
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x I(?l- ?l)adf(s:)ldns + (K ~ I)' 

x r 1(?l-?l)a,dK/(S:)llldA,(1-A,)K-1 
JRn 0 

X{I+r( 15k I )a}d nS' (B4) 
k r,k+A,(17k-r,k) 

If we take 0 < 77k <r,k, k = I, ... ,n, then we have the estimate 

II dA,(1 _ A,)K-I( 151 )a 
o r,+A,(7]-r,) 

= (ltl)a II dA, (1 - A,) K - I 
r, 0 [I-A,(I- (7]/r,»)]a 

(ltl)al1 dA, 1 (Isl)a 
< r, 0 (1 - A,) a - K + 1< [a] - aT' (B5) 

Therefore the last term in Eq. (B4) is bounded by 

%, in I«?l- r,)~slK/(s:) I 

X{I+~ ± (I~kl)a}dns. (B6) 
K-ak=1 7]k 
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Now we can put ?l=O and for any ?lER~ we get the crude 
estimate 

I i/(S:)F(S: + iQ)d nsl 
cIa] r 

< [a] -a l~oJRn 1«?l~s»)'l'(s:)1 

X {I + ± (¥)a}d ns. k = I 7]k 
(B7) 

Only the derivatives of/up to order [a] enter in this esti-
mate. 
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The stationary action problem for a single, classical, point particle in external gravitational and 
electromagnetic fields is written in optimal control format. The relativistic interval is the 
independent variable and time, space, and action are the five dependent variables. A general 
metric is used for the space-time manifold so that the equations are manifestly covariant. The 
form of the system equations guarantees that the particle moves with unit speed with respect to 
interval. The Lagrangian is a function of the metric tensor and the electromagnetic four­
potential, but not of particle parameters such as electric charge q and mass m. The 
Hamiltonian is not identically zero, unlike those derived in many earlier analyses. A constant 
of the motion is found that is identified with q/mc2

• An explanation is presented for the 
classical inequality m;;.O. The trajectories can reduce to geodesics and even further to those 
governed by Fermat's principle of stationary time. 

I. INTRODUCTION 

The trajectory of a single, classical, point particle sub­
ject to gravity and electromagnetism will be derived using 
optimal control. I The five state variables will be time, space, 
and action. The independent variable will be the relativistic 
interval or proper time 7. All scalar products will be taken 
with a general metric so that the equations will be manifestly 
covariant. The simplicity of this problem will permit us to 
concentrate our attention on the new viewpoint and meth­
ods. 

The four differential equations to be used here for the 
space-time variables x formulate the geodesic problem of 
general relativity. The form of these equations guarantees 
that the particle moves with unit speed with respect to prop­
er time. The usual differential equation for the action s is 
easily put in a manifestly covariant form representing the 
electromagnetic interaction only. The system of five first­
order equations differs from earlier formulations in that it 
does not contain particle parameters such as mass m and 
electric charge q. Each extremal represents a trade-off 
between maximized proper time and either maximized or 
minimized action. In the extreme case with the Lagrange 
multiplier As = 0, 7 is maximized with s open. The extremal 
is then a geodesic. We show that As is the constant that ex­
perimental physicists call q and that the Hamiltonian ,W'is 
the constant they call the self-energy mc2

• Our equations 
require mass to be non-negative. 

The first-order differential equations for the state vari­
ables and Lagrange multipliers are used to derive the second­
order accelerations. The writing of the latter equations is 
simplified by introducing the Christoffel symbols as abrevia­
tions. The usual postulating of these symbols as affine con­
nections is unnecessary. 

When q = m = 0, the trajectories reduce to lightlike 
paths governed by Fermat's principle of stationary time. The 
eikonals of geometric optics can be superposed. These sur­
faces bound Maxwell's four-dimensional (4-D) waves. Here 
we will show that when the values allowed for q,m are gener­
alized, EM waves should be extended into a six-dimensional 

space. The wave equation itself is beyond the scope of the 
present paper, although the Hamilton-Jacobi equation for 
the wave fronts 7(X,s) = const is written. 

Although the correct velocity and acceleration equa­
tions have been derived previously from manifestly covar­
iant equations,2-4 the Hamiltonians have been unsatisfac­
tory in that they have been identically zero. This has made 
the Hamilton-Jacobi and wave equations difficult to derive. 
A vanishing Hamiltonian occurs whenever the system equa­
tions are homogeneous in the control variables to any power 
other than zero. A specific formulation that has been used 
previously will be discussed in Sec. VI after notation and 
methods have been established. Here the Hamiltonian will 
be homogeneous of degree 1 in the velocity with respect to 
proper time, but of degree zero in the control variables. Here 
,W' will equal the self-energy and will be equated to the usual 
function of the energy-momentum and potential four-vec­
tors. 

II. A SUMMARY OF OPTIMAL CONTROL 

Optimal control will be used rather than the calculus of 
variations. The former is the more systematic, general, and 
powerful. It is the more tutorial because it provides a geo­
metric picture of the optimization process. The problem is 
expressed as a system of n first-order differential equations 
with an initial manifold. The n-tuple of state variables x is 
composed of all the derivated quantities including action. 
The nonderivated variables u make up the control variable 
m-tuple. For each value of the independent variable (usually 
designated t), a boundary of the reachable set or wave front is 
defined in state variable space. By definition, no point out­
side the wave front can be reached by a trajectory that satis­
fies the inequality and differential constraints. The optimal 
trajectories or extremals terminate on the wave front. 

The n-tupleA is the outward pointing normal to the wave 
front. (Some authors prefer an inward pointing normal.) 
The elements of A are known in the calculus of variations as 
the Lagrange multipliers canonically conjugate to the state 
variables. The magnitude of the normal n-tuple is irrelevant. 
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Thus our equations will be homogeneous in the elements of it 
and only their ratios will affect the extremals. 

The scalar product of dx/ dt and the normal it is called 
the control Hamiltonian H(t,x,it,u). If an extremal is to re­
main on the wave front as t increases, its control variables 
must be chosen to make the control Hamiltonian a maxi­
mum. This maximum principle is what physicists call Huy­
gens' principle of wavelets and wave fronts. The optimal 
control approach is particularly appropriate for the least ac­
tion problem because it turns the later introduction of quan­
tum waves into a natural development. The optimal u is a 
function of t,x,it and when this expression is substituted into 
the control Hamiltonian the true Hamiltonian JY(t,x,it) of 
the calculus of variations is obtained. 

The calculation of extremals does not require the defini­
tion of either final boundary conditions or a performance 
functional to be optimized. A state variable is maximized, 
minimized, or open according to whether the corresponding 
element ofthe final (outward pointing) it is positive, nega­
tive, or zero. When there are two state variables, an extremal 
that optimizes Xl subject to a fixed final value of x 2 also 
solves the reciprocal problem of optimizing x 2 subject to Xl 

fixed. Similar statements apply when there are more than 
two state variables. 

The initial manifold is sometimes simply a point that 
can lie either inside or outside the wave fronts. In the former 
case there is no upper bound on the values of t defined by 
trajectories that terminate at a given final point. In the latter 
case extremals that provide the maximum value of t exist and 
determine the trailing edge of the wave front. The velocity 
and outward normal n-tuples form an acute angle on the 
leading edge (JY > 0) and an obtuse angle on the trailing 
edge (JY <0). The latter will be much more important for 
the present problem so that the obtuse angle and negative JY 
would be inconvenient, it will therefore be defined to point 
inward. This will be accomplished by using the minimum 
principle rather than the maximum principle. These con­
cepts are illustrated schematically in Fig. 1. 

When an (n - 1) -dimensional initial manifold is 
smooth, transversality conditions require the it(O) to point 
along its normals. If an outward pointing it (0) is at a corner 
of a manifold, it is qualified if it makes obtuse angles with the 

FIG. 1. Wave front with leading and trailing edges. Extremals and inward 
pointing normals are shown. 
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sides. Should the manifold degenerate to a point, it (0) would 
be unrestricted. When the minimum principle is being used, 
an inward pointing it(O) satisfies transversality if it points 
diametrically opposite to a qualified outward normal of the 
maximum principle. 

The optimal control equations reduce to those of the 
calculus of variations when.it is scaled so that its (constant) 
element associated with action is - 1. Optimal control is 
more general because it allows the action to be either mini­
mized or maximized. It can be used for those problems that 
have no multipliers that are constants of the motion. It is 
more powerful because it shows how to treat nondifferential 
equality and inequality constraints. 

The phrase "minimum or saddle point" will be abreviat­
ed to "minimum." A minimizing (or maximizing) extremal 
becomes a saddle point after passing a Jacobi conjugate 
point. Its final point then lies in the interior of the wave front. 

III. TRAJECTORIES SUBJECT TO 
ELECTROMAGNETISM ONLY 

The least action problem for a particle with rest mass m 
and electric charge q will be formulated at first using the 
usual position-action space (X,x4) with fYt4 metric. (Three­
tuples that transform under spatial rotation as vectors are 
written in boldface.) The independent variable is xO=ct­
the speed oflight multiplying time. The control variables are 
the three-tuple of dimensionless velocity v. The Lagrangian 
L is a function of the electromagnetic scalar potential 
Ao(xo,x) and the vector potential A(xo,x). Radiation reac­
tion and gravity are neglected. The four state variable equa­
tions with the initial point when XO = 0 are then5.6 

dxo = v, x(O) = i, (3.1a) 
dx 

dx
4 
=~=L _ mc(1 _ v2 ) 1/2 

dxO dxo 

-q:(Ao-A'v), s(O) =0. 
c 

(3.1b) 

The scalar product of the normal four-tuple J..,its with (v,L) 
is called the control Hamiltonian H(xo,x,J..,its'v): 

H = mcits (1 - v2
) 1/2 - qitsAoic + (J.. + qitsA/c) 'v, 

(3.2) 

The control variables v appear nonlinearly and inhomogen­
eously. There are four state variables and three initial La­
grange multiplier ratios. Therefore a three-parameter family 
of extremals issues from the initial point. The natural choice 
for the parameters is yeO). 

IV. TRAJECTORIES SUBJECT TO 
ELECTROMAGNETISM AND GRAVITY 

In order to obtain space-time symmetric equations that 
take account of gravity, a new independent variable must be 
found. The relativistic interval or proper time r will be intro­
duced. It is defined using the symmetric, indefinite, covar­
iant, metric tensor G which reduces to the Minkowski metric 
11 for flat space. An arrow will indicate that the general met­
ric is being specialized to that of Mink ow ski. An "M" will be 
written after the number of such equations. They may be 
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checked with the literature, but it should be noted that 
space-time is curved when the potential A is non-null, 

gl'v (.x") EG(X), gl'v(.xP) =G- I (x), 

xP = x, I",v,p = 0, ... ,3 (4.1 ) 

-+1) = 1)-I=diag[l, - 1, - 1, - 1]. (4.1M) 
Since the metric tensor has been written in two forms, there 
will be two notations for the relativistic interval 

Or = + (gI'VO~oxv)I/2E + (ox, Gox) 1/2 (4.2) 

-+ + [(OXO)2_0X2]I12. (4.2M) 

Terms with repeated Greek indices are summed from 0 to 3. 
When scalar products are written as ( . , . ), the first vector is 
contravariant and the second is covariant. 

The system (3.1) can be generalized to the following 
five equations when XO is a dependent variable. All scalar 
products, including that in the Lagrangian, will be taken in 
terms of the metric tensor G. The equations will be simplified 
by using the following abreviation for the magnitude of the 
control contravariant four-vector u, 

lui = + (u, GU)I12. (4.3) 

The first four state variable equations are 

dx EX =~, x(O) =x. 
dr lui 

(4.4) 

The form of these equations guarantees that the nonholono­
mic constraint 

(x, Gx) = 1 (4.5) 

implied by (4.2), will be satisfied for any choice of u includ­
ing one that makes I u I zero. They also require u to be time­
like (I u I real). The nonlinearity in the control vector u will 
become significant when we look for the minimum of the 
control Hamiltonian. When G is positive definite, a well­
posed geodesic problem is completely formulated by (4.4). 
A Lagrangian is not required. When G is indefinite, a control 
variable inequality constraint must be adjoined or the prob­
lem would be trivial. Therefore the restriction 

( 4.4') 

will be imposed since classical trajectories always move for­
ward in time. Although the usual relativistic metrics do not 
permit XO to pass through zero continuously, it must be for­
bidden to jump from a positive to a negative value. The four 
dimensions do not appear symmetrically in this constraint 
-but time has already been given special treatment when a 
relativistic metric was chosen [see (4.lM)]. The problem of 
the previous section does not have a corresponding explicit 
constraint because the independent variable XO is tacitly as­
sumed to be monotonically increasing. The necessity for this 
constraint will be clarified in the discussion oftransversality 
below. 

Equations (4.4) and (4.4') require u to point into the 
future half-cone. The latter is defined in 4-D space-time with 
its vertex at the particle's location x ( r) and with sides com­
posed of null geodesics with x°;;;.xo ( r). It follows that (4.4') 
is preserved by Lorentz transformations. 

To derive a manifestly covariant Lagrangian, we first 
multiply (3.lb) by dxoldr: 
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s = - mc[ (dxO) 
2 

- dx] 1/2 _ ~(AoX0 _ A-x). (4.6M) 
dr c 

The four-potential will be defined in the covariant form 
A = [Ao, - A]. After substituting from (4.2M) and (4.4), 
and generalizing the metric, this equation becomes 

s=L = - mc - (qlc) (u, A)/lul. (4.6) 

The symmetry and unity of idea of this Lagrangian are 
marred by its first term. Since mc is a constant, Ockham's 
razor can be applied. The relation can then be further simpli­
fied by absorbing the multiplicative constant qlc into the 
action s, 

x 4 =s=L= -(u,A)/lul, s(O) =0. (4.4" ) 

The five-tuple of state variables is composed of the contra­
variant four-vector x and the scalar X4 =s. The dimension of 
s is now charge. 

The system (4.4) is remarkable in that it does not con­
tain constants such as mass, electric charge, or magnetic 
charge. Later a constant of the motion will be found that will 
be recognized as being the qlmc2 of experimental physics. It 
will vary from trajectory to trajectory. 

When the initial manifold is a point, transversality con­
ditions permit all directions for A(O),As' However, contrary 
to (4.4), it is a mistake to consider the present initial mani­
fold as a point or even a surface. Both x and s are unbounded 
when u points in a null direction. Any point that can be 
reached via a combination of such lightlike subarcs should 
be considered to be part of the initial manifold. This indi­
cates that those ..1.( O),As that generate lightlike extremals are 
at the limit of the family of multipliers that satisfy transver­
sality. All points of state variable space could be reached in 
this way had we not imposed inequality (4.4'). 

As r increases, (4.5) requires the points of the initial 
manifold to move. Equations (4.4) require the motion to be 
toward higher values of XO along timelike and lightlike world 
lines. The smallest interval r required to reach an attainable 
final point x, s is zero as discussed in the previous paragraph. 
The boundary of the reachable set is a trailing edge defined 
by the family of maximum r trajectories that originate at 
(X,O) with A(O)'s that satisfy the transversality condition. 

According to Huygens' principle, extremals will be gen­
erated when the control vector u is chosen to minimize the 
control Hamiltonian H: 

H= (x,A) + Ass = (u,A-AsA)/lul. (4.7) 

(The usual situation with A - AsA non-null will be assumed 
at first. The exceptional case will be discussed in Sec. VI.) 
The wave front normal five-tuple is composed of the vector A 
and the scalar As, The vector A will be shown to be equal to a 
scalar times a gradient and is therefore covariant. If there 
were no constraints on u, the Hamiltonian could always be 
made to approach minus infinity. The numerator could be 
made negative by choosing a u that makes an obtuse angle 
withA - A,A. The denominator lui could be made arbitrar­
ily small by approaching a null direction. 

However, (4.4) and (4.4') require the vector u to point 
inside the future half-cone. Section VI will show that trans­
versality requiresA(O) - AsA (0) to be future pointing also. 
This restriction can be stated mathematically as 
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AO-AsAo;;'O, (G-I(A. A.sA),A.-A.sA);;.O (7=0) 
(4.8) 

(4.8M) 

Now H cannot be made negative by any admissible u. Since u 
enters the Hamiltonian to zero degree, if H is stationary at a 
point ii, then it will have the same value at any point of the 
half-line u = kii defined for k > O. In the future half-cone the 
stationary points are improper minimums that satisfy 

aH 
au 

lul-I(A. -A.,A) - (u,A. -A.sA)lul- 3Gu = O. 

(4.9) 

(This equation is used in optimal control to eliminate u just 
as P = aL lax is used in the calculus of variations to elimi­
nate x.) After multiplying by I u I it is easy to see that 

A. -A.sA (U,A -A.sA)lul-2Gu =HGullul =HGi. 
(4.10) 

Although these four simultaneous equations are quadratic in 
the unknowns ull u I, the latter can be eliminated just by tak­
ing the scalar product of the vector equation with itself. Then 
Hbecomes the true Hamiltonian J¥'(x.A.As ): 

J¥'2 = (G-J(A -AsA),A -AsA). (4.11) 

Since the Hamiltonian has been shown to be non-negative, it 
must be set to the positive value of the square root, 

J¥'= + (G-I(A -A.sA),A. -A.sA )1/2 (4.12) 

(4.12M) 

Equations (4.4) and (4.4") can be rewritten using 
(4.10) withH = J¥': 

. G-J(A. -A.sA) aH 
x = ---J¥'--- aA. ' (4.13a) 

- (G-1(A -A.A),A) aJ¥' 
s = J¥' = aA.s . (4.13b) 

The velocity x has unit magnitude for any choice of A..As' The 
latter obey Hamilton's equations also. The derivation will be 
given for those readers who are unfamiliar with the optimal 
control approach. Since A..As are normal to the wave front, 
they satisfy 

(ox, A.) + A.. Os = 0 (r>O). (4.14) 

The derivative of this equation will be found using d(DX)1 
d7 = DX. Equations (4.4) will be more convenient than 
(4.13): 

d 
-[(ox, A.) +A.sOs] 
dr 
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(4.15 ) 

of (4.9). Now A.As will be defined so that the coefficients of 
the DX",Os vanish: 

A" = (Ha"gp.p up./21ul + A.. a"Ap)uPllul = -a"H 

= (Ha"gp.p xp./2 + A.sa"Ap)iP = - a"J¥', (4.16a) 

As = 0 asJ¥'. (4.16b) 

These equations may be checked using (4.12) with 
a "gUK = - gOP~P a "gp.p' Here A.. is a constant of the motion. 
This property is easily proved for J¥' also, using (4.13) and 
(4.16), 

. aJ¥'· aJ¥'· 
JF = ap.J¥'xp. + --AI' + --As = O. (4.17) 

aA.p. aA.s 

The equation for the acceleration x will use the follow­
ing notation: F"p is the electromagnetic field tensor, 
rpp..", r;p are Christoffel three index symbols of the first and 
second kind, 

Fvp =. apA" + a"Ap, F;=gn'Fyp , (4.18a) 

r I'P.y (apg"p. - aygp.p + ap.gpy )/2, r;p =gU'T I'P.'" 
(4.18b) 

rI'P'''xl'xP = (apgl'Y - a"gp.p/2)xp.x
p
, A" = apA,,:JcP. 

( 4.19) 

Multiplying (4.13a) by G, differentiating, and substituting 
from (4.16) and the second of ( 4.19) yield 

(4.20) 

After solving for x and introducing the definitions of ( 4.18), 
this equation can be written as 

XU= (A..!J¥')F;xP- r~:JcI':JcP. (4.21) 

The two terms on the right are similar except for the number 
ofindices. This also applies to the definitions of Fyp and r p.p." 
in (4.18). 

When the last equation is written with the Minkowski 
metric, it will agree with Refs. 2,3,7, and 8 if the constant 
As 1 JF is identified with q 1 me2

• Since the extremals reduce to 
geodesics that are not influenced by the electromagnetic 
force when As = 0, they correspond to experiment if 

As=q, J¥'=.me2
• (4.22) 

Putting the m with J¥' rather than A. permits the Hamilto­
nian to have different values on different trajectories. Put­
ting the c2 with J¥' gives the Hamiltonian its traditional di­
mension "energy." Our equations allow charge to have 
either sign, but require mass to be non-negative. We may 
now speak of the principle of least action only when the 
charge is positive. Action is maximized when q is negative. 
Proper time is maximized when the minimized J¥' is positive 
and "open" when J¥' is zero. The vector A will be written as P 
when it accompanies the notation of (4.22). The optimal 
control terminology in (4.21) may now be replaced with 
that of experimental physics9 
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10" = (q/mc2 )F;xP - r:.,XI'xP (4.23a) 

= [qF; - r:.,,;"(p,, - qA,,) ]gPK[ PK - qAK ]/m2c4 

(4.23b) 

.... (q/m 2c4 )1(I-'(al-'Ap - apAI-' )rr(PK - qAK)· 

(4.23M) 

The trajectory family with the given q/m and initial con­
ditions can be calculated from (4.23a) by varying three of 
the XI' (0). The fourth can be found from (i, Gi) = 1 using 
the quadratic formula. (A problem may occur because G is 
indefinite.) Alternatively, (4.13) and (4.16) can be used 
with three elements of P varied and the fourth determined by 
(4.12) and (4.22). 

V. THE HAMIL TON-JACOBI AND EIKONAL EQUATIONS 

A general state variable increment 

lu=6x+xAr (5.1) 

is composed of a component 6x in the wave front tangent 
plane and another xAr that is out of the plane. Equation 
( 4.14) generalizes to 

(lu,A) + AsAs = [(X,A) +sAs]Ar=KAr. (5.2) 

This equation shows that when K :;60, 

al-'r=AI-'IK, asr=A.lK. (5.3 ) 

(These relations confirm that the five-tupleA,As is normal to 
the wave front. We might mention that asr = q/mc2

.) Sub­
stituting these relations into (4.11) yields the Hamilton­
Jacobi partial differential equation that governs the wave 
fronts r(x,s) = const, 

,;"(al-'r-AI-' asr)(a"r-A" asr) = 1 (K:;60) (5.4) 

.... (aor-Aoasr)2 - (Vr Aasr)2= 1. (5.4M) 

It is natural to speculate that there are waves bounded 
by these surfaces. The amplitude "p would have the func­
tional dependence "p = "p(x,s,r). The ~o wave equation 
would presumably separate into components that include 
the 4-0 Klein-Gordon or Oirac equation. 

When As K=O, (4.11) and (5.2) - (5.3) become 

(G-1A, 4) = 0, (5.5) 

(lu,A) Aolu°+A'Ax= (AoVXo+A)'Ax=O, 
(5.6) 

(5.7) 

Equation (5.5) states that A is tangent to the surface of the 
future half-cone which means thatAo is positive. Substituting 
(5.7) into (5.5) yields the equation for the eikonal surfaces 
xo(x) = const of geometric optics1o 

gOO _ 2g0;a;xO + giJa;xOa;xo = 0 (As = K = 0) (5.8) 

__ (VXO)2 = 1. (5.8M) 

(Repeated Latin indices are summed from 1 to 3.) As XO 

increases from XO to infinity, these surfaces sweep out the 
future half-cone associated with the point X. The eikonals 
bound Maxwell's electromagnetic 4-0 waves'" = ",(x). 
Thus the 6-0 waves bounded by (5.4) should reduce to EM 
waves as mass and charge approach zero. 

Physicists have found that quantum mechanical equa­
tions can be integrated formally when the initial probability 
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distribution is Gaussian. Since this distribution is nonzero 
over all space-time, there are no wave fronts initially or later. 
This obscures the relationship between quantum mechanics 
and both analytical dynamics and EM waves. It would be 
interesting to see the figures of Ref. 11 for a disturbance that 
is intially concentrated at a point. 

VI. REMARKS 

In the notation of experimental physics, 
( 4.13a) become 

(4.12) and 

mc2 = + (G I(P_qA),P qA )1/2 

__ + [(Po - qAO )2 - (P - qA)2p12, 

X = G-1(P- qA)/mc2
• 

(6.1 ) 

(6.1M) 

(6.2) 

These equations show that when P(O) - qA (0) is non-null 
but in a null direction, m = 0 and x = co. (Recall that this 
means that transversality is satisfied marginally.) Since m 
and q are unrelated in the present equations, charge is per­
mitted to have any value on the resulting lightlike trajectory. 
(Presumably q:;60 will be forbidden by quantum theory.) 
When q also vanishes, Po must be positive so that XO > O. The 
transversality conditions for inward pointing normals then 
state that time is minimized with action and relativistic in­
terval open. This is Fermat's principle. 

Assume that the potential A is due to a charged mass 
point. Then repulsive trajectories also minimize time. Maxi­
mum time extremals are possible in the attractive case. [See 
the first of (4.8).] 

Equation (6.2) can be written as 

P = mc2Gx + qA = mc2G dxl(dx,G dx) 1/2 + qA (6.3) 

mc
2

11 dx + ,A (63M) 
(1 _ V2 )1/2 dxo qn. . 

When G, A are time independent, Po is a constant of the 
motion. Let us assume that the metric is in diagonal form: 

G = diag[goo,gIl,g22,g33], v= dxo = [l,v], (6.4) 
dx 

(6.5) 

After substituting into G a line element such as that of 
Reissner-Nordstrom 12 for a charged mass point, it is easy to 
see from the weak field and low speed approximations that 
the first term on the right contains the self-energy, kinetic 
energy, and gravitational potential energy. The second term 
of course adds the EM potential energy qAo. Thus Po is the 
energy of the particle. (The energy of the fields produced by 
the particle is neglected.) Here Pie is its covariant canonical 
momentum. 

We now consider the exceptional case for which the four 
equations P - qA = 0 are satisfied. The surface H vs u, de­
fined by (4.7), becomes the horizontal plane H = O. The 
minimum principle cannot select the optimal ullul. Those 
controls that keep P - qA null as r increases produce singu­
lar extremals. 13 Singular controls satisfy 

d(P" - qA,,) q(avAp apAv)uP qFvpuP 

------ =---=0, 
dr lui lui 

(6.6) 

and therefore exist only when det [ F"p] = O. Although this 
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condition is often satisfied, singular trajectories do not ap­
pear to be important physically, probably do not survive 
quantization, and will not be discussed further here. 

Suppose that A is null. Then (4.4") implies the holono­
mic constraint s = O. The extremals that originate at a point 
can not fill a five-dimensional volume. The direction of the 
wave front normal is then not completely determined. There 
will be a one-parameter family of normal five-tuples asso­
ciated with each extremal. An optimal trajectory whose 
As = q#O will be identical to one with q = 0 and can be 
properly interpreted as maximizing r with s open. 

A formulation in the literature2
-4 for the present prob­

lem can be obtained from (4.6M) with a general metric to­
gether with (4.4) and (4.4'). The control four-vector is 
y=u/lul, 

x=y, s= -me(y,Gy)1!2_(qle)(y,A), yO>0.(6.7) 

The control Hamiltonian for this system is homogeneous of 
degree 1 iny. Euler's relation nH = Y' aH laY' with n equal 
to the degree requires the Hamiltonian to vanish at its mini­
mum. References 2-4 show that the extremals are identical 
to those of this paper provided that the final step sets 
(y, Gy) = 1. The final transversality conditions indicate 
that s is optimized with r open. But when q = 0, s = - mer 
so that if s is optimized so is r. The resolution of this paradox 
will be left to the interested reader. Although there are four 
initial Lagrange multiplier ratios, the extremal family has 
only three degrees of freedom due to the restriction on JY'. 
This is the number found in Sec. II for the formulation with 
four state variables. When the quantities q,m are allowed to 
change, the order of the extremal family increases from 3 to 
only 4. This is due to the invariance of the extremals when As 
is modified with q,m varied inversely. Thus a four-parameter 
family issues from the initial point just as in Sec. IV. 

The system (4.4) can be generalized to the following 
4 + j equations to allow for additional forces: 

x=u/lul, s;=L;(x,u), uO>O (i=I, ... ,j). (6.8) 

The Lagrange multipliers ,.1,4 +; are constants that can be 
identified with the corresponding charges. 

VII. CONCLUSIONS 

The principle of stationary action has been formulated 
as a manifestly covariant optimal control problem whose 
independent variable is proper time. There are Lagrange 
multipliers for all five state variables including action. The 
dimension of action has been changed from erg seconds to 
charge. 

Classical particles would always traverse null geodesics 
if they could move in both time directions. Nontrivial trajec­
tories can be described by an action principle only if motion 
to earlier times is prohibited. Particles that disobey must be 
quantum mechanical. 

When a family of extremals issues from a point, the 
wave fronts for most variational problems have either lead­
ing edges only or else both leading and trailing edges. How­
ever, when the metric tensor of a geodesic problem is indefin­
ite and there is a control variable inequality constraint, the 
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wave fronts have trailing edges only. This explains why 
JY' = me2 is always non-negative in classical mechanics. 

A Lagrangian formed from the scalar product of the 
velocity and potential four-vectors, but with no constants, 
leads to an EM field, an electric charge, and a non-negative 
mass. It would be interesting to apply the methods of this 
article to the theory given in Ref. 14. Both electric and mag­
netic charges with corresponding four-potentials are present 
in this classical treatment. 

The normal five-tuple and Hamiltonian employed by 
the optimal control formulation are familar to experimental 
physicists. They call ,.1,0 the "particle's energy," Ale the "ca­
nonical momentum," As the "charge," and JY' the "self-en­
ergy." 

A four-parameter family of extremals issues the from an 
initial point. Three may be regarded as usual as the compo­
nents of the velocity with respect to time. The new parameter 
is qlme2. 

When q is zero, the particle moves along a geodesic that 
maximizes relativistic interval with action open. If, in addi­
tion, the mass is zero, the interval is also open and the trajec­
tory can be regarded as minimizing time (Fermat's princi­
pie). In this case the speed of the particle must be that of 
light. 

The principle of stationary action-interval time devel­
oped in this paper unifies the trajectories of lightlike (e.g., 
photons) and subluminal particles. The eikonals 
t (x) = const of geometric optics are generalized to the wave 
fronts r(x,s) Similarly, EM waves should be extended to 6-
D waves with amplitudes t/J = t/J(x,s,r). In accordance with 
the correspondence principle of wave mechanics, t/J should 
vanish at the wave front, be large at a short distance in from 
the wave front, and be small elsewhere in the interior. 

The simplicity, symmetry, and beauty of manifestly co­
variant equations have been purchased at a high price. We 
have given up the specific qlm of a particular particle. The 
present treatment of classical particles has returned some 
interesting diagnostic relations. Whether this have been a 
step toward truth will not be known until 6-D waves and 
their transition to 4-D quantum mechanics have been ex­
plored. 
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It is shown that the stochastic quantization of a fermion introducing an anisotropy in the 
internal space so that this gives rise to two internal helicities corresponding to particle and 
antiparticle leads us to describe a fermion as a Skyrme soliton. The Skyrme term appears here 
as a consequence of this internal anisotropy and can be treated as a quantum effect. Some 
topological properties of this fermionization are then discussed. 

I. INTRODUCTION 

In a series of papers Skyrme l argued that nucleons and 
other baryonic resonances can be treated as solitons that 
arise as solutions of nonlinear Lagrangians where the pseu­
doscalar mesons are described by 2 X 2 unitary matrices 
commonly known as the nonlinear sigma model. Skyrme 
and Williams2 gave general arguments to show that if a suit­
able quantization scheme is adopted, the spin of these parti­
cles will emerge correctly as a half-odd integer. Recent de­
velopments regarding strong interaction dynamics have 
revived the old idea ofSkyrme as, at low energy, the theory 
reduced to a nonlinear sigma model of spontaneously broken 
chiral symmetry. Indeed Pak and Tze3 studied in detail the 
current algebraic and topological aspects of the chiral mod­
el. Gipson and Tze4 also argued that the usual weak interac­
tion model as well predicts Skyrme solitons with exotic prop­
erties. Later on Witten5 as well as Balchandran et af. 6 studied 
various properties of such solitonic solutions and interpreted 
them as physical baryonic states. 

Finkelstein and Rubinstein 7 showed in a very general 
framework how the quantization of a soliton may lead to a 
fermion based on a homotopy classification of soliton solu­
tions. Mickelsson8 has proved the spin and statistics connec­
tion in classical point-particle mechanics in the spirit of the 
field-theoretic homotopy proof by Finkelstein and Rubin­
stein when the geometry of the configuration space is deter­
mined by a parallelization describing a soliton field. All 
these features indicate that fermions may appear as solitons 
when a consistent quantization procedure is taken into ac­
count. 

In a recent paper9 it has been shown that Nelson's sto­
chastic quantization procedure lO can be generalized to the 
relativistic case and a fermion can be quantized when we 
consider universal Brownian motion in the external space as 
well as in the internal space of the particle. An anisotropy is 
introduced in the internal space so that this gives rise to two 
internal helicities depicting particle and antiparticle states. 
Thus the internal helicities may be taken to represent a geo­
metrical interpretation of the fermion number. This is also 
the case for the hydrodynamical quantization method where 
a fermion is generated when a vortex line is introduced corre­
sponding to the anisotropy of the internal domain. II In this 
paper we shall show that these features relating to the quan­
tization procedure of a fermion and the geometrical interpre­
tation of fermion number effectively leads to the fact that 
fermions in general correspond to Skyrme solitons. 

In Sec. II, we shall recapitulate for completeness the 
stochastic quantization procedure of a fermion and in Sec. 
III we shall show that fermions in this picture effectively 
appear as Skyrme solitons. In Sec. IV we shall discuss the 
geometrical and topological properties of fermionization. 

II. STOCHASTIC QUANTIZATION OF A FERMION 

Nelson's stochastic quantization procedure lO is based 
on the assumption that the configuration variable q (t) is 
promoted to a Markov process, which will be denoted here 
by the same symbol q (t). The process q ( t) is determined by 
two conditions, the first is the hypothesis of universal Brow­
nian motion, the second is the validity of the Euler-La­
grange equations. In the present framework we take that 
apart from a Brownian motion process in the external space, 
there is a Brownian motion process in the internal space also. 
In view of this we denote the configuration variable as 
Q(t,So), where So is the fourth component (real) of the in­
ternal four-vector Sll-. We assume that Q(t,So) is a separable 
function and can be denoted as 

(1) 

The process Q(t,So) is assumed to satisfy the stochastic dif­
ferential equations 

dQi (t,So) = bi(Q(t,So),t,So)dt + dWi (t), (2) 

dQi (t,So) = b ;(Q(t,So),t,So)dSo + dWi (So), (3) 

which depict the Brownian motion processes in the external 
and internal space, respectively. Here bi(Q(t,So),t,So) and 
b ;(Q(t,So),t,So) correspond to certain velocity fields in the 
external and internal space and dW i are independent Brow­
nian motions. It is assumed that dWi (t)(dWi (So») does not 
depend on Q(S,S') for S<,t(S'<"So) and the expectations 
have the following values: 

(dWi (t» = 0, 

(dwi(t)dwj(t'» = (fzlm)oijo(t-t')dtdt', 

(dWi (So» = 0, 
(4) 

where fz is Planck's constant divided by 2'IT and m and 'ITo are 
suitable constants. The description is asymmetrical in both 
"external" and "internal" time, but we can also write 

dQi (t,So) = b ~(Q(t,So),t,So)dt + dw~(t), (5) 

dQi (t,So) = b ;"'(Q(t,So),t,So)dSo + dw~(So), (6) 
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where now lU* has the same properties as lU except that 
dlUr {t)(dwr (so») are independent of Q(S,S') for S;;,t 
(S'>so)' Now we introduce the mean forward derivatives 
D t Qi (t,so), D So Qi (t,so) and the mean backward derivatives 
D rQ; (t,so), D to Qi (t,so) through the following definitions 
in analogy with those proposed by Nelson: 

D Q (
f;-) - l' E Q;(t + h,so) - Q;(t,so) 

. t,~o - 1m . , 
, I h-O+ I h 

Q;{t,So) - Qi(t,SO - h) D; Qi (t,so) = lim E; ----"----'---
o h_+O h 

where E j is the conditional expectation with respect to the (T 

algebra ~, generated by the random variables 
Qj (t,so)j= !.2 ..... n· 

Since, by definition, 

Ei(dlUj (t») = E (dlU j (t») = 0, 

E;(dlUj (so») = E (dlUj (so») = 0, 

Ej(dlUr(t») = E(dlUr(t)) = 0, 

Ej(dlUr (So)) = E (dlUr (so») = 0, 

we have 

D,(Qj (t,so)) = bj(Q(t,so),t,so), 

Dso(Qj{t,So») = b ;(Q(t,so),t,so), 

D r(Qj (t,so») = b r(Q(t,so),t,so), 

D to(Qj (t,so») = b ;*(Q(t,so),t,so)' 

In general, for the sufficiently 
F(Q(t,so),t,so) we have 

where 

(8) 

(9) 

regular function 

( 10) 
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Now we can derive the following moments!2: 

(qi{t» = 0, 

(q;(t)qj(t'» = (fz/2mlU)8ije-"('-") (t>t'), 

(qj (So» = 0, 
(11) 

(qj(So)qj(So» = (fz/21ToiU')8ije-"'(so-so) (so>so)' 

From these expressions the moments of the product vari­
ables can be derived and are given by 

(Qj (t,so)} = 0, 

(Qj (t,So)Qj (t ',s 0» 

= (fz/2mlU) (fz/21ToiU')8ije - .,(1- ")e - .,'(So - SO> 
(12) 

(t>t', so>so)' 
Let {e j (x)} denote the complete orthonormal set of ei­

genfunctions of the three-dimensional Laplacian Il, 

Ile j (x) = - k ;ej (x). (13) 

Also we denote {ej (S)} as the set of complete orthonormal 
set of eigenfunctions of the three-dimensional Laplacian Il' 
in terms of the variables 

so that 

(14) 

Now we can construct a stochastic nonlocal field fP, which 
can be expressed as an orthonormal expansion in terms of 
qj(t), ej(x), qj(so), and ej(S), and write 

fP(x,t,s) = I. qj {t)ej (x)qj (so)ej (S)· (15) 
j.j 

Now from the moments of Qi (t,So) we can determine the 
moments of fP (x,t,s), 

(fP(x,t,s» = 0, 

(fP(x,t,s)fP(x',t ',s'» 

= _l_J d 4k ei(k.(x-x'») _1_J d 41Tei(1I'.(s-s'») 

(21T)4 (k,k) + m1 (21T)4 (1T,1T) + ni ' 
(16) 

where (a,b) denotes the Euclidean product. 
It is noted that in the limit, So = So = 0, and integrating 

over the internal space variable ~, the correlation function 
(16) reduces to 

1 f d 4k ei(k,(x-x'») 
(fP(x,t)fP(x',t '» = (21T)4 (k,k) + m2 ' 

(17) 

which is the correlation function of a scalar field. This is the 
Euclidean Markov field result which has been obtained 
starting from Nelson's real time formalism of Brownian mo­
tion and in this sense gives rise to the equivalence of these 
two formalisms as advocated by Guerra and Ruggiero. 13 

Now we want to show that when the anisotropic feature 
of the internal space-time corresponding to the variable S/l is 
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taken into account implicitly we can obtain the fermionic 
propagator in Euclidean space-time. To this end, we intro­
duce the anistropy by having two opposite orientations of the 
internal variable Sl' (and hence of 1T1' = i a lasl') and take 
that each orientation denotes a separate field and the two 
opposite orientations depict two separate fields having two 
opposite internal helicities corresponding to particle and an­
tiparticle configurations. That is, we can take for these two 
configurations, the internal space-time variable (+ Sl' 
+ S2' +S3' +so) and ( - SI' - S2, - S3' - so) and this 

indicates that i1T1' and - itTI' (1T1' = i a lasl') will corre­
spond to two different internal helicities depicting two dif­
ferent configurations giving rise to particle and antiparticle 
states. 

Now from Eq. (16), we see that it is effectively acorrela­
tion function in eight-dimensional space-time, four-dimen­
sional in the external space-time variable and four-dimen­
sional in the internal space-time variable. To make it an 
effective four-dimensional expression in the external space­
time variable so that the role of the anisotropic feature of the 
internal space is exhibited properly, we introduce a mapping 
of the external and internal space as follows: 

k 2 = (k ',1T), x 2 = (x',s), m 2 = m'1To, (18) 

where (k ',1T) [(x',s)] denotes an Euclidean product and 

each component of k(x) is given by k i = ~k ;1Ti 

[Xi = ~X;Si ]. By introducing these new variables, we can 
write the correlation function of the new field variables from 
the expression (17) as follows: 

o 
i..["12 + m 

o 
o 

o 
o 

- i..["12 + m 

o 

Thus we just get the fermionic propagator in the Euclidean 
space-time 

1 fd4kei(k,(X-X'j) 
(qi(x,t,s)qi(x',t',s'» =-2 4 l ' 

( 1T) (+ m) 
(22) 

and the new field qi(x,t,s), where the anisotropic feature of 
the internal space is manifested by the internal handedness, 
depicts a fermionic field. 

This shows that when a direction vector giving rise to an 
internal helicity in an anisotropic microlocal space-time is 
taken into account, we can have quantized fermionic field 
from Brownian motion processes. 

In an earlier paper I I it has been argued that the hydro­
dynamical quantization procedure is equivalent to stochas­
tic quantization and as in the stochastic quantization proce­
dure, the anisotropy is introduced in the internal space to 
have a fermion field, a similar situation arises in hydrodyna­
mical quantization, too, where the quasi-irrotational (vor­
tex) fluid motion is found to be the classical analog of a 
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(qi(x,t,S)qi(x',t ',S '» 
= _1_ f ei(,fk'1i,(x(s) -x'(s'») d 4.Jk'1i = _1_ 

(21T)4 (k,'1T) + m'1To (21T)4 

f 

ei(,fk'1i,(xW -x'es'») d\Jk '1T 
X . 

(i~(k',1T) +~m'1To)( -i~(k',1T) +~m'1To) 

(19) 

This mapping in effect means that the behavior of the parti­
cle in the external space is a manifestation of the behavior of 
the internal constituents and the motion of the particle is 
governed by the motion of the constituents in the internal 
space as a whole. Now as we have assumed that the internal 
space is anisotropic in nature so that a direction vector is 
fixed in the internal space, which gives rise to the internal 
helicity, and the two opposite helicities correspond to parti-

cle and antiparticle states, we can take that ifii and - ifii 
correspond to the different internal helicity states and de­
note two separate fields depicting particle and antiparticle 
states. So for a single helicity state depicting a particle (or 

antiparticle) state we should take - ifii (or ifii) as a van­

ishing term. Taking - ifii = 0, we see that the expression 
(19) just reduces to the form 

1 J ei(k,(x-x'») d 4k 
(qi(x,t,s)"rp(x',t ',s '» = -(2 4 '..["12 , (20) 

1T) I k + m 

where we have choosen the unit m = 1To = 1. 
Now we can choose a matrix (Yl'kl' + m) = (l + m) 

with two degenerate eigenValues ± i..["12 + m, which can be 
diagonalized by a unitary matrix U: 

)

U. 

-i;+m 

o 
o 

(21) 

relativistic quantum mechanical system which gives rise to a 
fermionic field. In this picture, the classical analog of the 
relativistic fermionic field is the hydrodynamical motion 
with vorticity and only then, to define the motion around the 
vortex line, is the concept of circulation necessary. Precisely, 
the condition of circulation quantization is the condition of 
relativistic quantization, which gives rise to a fermion field, 
and a fermion can be thought of as a classically circular vor­
tex. 

III. INTERNAL HELICITY, NONLINEAR SIGMA MODEL, 
AND SKYRME SOLITON 

From the above picture of realizing a fermion by intro­
ducing an anisotropy in the internal space so that a particu­
lar direction (say Z axis) is fixed or a vortex line in the liquid 
drop in Madelung fluid is introduced, it can be shown that 
fermions appear as solitons. This can be explicitly demon­
strated by exploring the link between this geometrical for-
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malism and the nonlinear sigma model. Since in this formal­
ism a space-time point x,. is depicted by the pair (X,., 5,.), 
where 5,. is an attached vector denoting the internal space­
time variable, we can reformulate this picture by taking into 
account a complexified Minkowski space-time for which the 
coordinate is given by Z,. = x,. + is,.. Now to introduce the 
effect of anisotropy in the internal space so that two internal 
helicities give rise to particle and antiparticle states, we use 
the formulation of twistor geometry where a vector x a is 
written as a 2 X 2 complex matrix having the SL (2,c) group 
structure. Thus we write for the position vector Z ,. in com­
plex space-time as 

(23) 

Now 5 AA ' is decomposed into two two-component spinorial 
variables by the relation 5 AA ' = 0 A(J A '. It can be shown that 

o A «(J A ') corresponds to two internal helicity states 
+!( -!) corresponding to particle and antiparticle states 

and is thus related to the fermion number. 14 Thus the posi­
tion operator ofa fermion becomes a non-Hermitian one as 
envisaged in Dirac equation and can be written as 
Z ,. -+ Z AA' = X AA' + iO A(J A ., where X AA' corresponds to 

the conventional position in space-time and 0 A «(J A ') corre­
sponds to the internal helicity realized from the anisotropic 
nature of the internal structure and is related to the fermion 
number. With such a coordinate a particle can be viewed as 
moving in a superspace (x,(J), where supersymmetry is 
achieved in the case when (J is a Majorana spinor so that 
(J = 0. 

In this complexified space-time exhibiting the internal 
helicity states, we can write the metric tensor 

(24) 

Now writingg,.v (x) = e~ (x)e~ (x)'TJij' where'TJij is the Min­
kowski metric, we write 

g,.v(x,(J) = e~ (x)OAe~(x){}A''TJij 

where 

'TJ~(x) = e~ (X)OA, 

'TJ~A'(X) =e~(x)(JA', 

(25) 

(26) 

and 'TJ~ ('TJ~A ') is a mixed quantity behaving as a spinor re­
garding the index A and tensor regarding indices i, Ii. 

The vierbein field e~ is transformed as 

e~ -+e;: = [A(x) ]~e~, (27) 

where A(x) is an x-dependent Lorentz matrix. The spinor is 
transformed as 

(28) 

where S(A)~ represents a SL(2,c) group operator. Using 
Eqs. (27) and (28), the transformation of'TJ~ is given by 

'TJ~-+'TJ~iA = [A(x) ]~S(A)~e~OB 

(29) 
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where 

[A(X)])1B = [A(x) ]~S(A)~, 

and 

'TJ~ = e~(jB. 

In analogy with Yang-Mills gauge theory, we take 

S(A)~ = ~~, 

and write 

[A(x) ])1B = [A(x)]~. 

Thus from (29) we have 

'TJ~-+'TJ~iA = [A(x)]~'TJ~. 

(30) 

(31) 

(32) 

(33) 

Now if we assume that spinors 'TJ~ are scalars under coordi­
nate transformation in superspace, i.e., 

'TI,;A = 'TI iA ',,. ',,. , 
we get 

iA . kA 
'TJ,. = [A(x)]~'TJ,. . 

(34) 

(35) 

In terms of the antisymmetric fundamental tensor €i,., with 
the property Ei"~" = 1, we can write 

'TJ~ = €i,.~"[A(x) f'TJ~ = €;,. [A(x) ]j~,.~ 

= [A (x)],. 'TJ iA . (36) 

This equation (36) defines the four-vector A,. whose compo­
nents are 2 X 2 matrices and can be treated as a gauge poten­
tial. It is to be noted that 'TJiA represents a spin-~ particle. 

We define a two-component spinor 5 ~ (a = 0,1) at each 
point of space-time. The components 5 ~ and 51 represent 
o A and (J A " respectively, representing the internal helicity 
states. Here 'TJiA may be written in terms of 5 ~ as 

iA .. A "~A 

'TJ = E'J'TJ;j = E'J~ a;j' (37) 

where 'TJA = 5 ~ represents a two-component spinor and the 
symbol (;) denotes the covariant derivative. 

In terms of this we can write 

'TJ~ = [A(x) ],.~js~;j' 

which gives 

s~;,. = [A(x)]/LS~' 

(38) 

(39) 

For convenience, the above relation can be rewritten as 

(40) 

where 5 is the (2X2) matrix whose elements are S~. Now 
applying the commotator of covariant derivatives [V v , V,.] 
on 5, we write 

(Vv V/L - V,. Vv)S = {avA,. - a,.Av + [A,..Av]}S 

= F,.vS. (41) 

Thus we have the field strength tensor F,.v given in terms of 
the gauge fields A,. and for zero curvature, we have the rela­
tion 

(42) 

This zero curvature condition then implies that we can write 
the non-Abelian gauge field as 

A,. = u+a,.u, where UESL(2,c). (43) 
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Now substitutingAp with U + a u, we can write the Lagran-
• . p 

glan correspondmg to the equation of motion given by the 
relation (42), 

L =M2 Tr(apU+ap U) + Tr[apUU+,av UU+]2, 

(44) 

where M is a suitable constant having the dimension of mass. 
Thus we find that the quantization of a Fermi field con­

sidering an anisotropy in the internal space leading to an 
internal helicity corresponds to the realization of a nonlinear 
sigma model where the Skyrme term in the Lagrangian 
(.2" Skyrme = Tr[ ap UU + ,av UU +] 2) automatically arises 
stabilizing the soliton. Indeed, this is no surprise as the aniso­
tropic feature of the internal space prevents it from shrinking 
to zero size. 

IV. TOPOLOGICAL PROPERTIES OF FERMIONIZATION 

We have shown above that the anisotropic feature of the 
internal space leading to two internal helicity states which 
correspond to particle and antiparticle states gives rise to a 
quantized fermion. Again this feature helps us to depict a 
fermion as a Skyrme soliton. Now to investigate the topo­
logical properties of such a soliton, we may take into account 
that when the internal variable 5p is attached to the space­
time point xp , the space-time manifold is given by a de Sitter 
space E(4,1). So we can study an 0(5) nonlinear sigma 
model, which is characterized by a real unit vector n (x) with 
the properties n(x)eR5 and n+ (x)n(x) = 1. This 0(5) 
nonlinear sigma model has been investigated by Felsager 
and Leinaas l5 in detail. We shall use their results here to 
show that this 0(5) model can be decomposed into two 
three-space-dimensional solitons (Skyrme solitons) so that 
we can get two topological invariants corresponding to the 
fermion numbers + 1 and - 1. 

The action of the 0(5) nonlinear model is given by 

S= ~ f IIFI1
2

d
4
x=+ f IIdnt\dn+1I

2
d

4
x, (45) 

where F(x) is the SO( 4) gauge field. Here IIFII2 is defined as 

IIF112= -~Tr[FpvFPV], (46) 

which can also be written as 

s= - ~ f Tr(Ft\*F), (47) 

where * denotes Hodge's duality operation 

* Fpv = !EpvpqF pu. (48) 

Here n(x) is a point on a four-sphere S4. Since F(x) is a 
SO( 4) gauge field, and SO( 4) can be decomposed locally as 
the product of two SU(2) groups, 

SO(4) =SU(2) xSU(2), (49) 

it is possible to decompose the SO(4) field F(x) into two 
SU(2) fields denoted by F + (x) and F _ (x): 

F(x) = F+(x) + F_(x). (50) 

Using this definition, we find that 

(51 ) 
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and the action (45) can be written as 

S= f IIF± 11
2

d
4
x. (52) 

Now noting that in the four-sphere S4, apart from the three­
space dimension, the fourth-space dimension can be split 
intotwosegmentsX4 = 0+ + 0_ so that 0+ (0_) is defined 
in the positive (negative) segment of the axis, the anisotrop­
ic feature of the internal space as mentioned earlier can be 
realized and 0 + (0_) corresponds to the positive (negative) 
5 axis, where 5 is the internal space variable. This in effect 
gives rise to two internal helicity states corresponding to par­
ticle and antiparticle. Now noting that in this formalism F + 
(F _) is defined only in the 0 + (0 _) region of space, we can 
decompose the action (52) as 

S = SI + S2 = ~[f IIF+112 d 3x dO+ + f IIF_1I2 d 3x dO_]. 

(53) 

where F + (F _) is SU(2) gauge field defined in S3. This 
splitting can also be realized from the fact that since F(x) is 
defined in S4 we can decompose S4 into S4 -S 3 xS I. Since 
S 1 is a doubly connected space we can take S 3 into two dis­
connected regions so that we can write S 4 = S 3+ + S 3_ • 

Now since F + (F _) is defined in S 3 we get two three-space­
dimensional solitons from this and this disconnectedness is 
ensured by the Skyrme term which stabilizes the solitons so 
that these cannot shrink to zero size. 

Now following Felsager and Leinaas l5 we can relate the 
Pontryagin density A(X) and the Euler density x(x) ofthe 
SO( 4) gauge field with the Pontryagin densities A + (x) and 
A_(X) of the two SU(2) gauge fields. The Pontryagin den­
sity decomposes in the following way 

A.(x) = - (l/16r)Tr(F t\ F) 

= (1I16r) (FIF) 

= (1I16r)(F+IF+) + (l/16r)(F_IF_) 

=A+(X) +A_(X). 

Similarly the Euler den~ity is given by 

x(x) = - (l/16r)Tr(*F t\ F) 

= (1I16r)(*FIF) 

= (l/16r)(F+IF+) - (l/16r)(F_IF_) 

(54) 

(55) 

Since the Pontryagin density of the SO ( 4) gauge field van­
ishes identically since F t\ F = 0, we find 

(56) 

Thus the Pontryagin densities of the two SU (2) gauge fields 
are of opposite sign and in magnitude equal to half the Euler 
density of the SO ( 4) gauge field. 

The winding number associated with the mapping 
R4 _+8 4 is given by 

-Ii j. kIm m - --2 Eijklm n dn' t\ dn t\ dn t\ dn . 
(81T) R· 

(57) 
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The Euler number X is given byl5 

X = - _1_ r Tr(*F !\F) = 2m. 
16r JR4 

(58) 

From this we find that the Pontryagin number of the two 
SU(2) gauge fields is given by 

A.+(x) = m, A._(x) = - m. (59) 

This suggests that the Pontryagin number of the two SU (2) 
gauge fields actually corresponds to the fermion numbers 
+ 1 and - 1. Thus the topological properties offermioniza­

tion give rise to two Pontryagin invariants corresponding to 
the fermion and the antifermion. 

v. DISCUSSION 

We have shown above that the stochastic quantization 
of a fermion introducing an anisotropy in the internal space 
so that this gives rise to two internal helicities corresponding 
to particle and antiparticle states leads us to describe a fer­
mion as a Skyrme soliton. The quartic Skyrme term appears 
here as a consequence of this internal anisotropy. In this 
sense, the Skyrme term may be taken as a quantum effect. 
Indeed Pak and Tze3 have also pointed out that the Skyrme 
term may be viewed to have a quantum origin and have 
shown that by giving rise to an effective interaction the ra­
diative corrections in the SU(2) XSU(2) invariant model 
not only make solitons with topological fermion number but 
also fermionic spin states. 

In recent times a lot of work is being done to interpret a 
nucleon as a Skyrme soliton on the basis of the chiral model. 
From the present analysis it appears that the chiral model is 
a specific case and all massive fermions can be considered as 
Skyrme solitons when the Skyrme term arises in the quanti­
zation procedure. Indeed the extension to the soliton sectors 
of chiral theories invariant under SU (N) X SU (N), N> 2, 
may be achieved by embedding SU(2) XSU(2) in larger 
groups when the special role of the topological properties of 
the SU(2) XSU(2) subgroup incorporating the correlation 
between space-time and internal symmetries become trans­
parent. Specifically this may help us to have a geometrical 
origin of the internal symmetry and a dynamical under­
standing of the symmetry breaking of a SU (3) X SU (3) the­
ory. 
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It may be pointed out that since the fermionization pro­
cedure of the stochastic quantization method incorporates 
universal Brownian motion in the internal space also apart 
from the external space, the splitting of the soliton field into 
a point singularity plus cloud should be abandoned and the 
extension of the soliton plays the dominant role. However a 
latticization may be possible in the manner of Polyakov's 
work on the two-dimensional Heisenberg ferromagnet. 16 In 
fact when the four-sphere S 4 is split into S 2 X S 2 instead of 
S3 xS I as in the present case, theO(5) nonlinear sigma mod­
el gives a lattice picture when finite energy static solutions in 
two space dimensions such as vortices with finite energy per 
unit length appears. This can be related with Liouville field 
theory and a Polyakov string through a correspondence 
between the sigma model and the Liouville model. 17 

Finally, we may point out that in (1 + 1) dimensions, 
Coleman 18 has shown explicitly the equivalence of the sine­
Gordon soliton with the massive Thirring fermion. The fer­
mionization procedure discussed here may be considered 
here as a generalization of Coleman's significant result in 
(3 + 1) dimensions so that the stochastic quantization of a 
fermion leads to view them as Skyrme solitons in three space 
dimensions. 
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Nonperturbatlve confinement in quantum chromodynamics. 
IV. Improved treatment of Schoen maker's equation 
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An improved ansatz for the three-gluon vertex function is treated; and it is shown that the 
gluon propagator has a double pole at the origin of the p2 plane, as well as a tachyon on the 
spacelike real axis, at least in this approximation. 

I. INTRODUCTION 

The present paper constitutes the conclusion of a study 
of the infrared behavior of the gluon propagator in the Lan­
dau gauge. In previous papers, I to which we shall refer as I, 
II, and III, respectively, we investigated an approximation 
scheme for the gluon propagator Dyson-Schwinger equa­
tion that was initiated by Mandelstam.2 

The basic idea of the approximations is to truncate the 
Dyson-Schwinger equation by introducing an ansatz for the 
three-gluon vertex that (a) involves only the propagator it­
self, and (b) is inspired by (Mandelstam's ansatz I and II), 
or is strictly consistent with (Schoenmaker's ansatz, III) the 
Slavnov-Taylor identity. It has been argued that the longitu­
dinal part of the vertex function (i.e., the part that contrib­
utes to the Slavnov-Taylor identity) need not be relevant to 
the Dyson-Schwinger equation. Indeed Gardne? con­
structed a model in which the vertex function consists of two 
parts, one of which contributes only to the Slavnov-Taylor 
identity, while the other contributes only to the Dyson­
Schwinger equation. However, it can be shown that the two 
parts of Gardner's ansatz do not have the same scaling prop­
erties under renormalization: one part has the correct num­
ber of factors Z3' while the other does not. Accordingly, we 
may reject the Gardner ansatz as a valid criticism of the 
general method. On the other hand, a recent paper ofZhang4 

is much more convincing. He shows that the contribution of 
the longitudinal part of the vertex function reduces essential­
ly to a term that is indistinguishable from a tadpole, so that 
the nontrivial parts of the approximate Dyson-Schwinger 
equation arise from transverse contributions to the vertex 
function. Both Gardner's and Zhang's treatments apply spe­
cifically to an axial gauge propagator, which has special 
properties (in particular, orthogonality to the gauge vec­
tor); and hence they are not relevant to a study in the Lan­
dau gauge. 

In III we studied an improved version of the Mandel­
stam ansatz, but with a simplification that allowed us to re­
duce the equation to a fourth-order nonlinear differential 
equation. In this paper, we complete this analysis by remov­
ing the simplification, which involves us in the treatment of a 
sixth-order nonlinear differential equation. This equation is 
subjected to numerical analysis as it stands: we confirm the 
p -4 behavior as p --> 0, p being the gluon momentum; and we 
also find a tachyon state, as in III. There are probably no 
first-sheet complex branch points-a deficiency of the model 
of I and II-although there is a neighborhood of the origin 

that is inaccessible to the computer, because oflarge cancel­
lations, so one cannot be completely sure. In order to remove 
these cancellations, the sixth-order differential equation is 
transformed into an integral equation by two successive im­
plementations of the method of variation of parameters; and 
in this form the equation is suited to a rigorous demonstra­
tion of the existence of a solution. We show that the solution 
is analytic in a (cut) neighborhood of the origin, so that an 
accumulation of first-sheet complex branch points is ex­
cluded. 

II. NUMERICAL ANALYSIS OF DIFFERENTIAL 
EQUATION 

The form factor multiplying the bare gluon propagator 
(see III) can be written 

F(x) =A Ix + yx + ¢(x)x3, (2.1) 

where A is an unknown constant (which, however, can be 
scaled away), where 

y ~:::::O.617, (2.2) 

and where ¢ (x) is a function that satisfies the nonlinear inte­
gral equation 

1 l"'/4 + _ dy X3/2(X _ 4y)3/2 
8 0 

X (x2 + 20xy + 12y2)¢(y), (2.3) 

where 

G(x) = [y + X2¢(X)]I[ 1 + yx2 + X4¢(X)]. (2.4) 

The details can be found in III. 
The second integral in (2.3), involving the surd, is rath­

er awkward; but fortunately it has been shown numerically,5 

by means of cubic splines, that the truncated equation 

x 6G(x) = - - dy(x - y)3(X2 + lOxy + y2)¢(y) 1 LX 
4 0 

(2.5) 

has a solution that resembles that of the full equation (2.3), 
the difference being not qualitative, but merely quantitative 
and relatively minor. In order to study the qualitative prop­
erties of the solution, it suffices to look at (2.5). We shall 
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accordingly subject this equation to numerical analysis and 
to a rigorous proof of existence. 

The integral equation can be converted into a differen­
tial equation, namely 

[ ! r [X6
G(X)] + 18x

2
cfo" (x) 

+ 144xcfo'(x) + 138cfo(x) = O. (2.6) 

This equation has been treated numerically (in double preci­
sion) by the Runge--Kutta method. As usual, an asymptotic 
series expansion must be made in a neighborhood of the in­
frared point x = O. 

The results of the numerical work6 can be summarized 
as follows. 

(a) There are complex branch points on secondary Rie­
mann sheets that are connected to the principal Riemann 
sheet through the timelike cut along - 00 <x <0. There 
seem to be no complex branch points on the principal Rie­
mann sheet, although this result is not completely conclu­
sive, since a small region around the infrared point is inac­
cessible, due to large cancellations. 

(b) There is a (ghost) pole on the spacelike axis at 

x=xp =2.831, (2.7) 

much as in case III. This may be a signahhat our vacuum is 
unstable, or it may be merely an artifact of our approxima­
tions. 

III. REFORMULATION OF THE EQUATION 

In this section, we reformulate Eq. (2.5) in such a way 
that there are no cancellations in the infrared region. Using 
such a form, we shall outline the proof that a solution exists 
(by means of the Banach Theorem). Moreover, we could 
also set up a computer analysis that is not plagued by cancel­
lations (however, we have not done this). 

The necessary manipulations are tedious, and we shall 
merely sketch the method here. Further details can be found 
in Ref. 6. Equation (2.6) is a nonlinear sixth-order differen­
tial equation. We transform it in two steps. First, observe 
that the linear, homogeneous equation 

18x2t/1"(x) + 144xt/l'(x) + 138t/1(x) =0 (3.1) 

has the two solutions 

t/I ± (x) = x ±13-712, (3.2) 

where,8 = (165) 1/2/6. We resolve Eq. (2.6) by the method 
of variation of parameters, treating the first term, involving a 
sixth-order derivative of x 6G, as an inhomogeneity. The re­
sult is an integral over this derivative, multiplied by a kernel. 
The six derivatives can be removed by six partial integra­
tions, the result being 

x4G""(x) +20x3G"'(x) 

718 

+ 355 x2G" (x) + 680 xG '(x) + 865 G(x) 
339 

= _ 18cfo(x) _ 455 X- 7 / 2 

54,8 

X fdY y5/2 ((~)13 - (; )13G(Y»). 
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(3.3 ) 

The second step consists in resolving this fourth-order 
nonlinear integrodifferential equation by applying the me­
thod of variation of parameters again. In order to do this 
expeditiously, we add terms proportional to x 2G " , xG " and 
G to both sides of (3.3 ), as well as 18G / x 2

, the latter being 
the most singular part of 18cfo (x). The corresponding homo­
geneous equation is 

x 6H"" + 20x5H'" + 975 x4H" + 225x3H' 
8 

[ 
36465 x 2 18]H = 0 + 256 + , 

with the four solutions 

H j (x) = X- ll / 4 exp[,8jx- I/2], 

,81 = (72)1/4(1 + i), ,82 = (72)1/4(1_ i), 

,83 = (72)1/4( - 1 + i), ,84(72)1/2( - 1 - i). 

(3.4 ) 

(3.5) 

(3.6) 

These homogeneous solutions are used to resolve Eq. (3.3), 
the result being 

4 

G(x) = L Gj (x), (3.7) 
;=1 

where 

Gi (x) = F2-I,8iX-II/4 exp(,8ix-I/2) 

X iXdYl/4exp( -,8iy- I /
2 )'2:.(y), (3.8) 

with 

(a) 

0.02 

0.01 

0.01 0.02 

-0.0\ 

-0.02 

r====> .......... _u~~~~~···A .... __ 1 ____________ - __ ---t:: 
~o ~ ~ 

FIG. 1. Sketch of the domain of applicability of the Banach Theorem. (a) 
The full domain. (b) The region near the negative imaginary axis on a larger 
scale. Note that the boundary of the region of proved analyticity intercepts 
the negative real axis and penetrates the second Riemann sheet (dotted 
lines). Thus the origin cannot be an accumulation point of first-sheet singu­
larities. 
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X fdYy5/2 ((~}~ - (;)PG(Y»). (3.9) 

The first- and second-order derivatives in Eq. (3.9) can 
be removed by partially integrating Eq. (3.8); but there is a 
subtlety. One has to deform the contour (O,x) in such a way 
that the boundary term at y = 0 vanishes; it turns out to be 
sufficient to ensure that the contour for G2 and G3 ap­
proaches the origin along the positive imaginary axis, while 
that for G1 and G4 approaches it along the negative imagi­
nary axis. Such deformations are allowed if the G; are ana­
lytic in the cut plane; and we can show that this is the case. 

After this adjustment, Eqs. (3.7)-(3.9) constitute a 
nonlinear integral equation without derivatives. It is emin­
ently suited to an existence proof by means of the contraction 
mapping (Banach) principle. As usual, the integration in­
terval (O,x) is transformed to (0,00 ); and one finally proves 
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that a unique solution G(x) exists, that is analytic in a half­
circle in the right half-plane and in a curved region in the left 
half-plane (see Fig. 1). It is most significant that this curved 
region crosses the cut ( - 00,0) and penetrates the second 
Riemann sheet. Thus the infrared singularity is certainly not 
the accumulation point of first-sheet complex branch points 
(as it was in I and II). Further details can be found in Ref. 6. 
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The self-energy operator for an electron in an external Coulomb potential is investigated 
analytically using a mass eigenfunction expansion concept reported earlier. Contour 
integration techniques in the complex m 2 plane are used to combine bound state and 
continuum contributions into a single integral. The result is a relatively simple integral 
representation for the mass operator. Only terms ignoring the "shift correction" are considered 
in this preliminary study. A transformation to a basis of relativistic Coulomb Sturmian 
functions exhibits the Za dependence of the integrand in a strikingly simple way. The entire 
investigation is set in the framework of the "scalar formalism" for quantum electrodynamics 
investigated earlier by a number of authors and based on the "second-order" Dirac equation, 
{n· (1 + iu)' n + m2}<I> = 0, where <I> is a 2 X 1 Pauli spinor. 

I. INTRODUCTION 

A mass eigenfunction expansion concept reported ear­
lier l is applied in an analytical investigation of the mass oper­
ator for an electron in an external Coulomb potential. The 
investigation is geared toward a future calculation of the 
Lamb shift, obtained from the mass operator by taking the 
expectation value in an unperturbed state. It is this applica­
tion that gives the results presented here their physical inter­
est. In addition, the application illustrated here of the mass 
eigenfunction expansion and the relativistic Coulomb Stur­
mian basis may provide a guide for other relativistic pertur­
bation calculations, for example for positronium calcula­
tions. 

All calculations are set in the framework of a "scalar 
formalism" for quantum electrodynamics (QED) investi­
gated earlier by a number of authors.2

-
13 The scalar formal­

ism for QED is based on the "second-order" Dirac equa­
tion l4 

{n· (1 + iu)' n + m2}<I> = 0, 

n= -iJp -eAp , 

(1.1 ) 

in which <I> is a 2 X 1 Pauli spinor, and u is the Lorentz spin 
tensor 

[ 0 

U 3 - U 2 

a'J - U 3 0 U I U 2 ( 1.2) upv= 0 u3 ' U 2 -UI 

- U I - u2 - U 3 0 

where U I .2.3 denote the ordinary 2X2 Pauli spin matrices. 
The use of Eq. (1.1) instead of the usual linear Dirac equa­
tion to describe the electron brings out a close similarity 
between the quantum theory of a spin-~ particle and the 
quantum theory of a simple scalar particle. Together with 
the small dimension of the matrices involved this suggests 
that calculations with the scalar formalism could lead to 
some simplification compared to the use of the linear Dirac 
equation. For example a positronium wave function in the 
scalar formalism is a 2 X 2 matrix as opposed to a 4 X 4 ma­
trix in conventional quantum electrodynamics. 

The form of the second-order Dirac equation, Eq. ( 1.1 ), 
suggests the possibility of viewing that equation as an eigen­
value equation for a "mass operator" 

A= - n·(1 + iu)·n. (1.3 ) 

To be a useful concept A should in some sense be self-adjoint 
and have a complete orthogonal set of eigenfunctions. Such 
an eigenvalue problem has been investigated before in Ref. 1. 
There it has been shown that A is self-adjoint with respect to 
the not positive definite inner product 

(<I>B;<I>A) = f d 4x CiiB<I>A' 0.4) 

in which 

Cii = <l>t ( - iIT4 - U' IT) ( 1.5) 

denotes the "dual" state associated with <1>. As discussed in 
Ref. 1, if the inner product (1.4) were positive definite; then 
all the conditions of the spectral theorem would be met and 
the existence of a complete orthogonal set of eigenfunctions 
of A would be guaranteed. It is shown in Ref. 1 that in the 
Coulomb case and in some other simple cases a complete 
orthogonal set of eigenfunctions exists in spite of the lack of 
positive definiteness. Such an eigenfunction expansion 
theorem can play a role in relativistic perturbation theory 
analogous to the role of energy eigenfunction expansions in 
nonrelativistic perturbation theory. 

Mass eigenfunction expansions, the relativistic Kepler 
problem of the second-order Dirac equation, and the scalar 
formalism for QED have been treated in detail elsewhere. In 
the interest of brevity the reader is referred to this earlier 
work for background material, especially Refs. 1, 11, and 12. 

Section II begins with the Feynman integral, Eq. (2.1), 
for the irreducible electron self-energy graph including the 
effects of the Coulomb interaction with the nucleus. A nota­
tion 15 is used in which the electron propagator SF (2, 1) is 
visualized as the coordinate space representative of an ab­
stract operator: 

SF(2,1)=(2111( -iJp )2+m2)1l)· 

A compact formal expression, Eq. (2.5), for the self-energy 
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graph ignoring "shift corrections" is obtained by performing 
the Feynman integrals explicitly. These expressions involve 
rather complicated operator functions of 

p=Alm2. (1.6) 

An example is the function In(1 - p)/p. Such operator 
functions of p are replaced by corresponding c-number ex­
pressions by inserting a complete orthogonal set of eigen­
functions of A. 

The sum over bound states and integration over contin­
uum states that arise in such an application of the mass ei­
genfunction expansion theorem are combined into a single 
integral in Sec. III A by use of contour integration tech­
niques in the complex p' plane, where p' denotes the eigen­
value of p. An example of this is the integral representation 
[Eq. (3.3) repeated here for convenience] 

[
lnO

p
- p )]' -i'" d~' [_,_l_-E

O 
I<l>?) (<t>ol] . 

I p P -p P -1 
This result coupled with the analogous equations (3.4) and 
(3.5) make possible an integral representation of the mass 
operator in which p appears essentially only through the 
relativistic Coulomb Green's function 1/ ( p' - p). Known 
representations of the relativistic Coulomb Green's function 
can thus be brought to bear on the problem. In Sec. III B a 
further transformation to a {; representation is carried out. 
This transformation is designed to exhibit the Za depen­
dence of the integrand. This Za dependence enters the inte­
grand in a strikingly simple way when all is referred to a basis 
of relativistic Coulomb Sturmian functions. This is done in 
Sec. IV. The final integral representation of the factor 
InO p)/p is given by Eq. (4.12). The nuclear charge en­
ters the final integrand essentially only through two param­
eters: the Za which appears in the "relativistic orbital angu­
lar momentum quantum number" r=(J + !)2 
- (Za)2)1/2, if L =J +!, and r=(J + p2 _ (Za)2)1/2 
- 1, if L = J -!; and through a second parameter, qo, 

where mqo corresponds to the classical relativistic electron 
momentum in the bound state being perturbed, 

qo = Zal(ro + no) 
[1 + (Zal( ro + noW] 1/2 

( 1.7) 

Using the {; representation in a Sturmian basis, the integrals 
corresponding to the individual partial waves can be shown 
to be analytic functions of qo in the entire complex plane cut 
along the negative real axis, - 00 < qo'O. The {; representa­
tion in the Sturmian basis seems quite suitable for a future 
numerical evaluation of the Lamb shift. Also, the relatively 
simple form of the final integral representation in Sec. IV 
invites further analytical development. The method devel­
oped here would bear some resemblance to the earlier Lamb­
shift calculation of Lieber. 16 However, in contrast to the 
method of Lieber, the method developed here could be fully 
relativistic. Other recent work on the Lamb shift that should 
be mentioned is that of Mohr and of Sapirstein. 17 

II. PRELIMINARY REDUCTIONS 

The scalar formalism for quantum electrodynamicsl2 

gives the following expression for the electron self-energy 
operator ~, defined through the equation SF 
= 1/(11' (1 + iu)' II + m 2 

- 8(m2
) + ~): 

~ = 4ma ----,,----. f d
4
k 1 

(217')4 k 2 - iE 

X [II· (1 + iu) + (1 + iU)'(11 - k) lp 

X [ (II - k) . (1 + iu) . (II - k) + m2 - iE) - I 

X [(II k)· (1 + iu) + (1 + iu)' 1I)p- (2.1) 

In this equation 

114 = i(Eo + (Zalr»), IT= -iV -eA, 
and 

Eo=ml(1 + (Zal(ro + no»2)1/2 

equals the energy of the level whose level shift will be sought 
when ~ is used in a Lamb-shift calculation. Using the Feyn­
man denominator combining equations in a standard way 
gives 

f d4k i l 

~ = 417'ia -- dA [II '(2 - A(1 - iu») - (k - All)' (1 iu) 1 
(217')4 0 

X {[ (k - All)' (l + iu)' (k - All) A (1 A)A + Am2j2}-1 

X [- (l-iu)'(k-AII) +(2-A(l-iu»)·II]. (2.2) 

In this equation A is the operator of Eq. (1.3). In order to obtain closed analytic expressions to work with, an expansion in 
"shift corrections" is carried out as in the paper of Erickson and Yennie. ls Accordingly,~' is written ~ = ~o + Ro, where 

~o=417'iaI d
4
k t dA [II'(2-A(1-iu»)-k'(l-iU)] 

(217')4 Jo 
X[k 2 -A(l-A)A+Am21- 2

[ - (l-iu)'k+(2-A(l-iu»'II], (2.3) 

and 

I 
d4k i l i l 

a Ro=417'ia -- dJ. dg-[II·(2-J.(1-iu»)- (k gAII)'(1-iu)] 
(217')4 0 0 ag 

X [(k - gAil)' (1 + iu)' (k gAIl) - A(1 - J.)A + Am2]-2 

X[ - (l-iU)'(k-gAII) +(2-A(1-iu»)·II). (2.4) 

In this preliminary study only the zero-order term ~o is considered. Standard Feynman techniques can be applied to evaluate 
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the integral (2.3), with renormalization carried out as in scalar electrodynamics. 19
•
2o It has been convenient to use an 

intermediate renormalization, with subtraction pointpppp O. The result is 

~o= -a [4n'(l-p) In(1-p) ·n + n·(1-p) (l-p)ln(1-p) +p (1- iu)·n 
41T p p2 

+ n·(1 iu) (1-p)ln(1-p) +p (1-p)·n 
p2 

1 (1 p) 2 In (1 _ p) + P _ ~ p2 
+'3 n '(1-iu)(l-p) p3 (1-iu)·n 

1 (1-p)2In(1-p)+p-~p2 
+U(1-iU)/-wm2p(l-p) p3 (I-iu)vp 

- 3~ (1 - iU)/-lv m2(1-p)(1 - iU)'Y/-l + 3
9
1 m2(1 -p) - 3m2 + -¥-eU/-l'YFp'Y]' (2.5) 

No special effort has been made to exhibit the explicit factor 
of (Za)4 known to appear in the lowest non-zero-order 
terms contributing to the Lamb shift.21 That factors of Za 
are implicit in expression (2.5) when used in a Lamb-shift 
calculation is evidenced by the factors (1 - P ), which can be 
converted into commutators after forming the expectation 
value in the unperturbed state l.po}; the identities 
(4)oIO(1-p) = (4)01 [p;O], and (l-p)O l.po> 
= - [p;O] l.po), are a result of l.po) being an eigenstate of 

p with eigenvalue 1. 
The Lamb shift may now be calculated in principle by 

inserting a complete set of mass eigenfunctions and taking 
the expectation value of Eq. (2.5). All expressions in Eq. 
(2.5) involving the operator p in complicated forms thereby 
become just c-number expressions. Equations for imple­
menting such a program in a Sturmian representation are 
given in the Appendix. However, the further reductions to 
be carried out in Secs. In and IV are expected to lead to a 
more efficient Lamb-shift calculation. 

III. INTEGRAL REPRESENTATIONS OF THE MASS 
OPERATOR 

A. Analytic continuation In m2 

A direct use as described above of the mass eigenfunc­
tion expansion to evaluate the expectation value of Eq. (2.5) 
would entail summation over bound state eigenvalues 
p' = (EoIm)2(1 + (Zal(r+nW) and integration over 
continuum state eigenvalues p' = (EoIm)2 - (plm )2, 
o <p < 00 (see Ref. 1 for the derivation of this spectrum). 
Next, a method of combining these two types of contribu­
tions into a single integral will be described. This method 
involves applying the Cauchy integral formula to the opera­
tor structures In (1 - p )/p, etc. appearing in Eq. (2.5). First 
note that the function In( 1 - p')lp' of the c-number vari­
able p' has a removable singularity at p' = O. Accordingly, 
In( 1 - p')/p' is analytic and single valued in the entire com­
plex plane cut along the segment 1 <p' < 00. Figure 1 shows 
this cut. The bound state eigenvalues of p are indicated by 
the dots in Fig. 1. The continuous spectrum of p is at the 
same time a branch cut for the function 1] == - ip, 
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p==(EO)2 - m2p')1/2. This is the other cut in Fig. 1. Feyn­
man boundary conditions are implemented as usual by as­
suming that m2 has a small negative imaginary part. This 
small negative imaginary part places any bound state eigen­
values ofp that lie on the segment l<p' < 00 at an infinitesi­
mal distance above the cut. Although only In (1 - p) I p will 
be treated explicitly, the same can be done for the other 
two types of functions, ((1-p)ln(1-p) +p)/p2 and 
((l-p)21n(1-p) +p_~p2)1p3, which appear in Eq. 
(2.5). The Cauchy integral formula is applied on an eigen­
value by eigenvalue basis. If p" is one of the bound state 
eigenvalues other thanp" = 1, then 

In(l-p") =_I_!dp,ln(l-p') 1 . (3.1) 
p" 21Ti Yc p' (p' _p"l 

The integration contour, C, has been chosen to consist of a 
union of counterclockwise loops encircling all bound state 
eigenvalues of p, except for the eigenvalue p' = 1. With this 
way of choosing C, Eq. (3.1) remains valid for the same C 
when other bound state eigenvalues not equal to 1 are substi­
tuted for p". Then when Eq. (3.1) is multiplied on both sides 

(E ~ 
arg(p'-~ )=-1T 

m 

Complex p' pl_ 

Im(p') 

arg(l-p')=-1T 

~ Ae(p') o • 

&,,")' ~~'-P')'.1 

FIG. I. Complexp' plane wherep', corresponding to an eigenvalue of the 
operator p= - ". (1 + iu)' "1m2, is the dimensionless virtual mass 
squared of the electron. The branch cut 1 <p' < 00 belongs to the function 
In ( 1 - p') I p'. The other singular points are the singularities of the Cou­
lomb Green's function 1/ ( p' - p) regarded as a function of p' while hold­
ing the energy fixed and equal to the energy Eo of the unperturbed state. 
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by the projection operator! E p' 1 <I> p' > (CP p' 1 and summed on 
bound states the summation is independent of C and can be 
taken under the integral sign. For an operator p with a dis­
crete eigenvalue spectrum only, this sum forms on the left­
hand side of Eq. (3.1) the spectral representation of 
In (1 - p)/ p. At the same time, the spectral representation 
of the Coulomb Green's function, 1/ (p' - p), is built up 
under the integral sign on the right-hand side of Eq. (3.1). 
Of course, the operators lack the term in the spectral repre­
sentation corresponding to the eigenvaluep' = 1, a fact that 
is signaled by a prime notation. The result is the identity 

[
lnO- p )]' =~i dp' In(1 ~p') 

p 211'1 Yc p 

x[-, 1 __ Eo I<I>?> <CPol] , (3.2) 
p -p P -1 

in which again the SUbscript 0 is used to refer to the state 
being perturbed. In view of the factors (1 - p) in Eq. (2.5), 
only the primed form of the operators contribute in Eq. 
(2.5). Since the operator p in the Kepler case does not have a 
bound state spectrum only, Eq. (3.2) requires a more careful 
proof. The result of a more careful study is that Eq. (3.2) 
holds also in the Coulomb case provided that to the contour 
C is added a loop encircling the continuous spectrum in the 
counterclockwise sense. But the combined effect of encir­
cling all bound state eigenvalues counterclockwise and en­
circling the continuous spectrum counterclockwise is to en­
circle the branch cut 1 ,p' < 00 associated with p' = 1 in the 
clockwise sense. This assumes sufficiently rapid vanishing of 
the function In (1 - p' )/( p' ( p' - pH») at p' = 00. Next, the 
integral around the cut attached to p' 1 is reduced to a 
simple real integral involving the discontinuity across the 
cut. This leads to the integral representation 

[ 
In(l-p) ]' = _ ,'" d~' [_,_1 __ Eo I<I>~> (CPol] . 

p J! P P -p P -1 
(3.3) 

Analogous simple formal representations can be written for 
the other functions (0 - p )1n (1 - p) + p)/ p2 and 
((1 - p)21n(1-p) + p - ~p2)/p3, which appear in Eq. 
(2.5): 

[(1-p)1n~! -p) +p], 

= _ ,'" dp' (l - p') [_1 __ Eo 1<1>0> (CPo I ] , 
JI (p')2 p' -p p' - 1 

[ (1 - p) 2 In (1 p~ p) + p - ~ p2 r (3.4) 

= _ roo dp' (1 - p' )2 [_1 __ Eo 1<1>0> (CPo 1 ] . 

JI (p')3 p' -p p'-1 
(3.5) 

These complicated operator structures are thereby ex­
pressed in terms of the relatively simple relativistic Coulomb 
Green's function, 1/( p' -p). There is an explicit subtrac­
tion in Eqs. (3.3)-(3.5) for the bound state withp' = 1 at 
the branch point, and this subtraction renders the integrals 
convergent at the lower limit p' = 1. For other bound states 
occurring in the integration region l,p' < 00, the integral is 
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interpreted in accordance with the requirement that the pole 
shall lie infinitesimally above the cut, as discussed earlier. 

B. ; representation 

Equation (2.5) for :2.0 is quite general and the integral 
representations (3.3 )-( 3.5) are expected to be applicable to 
other external potential problems in addition to the Cou­
lomb problem. This section is specialized to the specific case 
of the Coulomb problem and a change of variables is made in 
order to eventually exhibit the Za dependence of the inte­
grands (3.3)-(3.5). 

The change of variables needed to exhibit the Za depen­
dence of the integrands maps the p' plane onto the; plane, 
where 

;:=27]01(7] + 7]0)' 

m 2p':= (EO)2 + 7]2. 

(3.6) 

(3.7) 

In these equations 7]0 corresponds to the classical momen­
tum of the electron in the bound state with energy Eo: 
7]0 = mqo, whereqois the parameter (1.7). Solvingforp' asa 
function of ;, one first finds 

p' = [4(qO)2 - 4(qO)2; + ;2]1;2, (3.8) 

and then 

[ 
In{1 - p) ]' = _ t d;(2 -;) 4(qO)2 

P Jo; 4(qO)2 - 4(qO)2; +;2 

X [_,_1 __ Eo I<I>~> (CPo I ]. (3.9) 
P -p p -1 

The; forms for the other operator structures appearing in 
Eq. (2.5) are 

[ (1 - p )1n~! - p) + p ]' 

= 11 d; (2 -;)( 1 - ;) [ 4(%)2 ]2 
o ; 4(qo)2_4(qo)2;+;2 

X [_1 __ Eo l<I>o)(CPol], (3.10) 
p' -p p'-1 

and 

(3.11) 

The entire p' plane maps into the interior of the unit circle 
I; 11 = 1. This is shown in Fig. 2. The cut 1 <p' < 00 maps 
into the cut 0 <;,1 in Fig. 2 with branch point; = 1. Any 
bound state eigenvalUes of p having; values in the integra­
tion region 0 <; < 1 are here to be placed at an infinitesimal 
distance below the cut. The cut - 00 <p', (EoIm)2in Fig. 1 
for the continuous spectrum maps onto the boundary of the 
circle I; - 11 = 1, with points above the cut going to the 
lower semicircle and points below the cut - 00 <p',(Eoi 
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Im«() 
ComplRX ~ plillll! 

arg«(-I)= arg(l-p')=1T 

/ I 
-,r-~=-~==~~~~--------~~~-+ 

.~ 2 

arg(t.-I)= arg(l-p')=-1T (2-~J _ 1T 

ar
9 T -2 \ 

FIG. 2. This is Fig. 1 mapped into the complex; plane, where ;=21701 
(17 + 170)' The entire p' plane maps into the interior of the unit circle 
I; - 11 = 1. See the discussion following Eq. (3.11). The parameter 
i1J=(Eo)2 - m2p')112 is the wave number of the electron; i1Jo 
= «Eo)2 - m 2)1/2 is the wave number in the unperturbed state of energy 

Eo· 

m) 2 going to the upper semicircle. The points;p and;; in 
Fig. 2 are the two poles of the denominators 
(4(qO)2 - 4(qO)2; + ;2) which appear in the integral repre­
sentations (3.9)-(3.11), 

;p =.2qo(qo + i(l - (qO)2)1/2), (3.12) 

;;=.2qo(qo + i(l - (qO)2)1/2). (3.13) 

It is an easy calculation to verify that the poles (3.12) and 
(3.13) lie at the intersection of the two circles I; 1= 2qo and 
I; - 11 = 1. 

IV. COULOMB STURMIAN BASIS 

A. Survey of earlier work 

A discrete expansion of the nonrelativistic Coulomb 
Green's function has been known for some time. The mo­
mentum space form of such an expansion was obtained by 
Schwinger,22 who exploited the O( 4) invariance ofthe non­
relativistic Kepler problem. The coordinate space analog of 
Schwinger's nonrelativistic result has been discussed using a 
coupling constant eigenfunction concept.23 Subsequently, II 

the same coupling constant eigenfunction concept was found 
to lead to a discrete expansion also for the Coulomb Green's 
function of the second-order Dirac equation, Eq. (1.1). Par­
allel results, referred to as "Sturmian" expansions, have been 
obtained2

4-28 for the Coulomb Green's function of the con­
ventionallinear Dirac equation, to which Eq. ( 1.1) is equiv­
alent. 

Derivations of the following equations can be motivated 
by the coupling constant eigenfunction concept mentioned 
above, but for present purposes a purely mathematical treat-

724 J. Math. Phys., Vol. 28, No.3, March 1987 

ment seems best. Let E> 0 and", > 0 be two arbitrary real 
parameters, for the moment assumed to be quite indepen­
dent. The operator 

(4.1 ) 

is a self-adjoint operator on the Hilbert space of spinor func­
tions ct> (1). In Eq. (4.1) y can be viewed as a self-adjoint 
operator operating only on spinor and angular degrees of 
freedom and having the eigenvalues 

y = (J + !)2 - (Za)2)1I2, if L = J +!, 
and 

y=((J=!)2- (Za)2)1/2_1, if L=J-!. 

The corresponding eigenfunctions are proportional to the 
spinor spherical harmonics, Y LJM (r). The eigenfunctions of 
o are found to form a discrete set. These eigenfunctions are 
denoted by I",,A ) where the shorthand notation A is used to 
signify the complete set of quantum numbers {n,L,J,M}, 
n = 1,2,3, .... The explicit expressions for the eigenfunctions 
are independent of E: 

(11",,A ) = R'1,ny (r) Y LJM (r), (4.2) 

R (r)=(2",)3/2[ (n-l)! ]112 
'1,ny (n + 2y)! 

X (2"l7)Y-1I2e -'1'L ~Y_+ll(2",r). (4.3) 

The corresponding eigenvalues of 0 are 0 ' = (y + n) ",IE. 
Physically, the eigenvalues are the requisite values of the 
coupling constant Za needed to produce a Coulomb bound 
state of type y,n when the parameters E,,,, have preassigned 
values. 

The orthogonality and completeness relations for the 
eigenfunctions are 

(""B I",,A) = f d 3r(""B 11) (11 ",,A ) = 8A•B , (4.4) 

and 

~A I ",,A ) (",,A 1=1. (4.5) 

In this paper the Sturmian basis set (4.3) is used some­
times with one, sometimes with another, value of ",. On the 
other hand, the parameter E always has the same value 

m 
E=Eo= , 

[1 + (Za/(yo + noW] 1/2 
(4.6) 

where Eo, Yo, and no refer to the level whose Lamb shift is to 
be sought. 

An important result for applications is the overlap inte­
gral 
("'o,jyl I""ny) 

=. LX> ~ dr R ~o,jy (r)R'1,ny (r) 

= (_1)n-l > __ < __ _ 
[

en + 2y)! (n + 2Y)!] 112 

(n> -I)! (n< -I)! 

X(2;_;2)Y+l (l_;)n>-n< 

(2y + 1)! 
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X :zFI ( - (n < - 1) ,2r + 1 + n> ,2r + 2;2~ _ ~ 2), 

n> = max(j,n), n< = min(j,n), 

(4.7) 

between eigenstates belonging to two different basis sets as­
sociated with different values of 1J. The hypergeometric 
function in Eq. (4.7) is a polynomial which could be ex­
pressed in terms of the Jacobi polynomial. 

B. Sturmlan representation of the relativistic Coulomb 
Green's function 

For notational convenience a square bracket, [ ], nota­
tion shall signify matrix representatives with respect to the 
Sturmian basis (4.3). For example [I<P)] shall represent the 
infinite column matrix with matrix elements 
[ I <P) ] A = (1J0,A I <P), and [p] shall represent the infinite 
square matrix whose matrix elements are 
[ p ] AB = (1J0,A IP l1Jo.B ). The next goal will be to obtain the 
Coulomb Green's function 1/( p' - p) relative to the Stur­
mian basis. This calculation begins as follows: 

1 1 m 2 

p' - p = p' - ( - TI· (1 + iu) . TI/m2
) = Ii ' 

D = (m 2p' + TI· (1 + iu)' TI) 

= m2p' _ (EO)2 _ V2 _ 2EoZa 
r 

(Za)2 + iZao-'" 

? 

= 1J2 _ V2 _ 2EoZa _ (Za)2 + iZao-''', 
r ? 

1J2=m2p' - (EO)2. 

At this point one can just follow Ref. 11 and find 

D = s( 2~0 )11\0 _ Za)( 2~0 )
1I2

S -I, 

_1_ = m2S (_r_) 112 1 (_r_) 1I2S -I 

p' - P 2Eo (0 - Za) 2Eo ' 

where 0 is the operator (4.1). Inserting a complete set of 
eigenfunctions of 0 leads to 

__ 1_ = m2s(_r_)112 
p' -p 2Eo 

Xl:A 11J,A )(1J,A I (_r_) 112 S -I. 

(r+n)(1J/Eo)-Za 2Eo 
(4.8) 

This is the result of Ref. 11 except that here 1J has the 
value 1J=(m2p' - (EO)2)1/2, as appropriate for use in 
Sec. III. In Eq. (4.8) S = cosh(O /2) + io-'?sinh(O /2),0 

= tanh -1(Za/ (0-·1 + 1»), is the analog of an operator in-
troduced by Biedenham,29 and by Martin and Glauber30 to 
simplify the Kepler problem ofthe linear Dirac equation. A 
final transformation involves taking matrix elements of Eq. 
(4.8) with respect to the Sturmian basis (4.3) and going 
over to a description in terms of the parameter ~ = 21J0I 
(1J + 1Jo)· For this the relations 

mqolEo = Za/(ro + no), 

and (4.9) 
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1J = mqo(2 - ~)/~ 

are needed. The result of these changes is 

1 =_1_ [S][r,]1/2 
pi _ [p] 4(qo)2 

Xl:
A 

~ [11J,A )][(1J,A I] 
2 ( r + n) - ~ (r + n + r 0 + no) 

X [r'p/2[S] -I, (4.10) 

in which r= 2mqJ is a dimensionless coordinate vector. Rel­
atively simple expressions for the matrix elements [11J,A )] 
and [ (1J,A I] are provided by the overlap integrals ( 4. 7). The 
matrix elements [ 11J,A ) ] and [ (1J,A I] are seen to depend to 
Za only through the parameter r. If the second term in the 
factor {(1/( pi -p») - ~ol<Po)(Ci>ol/(p' - 1)} entering the 
integrals (3.9) - ( 3.11) is also transformed to the Sturmian 
basis the result is the identity31 

( 
1 _ ~o [1<Po)][ (Ci>ol]) 

p' - [p] ( p' - 1) 

= [S] [r'] 1/2 (l:A ~ [11J,A )][ (1J,A I] 
4(qo)2 2(r + n) - ~(r + n + ro + no) 

_ ~2[I1Jo,0)][(1Jo,01])[r'P/2[S]-I, (4.11) 
2(ro + no)( 1 -~) 

in which [11Jo,O)] is the Sturmian representation of the un­
perturbed state, with matrix elements [11JO,O)]A 
= (1J0,A l1Jo,O) =8 A,O' Next Eq. (4.11) is substituted in the 

integral representations (3.9)-(3.11) to convert them over 
to the Sturmian basis. The result is 

(4.12) 

with similar results for the other two integrals (3.10) and 
(3.11). 

Aside from the factors [S] [r'F /2 and [S] -I [r'] 1/2 the 
nuclear charge is seen to appear in the integral representa­
tion (4.12) only through the two parameters qo and r. The 
term involving l:A depends on Za only through r, a param­
eter which differs from the constant L by terms of order 
(Za)2. The main Za dependence of the integrand in Eq. 
(4.12) enters through the parameter qo. But this qo depen­
dence is exhibited explicitly in Eq, (4.12) and consists en­
tirely of the factors 4(qO)2/(4(qO)2 - 4(qO)2~ + ~2) and 
(2qo) -2. Similar statements hold with regard to the other 
two integral representations (3.10) and (3.11) in the Stur­
mian basis. By looking at the singularity structure of the 
integrands as a function of the complex variable qo holding r 
fixed, the final integrals (3.9)-(3.11) for each partial wave 
in the Sturmian basis can be shown to define functions that 
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are analytic in the complex qo plane except for a branch cut 
along the negative axis 00 < qo<O. 

The integral representation ( 4.12) and analogous repre­
sentations corresponding to Eqs. (3.10) and (3.11) seem to 
be a convenient point of departure for a future numerical 
evaluation of the Lamb shift. In addition, their relatively 
simple forms invite further analytical study. 
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APPENDIX: STURMIAN REPRESENTATION OF THE 
MASS EIGENFUNCTIONS 

The eigenvalue problem A<P A'<P, A:= n· (1 
+ iu)' n [see the discussion in Sec. I following Eq. (1.3)] 
has been investigated in detail in Ref. 1 where the eigenval-

I 

('TJo,nrl 1)121 IXpy(r»:= i"" rdrR;Oonr(r) )/2Xpy(r) 

ues and eigenfunctions have been calculated. For the calcu­
lation of the Lamb shift described in Sec. II it seems conven­
ient to refer all to a Sturmian basis. The Sturmian 
representations of the mass eigenfunctions are as follows. 

Continuum states: Let the eigenfunctions be written in 
the form 

(11<PpLJM ) =SXpy(r)YLJMO'), 

where 

X
PY 

(r) = (dp/21T) 1/2r( I + r - iv)e1TV/2 I 

XJ{iv;r+ 1/2 ( - 2ipr), 

v:=EoZa/p, 0 <p < 00. (AI) 

The eigenvalue of A belonging to the eigenfunction 1<1> pLJM) 
is A' = (EO)2 - p2 < (Eo)2. The operator A is constructed 
assuming the physical coupling constant Za and assuming 
that the energy has the value Eo given by Eq. (4.6). In the 
following a double bar notation is used to signify the radial 
part only of the overlap integrals. If the functions 
x(r) Y LJM (1) are multiplied by r- I12, then relatively simple 
expressions are obtained for their matrix elements with re­
spect to the Sturmian basis, l'TJo.A ). For the continuum states 
the result is 

= (dP )1I2 (_1)n-Ie -l".o+1'+ iV)/2 ( 4'TJop )1'+1 ('TJo-iP)n I Iv 

21T [(n - 1)!(n + 2r)!] 1/2 ('TJO)2 + p2 'TJo + ip 

Xr(n + r- iVhFI( - (n - l),r+ 1 + iv,l- n - r+ iV;( 'TJo + i~)2), 
'TJo-1P 

V = EoZa/p, larg('TJo ± ip) I <1T/2. 

Bound states: The bound state eigenfunctions I <1» calcu­
lated in Ref. 1 have the form 

(11<P) =SXn1'(r)YLJM (1), 

where 

Xn1'(r) = (TJr/(n + r»)1/ 2R'1.n1'(r), (A3) 

and R'1,n1' (r) is the Sturmian function (4.3), with 

'TJ=EoZa/(n+r). (A4) 

The matrix representative of r- 1/2x n1' (r) with respect to the 
Sturmian basis l'TJo.A ) is 

('TJo,jrl !)12IIXnr(r» 

i"" 1 
:= rdrR;,j1'(r) 112Xn1'(r) 

o 0 r 

[ 
'TJ ]112 . 

= ('TJo,Jrll'TJ,nr), 
(r+ n ) 

(AS) 

where ('TJo,jrll'TJ,nr) denotes the overlap integral (4.7). 
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A framework for the momentum-resonance formulation of Lewis and Leach [Ann. Phys. 
(.NY) 164,47 (~985).] is presented that casts new light into the nature of exact, explicitly 
tIme-dependent mvanants for one-dimensional, time-dependent potentials and produces 
additional examples of such invariants. The momentum-resonance formulation postulates that 
the invariant be a rational function of momentum with simple poles, which are called 
momentum resonances. It is shown that an invariant of resonance type can be written as a 
fu~ctional of the potential i~ terms of the solution of a system of linear algebraic equations; and 
a smgle necessary and sufficIent condition for a potential to admit an invariant of resonance 
type is obtained. These results are obtained by reformulating the problem in terms of a set of 
discrete moments that satisfy two separate recursion formulas. Invariants for new time­
dependent potentials can be obtained and previously known invariants are recovered. 

I. INTRODUCTION 

Exact invariants for Hamiltonian systems can be very 
useful for obtaining insight into the nature of solutions of the 
equations of motion and they can be helpful in computing 
solutions numerically. The search for invariants for specific 
systems has a long history. As an example, we mention the 
gravitational three-body problem, which is relevant to the 
motion of celestial bodies and has been studied extensively. I 
In 1887 Bruns showed that the ten so-called classical inte­
grals of the three-body problem are the only invariants that 
exist that are algebraic functions of the coordinates, mo­
menta, and time. In 1889 Poincare showed for the restricted 
three-body problem that the only explicitly time-indepen­
dent invariant that is periodic in the coordinates is a quantity 
known as the Jacobian energy. These important results illus­
trate that an explicitly time-dependent invariant is likely to 
be outside the class of algebraic functions and that explicitly 
time-independent invariants are uncommon, even for auton­
omous systems. 

In the search for exact invariants, attention traditionally 
has been concentrated on functions that do not depend on 
time explicitly. Also, the systems considered have usually 
been autonomous; that is, the Hamiltonians usually have not 
depended on time explicitly. In this article, we consider the 
motion of a particle in a one-dimensional potential and allow 
the invariant as well as the potential to be explicitly time 
dependent. For an autonomous one-dimensional Hamilto­
nian system, all invariants that are functionally independent 
of the energy are explicitly time dependent. For any particu­
lar nonautonomous system, it may be that all global invar­
iants are explicitly time dependent. In any event, any com­
plete set of2N invariants for an N-dimensional system must 
include at least one explicitly time-dependent invariant. 

The equations of motion for anyone-dimensional non­
autonomous Hamiltonian system are equivalent to those of a 
corresponding autonomous two-dimensional Hamiltonian 
system. Therefore, it is always possible to treat one-dimen-

a) Permanent address: Instituto de Fisica, Universidade Federal do Rio 
Grande do SuI, 90049-Porto Alegre, Rio Grande do SuI, Brazil. 

sional nonautonomous systems by considering certain two­
dimensional autonomous systems instead. The two-dimen­
sional Hamiltonian depends linearly on a momentum 
variable that is associated with the energy of the one-dimen­
sional system. In this regard, it should be noted that invar­
iants derived by Darboux,2 Whittaker, I Holt,3 HalV and 
others for particle motion in a two-dimensional, time-inde­
pendent potential cannot be used to obtain invariants for 
one-dimensional, time-dependent potentials. The reason is 
that the Hamiltonian for the motion of a particle in a two­
dimensional, time-independent potential depends quadrati­
cally on each momentum variable. 

An important area in which explicitly time-dependent 
invariants for time-dependent potentials playa crucial role is 
the self-consistent theory of collisionless plasma.5 When 
there is only one spatial dimension, the governing equations, 
known as the Vlasov-Poisson equations, describe a contin­
uum of particles that move in the electric field generated by 
the particles themselves. The electric field is to be deter­
mined self-consistently along with the motion of the parti­
cles. The phase-space distribution function for the particles, 
which is a solution of the Vlasov equation, is a function of 
invariants of the motion of a single particle in the electric 
field. An exact or approximate invariant can be useful in 
connection with the Vlasov-Poisson equations if it applies to 
a class of electric fields that approximate the field associated 
with the exact solution. 

Exact invariants for particle motion in classes of one­
dimensional explicitly time-dependent potentials have been 
found for both linear and nonlinear equations of motion. For 
linear, arbitrarily time-dependent oscillators, invariants are 
known that are homogeneous quadratic forms in the coordi­
nate and momentum. 6 For nonlinear equations of motion, an 
exact invariant is known that is quadratic in the momentum 
when the potential has a certain form that involves an arbi­
trary function of a time-dependent linear function of the spa­
tial variable. 7

•
8 This invariant has been used9 to find new 

exact solutions of the Vlasov-Poisson equations. 
In this article we describe an elaboration of the momen­

tum-resonance ansatz of Lewis and Leach 10 to study exact 
invariants for time-dependent, one-dimensional potentials. 
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Their ansatz provides a framework for studying invariants 
admitted by a larger class of time-dependent potentials than 
was known previously. For a potential that admits an exact 
invariant of the resonance type, we have shown that the in­
variant can be constructed as a functional of the potential in 
terms of the solution of a linear algebraic system of equa­
tions. In addition to this linearization theorem, we have 
found a necessary and sufficient condition for the existence 
of an invariant with a given number of resonances. 

There exist more potentials that admit invariants with 
two resonances than were previously known and we have 
found examples of such potentials. 11 We have also examined 
the case of three resonances. 11 We have found examples of 
potentials that admit three-resonance invariants, but we 
have not found a generalization of the class of two-resonance 
cases that involve an arbitrary function of a time-dependent 
linear function of position. 

The remainder of this article is organized as follows. In 
Sec. II we review the momentum-resonance ansatz. In Sec. 
III we present a discrete-moment description of invariants of 
the resonance type and derive the linearization theorem. In 
Sec. IV we derive a single necessary and sufficient condition 
for a potential to admit an invariant of the resonance type. In 
Sec. V we present some preliminary applications. We rede­
rive the examples of Lewis, Leach, and Sarlet for one and 
two resonances and present two examples of potentials that 
admit invariants with three resonances. Additional exam­
ples are presented in Ref. 11. In Sec. VI we present some 
concluding remarks. 

II. THE MOMENTUM-RESONANCE ANSATZ 

We consider the Hamiltonian for a particle moving in a 
potential that depends on a coordinate q and time t, 

(1) 

The momentum-resonance ansatz of Lewis and Leach 10 pos­
tulates that the invariant be a rational function of momen­
tum expressed as a sum of terms whose singularities in mo­
mentum are only distinct simple poles ("momentum 
resonances") , 

I(q,p,t) 
N Un (q,t) 

c(q,t) + L . 
n = I P - Un (q,t) 

(2) 

In view of the fact that any function of an invariant is also an 
invariant, the momentum-resonance ansatz is sufficient for 
considering a much wider class of invariants. For example, it 
includes the case of invariants that are polynomials in p with 
distinct zeros. A motivation for considering invariants that 
are rational functions of momentum is that a large class of 
functions can be well approximated by rational functions. 12 

In a particular application, it may be possible to obtain a 
useful approximate invariant in terms of a potential that ad­
mits an invariant which is rational in the momentum with 
distinct simple poles. 

The functions of position and time that appear in the 
expression for the invariant in resonance form satisfy condi­
tions that are decoupled to a remarkable degree. The condi-
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tion that I(q,p,t) be an invariant is 

dI=.aI +p aI _ av aI =0, 
dt at aq aq ap 

(3) 

which implies that necessary and sufficient conditions on the 
functions c,U" , and Un such that I(q,p,t) be an invariant are 

~-o aq - , 

ac ~ aUn -+ £.. -=0, 
at n=1 aq 

aUn a 
-+-(u U )=0 
at aq "" , 

aU" au" --+Un --= 
at aq 

av 
aq 

(4a) 

(4b) 

(4c) 

(4d) 

Lewis and Leach 10 introduced a set of N time-dependent 
transformations to Lagrangian coordinates to study these 
equations. So transformed, (4c) was satisfied identically, 
( 4d) was an equation for the nth transformation function, 
and (4b) was a condition that related the set of N transfor­
mation functions. Lewis and Leach found all potentials that 
admit a one-resonance invariant (N = 1), they derived a 
class of two-resonance invariants, and they devised an ap­
proach for studying the general multiresonance case. The 
spatial derivative of a potential with a one-resonance invar­
iant is a rational function of q with coefficients expressible in 
terms of three arbitrary functions of t. Those potentials were 
found in different contexts by Sarlet13 and by Leach, Lewis, 
and Sarlet. 14 The two-resonance invariants found by Lewis 
and Leach are the reciprocals of invariants quadratic in the 
momentum. The potentials associated with invariants qua­
dratic in the momentum have been derived earlier by Lewis 
and Leach7 and by Sarlet and Ray.s They involve an arbi­
trary function of a time-dependent linear function of q. For a 
multiresonance case, it is necessary to find N solutions of 
( 4d) for the sameaV / aq. Lewis and Leach studied this ques­
tion in the context of their transformations to Lagrangian 
coordinates. They were able to relate any two transforma­
tion functions that correspond to distinct solutions of ( 4d) . 
However, they did not succeed in finding additional two­
resonance examples or in showing that no further examples 
exist. 

The structure of (4a)-( 4d) is remarkable. Different 
values of n are coupled only through the single condition 
( 4b); (4c) is of the form of the continuity equation for a 
fluid; and (4d) is of the form of the equation expressing 
conservation of momentum for a fluid. One would expect 
that the simplicity of the structure of the equations could be 
used to extract more information of a general nature about 
dynamical systems that admit invariants in resonance form. 
In addition, one might expect that further two-resonance 
examples exist and that examples of potentials that admit 
invariants with more than two resonances could be found. In 
the remainder of this article, we show that invariants in reso­
nance form are related to the solution of a system of linear 
algebraic equations and we derive a necessary and sufficient 
condition for a potential to admit an invariant in resonance 
form. In addition, we derive the examples of Lewis and 

J. Goedert and H. R. Lewis 729 



                                                                                                                                    

Leach with a different formulation and present two exam­
ples of three-resonance invariants. We examine the two- and 
three-resonance cases in more detail in Ref. 11. 

III. DISCRETE-MOMENT FORMULATION AND 
LINEARIZATION THEOREM 

The momentum-resonance ansatz can be formulated in 
terms of certain discrete momentum moments. This formu­
lation is characterized by the following features, which we 
discuss in this and the following section. Condition (4b) is 
satisfied identically. Aside from unspecified functions of t, 
which are "integration constants" associated with integrals 
with respect to q, the discrete moments can be calculated as 
functionals of the potential a priori, without solving (4c)­
(4d). Any invariant that can be written in resonance form 
can be constructed explicitly from discrete moments. The 
foregoing features are derived in this section. Finally, in Sec. 
IV, we derive in terms of the discrete moments a necessary 
and sufficient condition for a potential to admit an invariant 
with N poles. 

. The k th moment gk (q,t) is defined by 
N 

gk(q,t) = L u~vn' (5) 
n=l 

For later use, in connection with ( 16), we exclude the case in 
which a function Un is identically zero. If a function Un were 
identically zero, then, from (4d), av laqwould be identical­
ly zero. Therefore we also assume that av laq is not identi­
cally zero. If, for fixed q and t, we consider the quantities 
vn (q,t) to be the values of a function v(q,p,t) that is defined 
at a discrete set of values of p given by p = Un (q,t) for 
1 <.n<.N, thengk (q,t) is the kth moment of v (q,p,t) in that 
discrete space of values of p. By direct manipulation of ( 4c) 
and (4d), it can be shown that these moments satisfy the 
differential recursion relation 

agk _ 1 av 
---- (k-1)gk_2 -, k;;d, 

at aq 
(6a) 

with the initial condition 

(6b) 

where a_I (t) = c(t). Equation (6b) is the solution of (4b). 
Equation (6a) can be obtained by multiplying ( 4c) by u~ - I, 

using (4d), and summing over all k from 1 to N. Therefore 
the system of equations (4a)-( 4d) implies the recursion re­
lation (6a) and (6b). However, we stress that the converse is 
not true; the recursion relation (6a) and (6b) alone does not 
imply (4a)-( 4d). Our interpretation of gk as a moment is 
natural because (6a) is precisely the recursion relation satis­
fied by the continuum momentum moments of (3), which 
defines the invariant l(q,p,t). In the context of collisionless 
plasma physics, (3) is also the Vlasov equation for a phase­
space distribution function. Thus it is appropriate to inter­
pret v (q,p,t) as the representation of an invariant or a phase­
space distribution function in a discrete space of momentum 
values given by p = Un (q,t) for 1 <.n<.N. 

We shall show that the momentsgk also satisfy an alge­
braic recursion relation in addition to the differential recur-
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sion relation (6a). The algebraic recursion relation is 
N 

gl = - L angl - n, l<.N, (7) 
n=l 

where the quantities ak and Un are related by 

(8) 

Relation (7) plays an important role in numerical analysis of 
Nth-order ordinary differential equations with constant co­
efficients. 15 In that context, the ak are given and the un are 
determined from (8). When the Vn can be determined from 
the first N of Eqs. (5) by specifying the first N moments, 
then the remaininggk that solve (7) are given by (5). For 
our purposes, we need instead that the definition (5) of the 
moments imply the relation (8) and the algebraic recursion 
relation (7). In order to establish (8), we define the quanti­
ties a k to be the coefficients of the polynomial whose roots 
are the Un' Let D(p) be that polynomial in the variable p, 

N 

D(p):=. II (P-Uk)' (9) 
k=1 

By our definition of the a k , D(p) can also be written as 
N 

D(p) =pN + L akpN-k. (10) 
k=1 

Thus (8) is simply the statement that each Un is a root of 
D(p), 

D(un ) = O. (11) 

Now it is easy to use (5) and (8) to derive (7): 

N N N 
g "UNUI - NV -"" an UNk - nulk- NVk l=k kk k= kk 

k=1 k=ln=1 
N N 

- L an L U~-nVk' (12) 
n= I k= I 

If we takel;;;.N, then (12) is the same as (7). 
The fact that the moments satisfy two distinct recursion 

relations is the basis for our remaining discussion. The alge­
braic recursion relation can be used to calculate the an in 
terms of the momentsgk directly, without using the Un expli­
citly. Define square matrices AK by 

AK =(:: 
gK 

with elements 

(AK)lj =gi+j-2' 1 <.ij<.K + 1, 

and column matrices x K and Y K by 

XK =(~:), YK =(g=:, ) 
aK g2K-I 

with elements 

(13 ) 

( 13') 

(14) 

(xK)j =aj , (YK)j =gK+j-1> 1 <j<.K. (14') 

Matrices of the form (13) are known as Hankel matri-
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ces. 16-18 The first N of the recursion equations (7) are 

AN_1xN = - YN' (15) 

They can be considered as a system of N linear algebraic 
equations for the an' The 2N moments that occur in the 
definition of AN _ 1 and Y N can be calculated a priori from 
(6a) and (6b) in terms of the potential and 2N + 2 unspeci­
fied functions of t ("integration constants"). The system of 
equations (15) can be constructed explicitly in this way, 
without knowing the functions of Un and Un' The necessary 
and sufficient condition for (15) to have a solution is 

det AN_I :f0. (16) 

If ( 16) did not hold, then the columns of AN _ 1 would be 
linearly dependent, which would imply that there existed an 
algebraic recursion relation of the form (7) with N replaced 
by N - 1. However, if there existed a relation of the form (7) 
with N replaced by N - 1, then, to be consistent with (7) 
and (5), one Un would have to be identically zero, contrary 
to assumption. 

We now demonstrate that the invariant (2) can be writ­
ten explicitly in terms of go through gN _ 1 and the coeffi­
cients an by the formula 

~N N-n ~n a 
I( t) =c(t) + n=IP k=1 k-Ign-k (17) 

q,p, N ~N N-n ' 
p + n= 1 anp 

where we have defined 

(18) 

and used (4a), which states that c depends on t only. The 
expressions for the invariant given by (2) and (17) are iden­
tically equal because of the algebraic recursion relation (7). 
We first show that D(p), defined by (9), can be factored 
according to the formula 

N k 

D(p) = (p - un) L pN- k L ak_.u~- 1 (19) 
k= 1 .= 1 

for any n satisfying 1 <n <N. By carrying out the multiplica­
tion by the first factor in (19) we have 

N k 

D(p) = L pN-k+1 L ak_.u~-I 
k= 1 .= 1 

(20) 

We now change the summation indices k to K = k - 1 and s 
toO" = s - 1 in the first summation in (20) and rewrite (20) 
as 

N N 
D(p) = '" aKpN-K - '" a UU £.. £.. N-u n 

K=O u=o 
N N 

= L akpN-k - L aku~-k 
k=O k=O 

N 

= L akpN-k_D(un ), (21) 
k=O 

which is the definition (10) ofD(p) becauseD(un ) is zero 
by assumption. Thus (19) is proved. In order to complete 
the proof of the equivalence of (2) and (17), we rewrite (2) 
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as 

I N D(p)un 
I(q,p,t) = c(t) + -- L . 

D(p) n = 1 P - Un 
(22~ 

Now substitute (19) for D(p) in the numerator of (22), thus 
canceling the factor (p - un). The resulting expression is 

1 N N k 

I(q,p,t) = c(t) + -- L un L pN-k L ak_.u~-I. 
D(p) n= 1 k= 1 .= 1 

(23) 

Performing the summation over n first and using the defini­
tion (5), we obtain 

1 N k 

I(q,p,t) =c(t) +-- L pN-k L ak_.g._ I . (24) 
D(p) k=1 .=1 

If we now change the summation index s to 0" = k - s + 1 
we obtain (17), which proves our assertion of the equiv­
alence of (2) and (17) . We can now state the following 
theorem, which provides a means of constructing an N-reso­
nance invariant for a given potential if one exists. 

Linearization Theorem: If V(q,t) (aV laq=l=O) admits 
an invariant with N resonances, then this invariant can be 
expressed by (17) in terms of moments g k and coefficients 
an' The g k can be calculated from (6a) and (6b) in terms of 
the potential and 2N + 2 unspecified functions of t ("inte­
gration constants"). The an are the solution of the system of 
N linear algebraic equations (15). 

For a specified potential, the entire q dependence of the 
moments can be determined a priori from (6a) and (6b). 
Only the functions of t that arise as the "integration con­
stants" for (6a) are undetermined from (6a) and (6b). 

IV. NECESSARY AND SUFFICIENT CONDITION 

In this section we complement the linearization theorem 
by deriving a necessary and sufficient condition for an N­
resonance invariant to exist. The condition is stated in the 
following theorem. 

Theorem: An N-resonance invariant exists for the Ham­
iltonian (1) with potential V(q,t) (aV laq=l=O) if, and only 
if, there exist momentsgk (q,t), 1 <k<2N, such that 

detAN =0, (25) 

where AN is a Hankel matrix defined by (13) and where the 
moments gk in AN satisfy the differential recursion relation 
(6a) and (6b). If the invariant exists, then it can be ex­
pressed by (17) by choosing the "integration constants" in 
the moments gk (q,t) such that the moments satisfy (25). 
Stated briefly, 

dI 
- = 0 {::> det AN = O. 
dt 

(26) 

We now prove (26) directly. There may exist a more 
concise proof, perhaps by induction. However, our direct 
proof suffices and is interesting in its own right. 

To begin the proof, we extend the range of the indices of 
gk and ak by defining 

(27) 
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We also define the set of auxiliary functions 
s 

As = L an-Igs- n' 
n=O 

(28) 

where the lower limit n = 0 has been chosen instead of n = 1 
for later convenience. We observe that (27) trivially implies 

Ao = A _ k = 0, k> O. 

In addition, (27) and (7) imply 

Because of (27), A2N + 1 can be written as 
N 

A 2N + 1 =g2N + L akg2N - k · 
k=1 

(29) 

(30) 

(31) 

This equation along with the N equations given by (15) can 
be considered as a system of N + 1 equations for A2N + 1 and 
the N quantities an' 

N 

t5N,kA 2N+I - L angN+ k- n =gN+k' O<.k<.N. (32) 
n=1 

The solution for A2N + 1 is 

In terms of ak and Ak the invariant (17) is 

I(q,p,t) =c(t) +_1_ f pN-kAk , 
D(p) k=O 

(33) 

(34) 

where D(p) is defined by (10). The lower limit k = 0 has 
been chosen in (34) instead of k = 1 for later convenience. 

For dIldt to vanish identically, it is necessary and suffi­
cient that D 2(dI Idt) vanish identically, 

D2aI +D2p aI _D2 av aI =0. 
at aq aq ap 

(35) 

In order to satisfy (35), which is a polynomial equation, the 
coefficient of each distinct power of p must vanish. Each of 
the three terms on the left-hand side of (35) can be easily 
evaluated. A convenient way of expressing the results is 

and 

D
2aI ~ ~ 2N-s-k( A' A' .) - = £.. £.. P as k - kas + asakc , 

at s=o k=O 
(36a) 

D 2 aI ~ ~ 2N-s-k( A' A ' ) P -=£..£..p as+ 1 k- kas+1 
aq s=o k=O 

N 

+ L p2N- kA k+t> 
k=O 

D 2 .!!..-= f f p2N-S-k(s-k-l)as_ 1A k 
ap s=o k=O 

N 

(36b) 

+ LpN-k(N-k+l)aNAk_I' (36c) 
k=O 

In the equations (36), and in what follows, we use prime for 
partial derivative with respect to q and dot for partial deriva­
tive with respect to t. Substitution of equations (36) into the 
invariance condition (35) leads to the following equivalent 
condition: 

~ ~ 2N-S-k[ A' A' A~' (k 1) A av] £.. £.. p as k +as+ 1 k - kas -goasak + -s+ as-I k-
s=o k=O aq 

~ N-k(k N 1) A av ~ 2N-kA' 0 + £.. P - - aN k-I-+ £.. P k+1 = , 
k=O aq k=O 

(37) 

where we have defined 

(38) 

for any functions/k that depend on q and t. 
Equation (37) can be organized in increasing powers of 

p. This is achieved by use of the identity 

N N N N N-I s 
L L Qs,k = L L QN+s-k,k + L L Qs-k,k' 
s=o k=O s=o k=s s=o k=O 

(39) 

where Q = {Qs,k} is an arbitrary square matrix. Formula 
(39) is obtained by reorganizing the sum of the elements of 
Q along diagonals instead of along rows. In view of (39), Eq. 
( 37) can be transformed into 
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+ (2k-s-N+ l)aN+s_ k _ 1 

A av, ] 
X k aq-goakaN+S- k 

N-I s [ A 

+ s~o p2N-S k~O as_kAk -Akas_ k 

+ (2k - s + l)as_ k _ 1A k ~; - goakaS_ k ] = O. 

(40) 

We now notice that the first summation over k can be made 
to start at zero instead of s - 1, whereas the second summa­
tion over k can be extended from s to N. These changes, in 
view of (27), only add zeros to the original sums. In addi-
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tion, in the first sum over s we change the summation index 
from s to s + N; and in both summations over k we change 
the summation index from k to s - k. With these transfor­
mations, (40) reduces to the form 

2N 

L p2N - "r" = 0, 
,,=0 

where 

(41 ) 

av] +(CT-2k+l)ak_ IA,,_k aq' (42) 

valid for O.;;;;q<; 2N. We now notice that the lower limit of the 
sum in (42) can be set to zero whenever CT# 2N. This is true 
because either CT<;N, causing all additional a k ,a k' and a k _ I 
~ be zero, or CT> N, in which case all additional 
A" _ k' A" _ k' and a" _ k will be zero. When CT = 2N the low­
er limit of the sum can also be set to zero provided we remove 
the only nonzero term generated by this transformation. 
That is, we can write 

- A ~N + I02N,u, (43) 

where Oks is the Kronecker delta. 
We ~ext compute the sum involving:4" _ k in (43): 

Equation (6a) can be used to transform the term with 
g" _ k _ s on the right-hand side of (44) into a term propor­
tional to g" _ k _ s _ I' Then we transform the first term in 
( 44) by use of the algebraic relation 

m m-k m m-s m m-s 

L L Bs,k = L L Bs,k = L L Bk,.. m;;'O, 
k=O s=O s=O k=O s=O k=O 

(45) 

which can easily be shown to hold for any matrix B = {B k,s}. 
Using (45) and (27) we can transform (44) into 

" A 
L (akA,,_k -a,,_kakgb) 

k=O 

(46) 

By noticing that the first term on the right-hand side of (46) 
involves A" _ k' we can further write 
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" A 

L [akA,,_ k - a,,_ kakgb] 
k=O 

X (CT- k - s) av ] . 
aq 

Substitution of (47) into (43) results in 

u u-k 

= L Las-I [(CT-2k+ l)ak_lg,,_k_s 
k=Os=O 

(47) 

(48) 

We now change the summation index k to k + 1 in the sec­
ond term in the double summation on the right-hand side of 
( 48). Additional use of (27) allows us to readjust the limits 
of the summations to obtain 

r" + 02N,,,A ~N + I 

" ,,-k av 
= L L as_Iak_ds-k)g,,_k_s-=O, (49) 

k=Os=O aq 
where we have used (45) again. Therefore all r" are zero 
except for CT = 2N. 

Equations (49) and (33) imply 

2 dI a { det AN } 
D dt = - iii det AN _ I . 

(50) 

Thereforedet AN = OimpliesdI Idt = O.Ontheotherhand, 
if dlldt = 0, then [(det AN )/(det AN _ I)]' = 0 implies 
det AN = tf(t)(det AN_I)' wheretf(t) isanarbitraryfunc­
tion of time. Since g2N contains an arbitrary additive func­
tion of time, tf(t) can be chosen to be zero without any loss of 
generality. This can be seen by expanding det AN in minors 
along the last row or the last column. That is, dlldt = 0 
implies thatg2N can be chosen such that det AN = O. There­
fore the possibility of choosing the moments gk such that 
det AN = 0 is both necessary and sufficient for dlldt = O. 
This completes the proof of the theorem associated with 
statement (26). 

V. SOME PRELIMINARY APPLICATIONS 

A direct application of condition (25) for the case 
N = 1 leads to a first-order linear differential equation for 
V(q,t) that can be completely integrated to yield the pre­
viously known result for potentials that admit an invariant 
with only one resonance. For N = 2, Eq. (25) is a nonlinear 
integrodifferential equation. In the special case for which 
go = 0, the condition again becomes a linear partial differen­
tial equation for the potential that can be integrated. The 
result is the class of potentials found by Lewis and Leach. 10 

However, condition (25) allows a wider class of potentials 
that admit an exact invariant with two resonances. In the 
following article, II we exhibit solutions of (25) with N = 2 
for go#O and we look for a class of N = 3 examples. Our 
approach there combines features of the moment formula­
tion with the original resonance ansatz. In this section, we 
use (25) directly to obtain the results of Lewis and Leach for 
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N = 1 and N = 2 and to find two examples with three reso­
nances. 

In order to condense the notation and speed the calcula­
tion we define 

n k 

Pn = '" (- l)ka (k) ~ n)'O 
k~O n-k-I k!' ?', 

(51) 

where the superscripts inside parentheses represent multiple 
time derivatives, 

(52) 

where c(t) is the additive function of time in (2), and a. for 
s:;;'O is an arbitrary function of time. Notice that this defini­
tion implies 

Po=c(t) and P; = -p._ I, for S),J. (53) 

Also define the symbols V: to represent 

Vk=_ .. . vex t)dx .. 'dx Jk fqfX, fX' 
• - atk I' I s' 

(54) 

By using (51 )-( 54) we can calculate the first few gs in the 
form 

go=PI, 

gl =Pz, 

gz =P3 -PIV _P61)V~, 

g3=P4-2PzV-P\\)V~ +PIV: +2P6\)vL 

g4 = Ps - 3P3V - p~\)V~ + 2PzV: + 2PP)V~ 
- 3P6\)V~ + ~PIVV + 3P6\)VV~ 

3 p(1)fQ 
V d - 2" 0 (x,t) V(x,t) x. 

(55a) 

(55b) 

(55c) 

(55d) 

(55e) 

We do not proceed beyondg4 because nonlinearities, which 
already appear in g4' quickly become more severe in the 
higher-order moments and are exacerbated in the determi­
nantal condition. For the three-resonance case we shall use 
gs and g6' but with very simplifying assumptions. Formulas 
(55) suffice for N = 1 andN = 2 in general. We nowconsid­
er the cases of one, two, and three resonances in succession. 

N = 1: All the potentials that admit an invariant with 
one pole are easily determined from (25) using (55a)­
(55c). For this case (25) reads 

g~z =~, (56) 

which is a linear ordinary differential equation for V(q,t). 
Despite its solution being now a well-known result, we shall 
present it once again for two reasons: (i) to display a com­
pact representation of the potential and the associated invar­
iant in terms ofthe discrete moments; and (ii) to exhibit an 
extremely simple and elegant manner of obtaining the result. 
Both these goals are achieved in one stroke by combining the 
present formalism with the original formulation of Lewis 
and Leach. Instead of solving the differential equation (56) 
directly, we make the simple observation that, for N = 1, the 
definition of the moments (5) yields 

(57) 

We now can use the representations of the invariant and the 
potential given by (2) and (4d) to immediately write 

I(q,p,t) = c(t) + gr/(p - gl/go) , (58) 
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and 

av a gl gl a gl 
Jq - at go - go Jq go' 

(59) 

which, as expected, agree with the known result for N = 1 
(see Refs. 10 and 14). 

N = 2: The results for N = 1 are deceptively simple, as 
will become clear by studying the N = 2 case. For the most 
general situation with N = 2, we have to make use of all the 
moments from go up to g4' This last moment is a quadratic 
functional of V and the determinantal condition is a cubic 
functional of V. A close analysis of this condition reveals that 
it can be recast into a partial differential equation for V~ 
with quartic nonlinearity. This equation is of third order in q 
and of second order in t with coefficients that are polynomi­
als in q. 

A solution of condition (25) is any set of functions 
{a -1,aO, ... ,aZN + I> V(q,t)} which make it an identity. Keep­
ing this definition of a solution in mind, we can always start 
by imposing particular values for some or all of the as and/ 
or Vin an attempt to simplify the equation enough to make it 
tractable. Following this philosophy, we impose 
a -I = a o = 0, implying PI = Po = 0 and reducing the sys­
tem (55) to 

go=O, 

gl =Qo' 

gz=QI' 

g3 = Qz - 2QoV, 

g4 = Q3 - 3QIV - Q6\)V~ + 2QoV:' 

where 

(60a) 

(60b) 

(60c) 

(60d) 

(60e) 

(61) 

By this choice of the two initial as, the determinantal condi­
tion is reduced to 

QIV + 2QoV: - Q6\)V~ = 2 QIQZ - Qt - Q3' (62) 
Qo Q~ 

Equation (62) can be viewed as a first-order linear partial 
differential equation for V~, which is the indefinite integral 
of V(q,t) with respect to q.1t can be integrated exactly with­
out any further constraints on the remaining arbitrary func­
tions of time. The results fully coincide with those found by 
Lewis and Leach 10 if the functions p and a are related to a I 
andaz by 

and 

1 
p(t) =---

val(t) 

a(t) = - 1 f' az(t') dt'. 
2val(t) val(t') 

(63) 

N = 3: To illustrate the use of our condition (25) 
further, we derive two potentials for which invariants with 
three resonances exist and we construct the invariants by 
using (17). These examples are the result of a preliminary 
study of the N = 3 case. 

We consider N = 3 and choose go = gl = g3 = 0 and 
gz = 1. This is consistent with (6a) and (6b). All other gk 
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can be calculated from (6a). The result is 

g4= -3V(q,t) -~VI(t), (64a) 

gs = 3 !.. fq 

V(x,t)dx + ~ dVI + Vz(t), 
at 2 dt 

(64b) 

a2 f q fX d
2
V dV g6 = - 3-

2 
dx dy V(y,t) 3 --2-1 qZ ___ 2 q 

at dt dt 
- V3 (t) + .l,fVIV(q,t) + .l,fV2 (q,t), (64c) 

where VI (t), Vz (t), and V3 (t) are unspecified functions of 
time. Condition (25) for this case is simply g6 - g; = 0, 
which is the following integrodifferential equation for the 
potential: 

V 2 (q,t) + VI (t) V(q,t) 

a2 ffY + 2 at Z V(x,t)dx dy = - 4>(q,t), (65) 

where 

A.( 2 dZVI 2 2 dV2 2 V 3 V2 
'I' q,t)=: --q +---q+- 3+- ). 

dt 2 3 dt 3 2 
(66) 

The search for solutions is simplified by starting with the 
equation 

a 2v a Zv2 a 2v 2--+--+ VI(t) --= 
at 2 aq2 aq2 

-4 d
2
VI 

dt 2 
' 

(67) 

which is obtained by taking the second spatial derivative of 
(65). Any solution of (67) can then be substituted into (65), 
which becomes an equation for the remaining unknowns. 
Particular solutions of (65)-(67) can be found easily. Two 
solutions are 

V(q,t) =AtVq, VI = 0, V2 = - ~ 2t 3 +B, V3 = 0, 
(68a) 

and 

V(q,t) = 
VI = A, V2 = - 6Bt + D, V3 = - ~ 2 6C, 

(68b) 

where A, B, C, and D are arbitrary constants. Using those 
solutions in (64) to determine the gk and, with the gk calcu­
lating the an from ( 15), we obtain the corresponding invar­
iants 

1= 1!(p3 + 3AptVq - 2AqVq +!A 2t 3 - 3B) 
(69a) 

and 

1= 1![p3 ± 3p(A 2 + 4C + 4Bq) I/Z + 6Bt], (69b) 

respectively. It is interesting to notice that, although both 
invariants are explicitly time dependent, the first system is 
nonautonomous, while the second is autonomous. The latter 
possesses the energy invariant in addition to I and, therefore, 
we have a complete set of two invariants. The trajectories 
could be determined by, for example, solving the energy in­
variant for the momentum p and substituting this into I. 

VI. FINAL REMARKS 

We have elaborated the momentum-resonance ansatz in 
an advantageous way by introducing discrete momentum 
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moments. We proved a linearization theorem, which shows 
that an N-resonance invariant is associated with the solution 
of a system of linear algebraic equations; and we derived a 
necessary and sufficient condition for the existence of an N­
resonance invariant. Preliminary applications of the expand­
ed formulation include deriving two examples ofthree-reso­
nance invariants and rederiving the previously known 
examples with one and two resonances. We present a more 
detailed study of the two- and three-resonance cases in the 
subsequent article in this journal. II 

It is likely that further understanding of invariants of 
time-dependent dynamical systems can be achieved by using 
ideas described here. An attractive line of investigation 
would be to combine the ideas here with the Lagrangian 
approach developed by Lewis and Leach. 10 Application to 
the Vlasov-Poisson equations of plasma physics and study 
of quantum mechanical systems and systems with more than 
one spatial dimension may also be fruitful. 
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H. Ralph Lewis and Joao Goederta ) 

Los Alamos National Laboratory, MS-F642, Los Alamos, New Mexico 87545 

(Received 19 November 1985; accepted for publication 29 October 1986) 

The momentum-moment formulation of Goedert and Lewis [J. Math. Phys. 28, 728 (1987)] 
and the momentum-resonance formulation of Lewis and Leach [Ann. Phys. (NY) 164,47 
( 1985) ] are used to study one-dimensional, time-dependent potentials that admit invariants 
which are rational functions of momentum with two or three simple poles. New examples are 
presented. 

I. INTRODUCTION 

In the preceding article in this journal, I Goedert and 
Lewis present a formulation for invariants for one-dimen­
sional, time-dependent potentials in terms of discrete mo­
mentum moments. Their discussion is applicable to the case 
where the invariant is a function of a rational function of 
momentum with simple poles. It extends and supplements 
the analysis by Lewis and Leach2 of a momentum-resonance 
ansatz. That ansatz postulates the invariant to be a rational 
function of momentum with simple poles; the analysis by 
Lewis and Leach makes particular use of an expression for 
the invariant as a sum of "resonance" terms of the form 
Vn (q,t)/(p - Un (q,t)), where q, p, and t are position, mo­
mentum, and time, respectively. There are three major re­
sults in the article by Goedert and Lewis I: (i) a linearization 
theorem,which relates the q dependence of the invariant to 
the solution of a linear system of algebraic equations; (ii) a 
necessary and sufficient condition for a potential to admit an 
invariant that is a rational function of p with simple poles; 
and (iii) a derivation of certain relations between the dis­
crete moments of Goedert and Lewis and the quantities 
Un (q,t) and Vn (q,t). In the present article, we use these re­
sults to study the cases of two and three resonances. 

The case of one resonance has been treated earlier by 
Sarlet,3 Lewis and Leach,2 and Leach, Lewis, and Sarlet.4 

All potentials that admit an invariant with one resonance are 
known. The associated forces are rational functions of q with 
coefficients expressible in terms of three arbitrary functions 
of t. The treatment of this case is particularly simple in the 
discrete-moment formulation and is presented in the preced­
ing article. I It is also possible to derive a second invariant for 
these potentials. 5 

A class of two-resonance cases with potentials involving 
an arbitrary function of a time-dependent linear function of q 
has been obtained by Lewis and Leach2

•
6 and Sarlet and 

Ray.7 This class can also be obtained easily in the framework 
of the discrete-moment formulation of Goedert and Lewis. I 
An outstanding question has been whether this class ex­
hausts the examples with two resonances. We have answered 
the question by finding examples with two resonances out­
side this class. Our analysis is based on a characterization of 
all two-resonance cases in terms of an interesting implicit 
change of independent variables. One example of two-reso-

a) Permanent address: Instituto de Fisica, Universidade Federal do Rio 
Grande do SuI, 90049-Porto Alegre, Rio Grande do SuI, Brazil. 

nance cases is for precisely the same class of potentials for 
which there exists a one-resonance invariant. The two-reso­
nance invariant for a potential in this class is not simply a 
function ofthe one-resonance invariant. In the other exam­
ples, the force and invariant are either in a parametric form 
or in terms of the solution of a nonlinear first-order differen­
tial equation. 

We have examined the three-resonance case by using a 
certain generalization of our treatment of the two-resonance 
case. The objective was to obtain a class of three-resonance 
examples that involve an arbitrary function of some function 
of q and t, in analogy with the previously known class of two­
resonance examples. That generalization only led to the po­
tential for a driven, time-dependent linear oscillator. 

In Sec. II we summarize some basic formulas of the mo­
mentum-resonance ansatz2 and the discrete-moment formu­
lation. 1 We also develop the framework within which we 
treat the two- and three-resonance cases in this article. In 
Secs. III and IV we analyze the two-resonance case. In Sec. V 
we consider the three-resonance case. In Sec. VI we make 
some concluding remarks, including some probably fruitful 
directions for further work. 

II. BACKGROUND AND PRELIMINARY 
CONSIDERATIONS 

We begin by summarizing some aspects of the work by 
Lewis and Leach2 and by Goedert and Lewis. I We consider a 
system described by a Hamiltonian 

H = !p2 + V(q,t) (1) 

that admits an invariant (constant of the motion) of the 
form 

I() 
~ Vn (q,t) 

q,p,t = e(t) + ~ 
n = I P - Un (q,t) 

(2) 

where q, p, and t stand for position, momentum, and time, 
respectively. We denote an invariant of this type as an invar­
iant with N momentum resonances. The functions e, Un' 

and v n satisfy 

de a N -+- I v =0, 
dt aq n= I n 

aVn a 
-+-(unvn ) =0, at aq 

av 
aq 

(3a) 

(3b) 

(3c) 
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From the functions Un and Un we construct a set of N discrete 
moments, gk (q,t) , defined by 

N 

gk(q,t) = L u~un· (4) 
n~1 

They satisfy an algebraic recursion relation, 
N 

g[ = - L ang[_n' t~N, (5) 
n=l 

where the an are the coefficients of a polynomial whose roots 
are the Un' 

(6) 

The invariant (2) can be expressed in terms of the discrete 
momentsgk (q,t) and the coefficients an (q,t) by the formula 

l;N N-nl;n a g 
I( ) () 

n~IP k~1 k-I n-k 
q,p,t = c t + N N _ n ' 

l;n~o anP 
(7) 

where, by definition, 

(8) 

The moments satisfy a differential recursion relation in addi­
tion to the algebraic recursion relation (5), 

agk agk _ 1 av k 
---- (k-1)gk_2 -, ;;;.1, 

aq at aq 
(9a) 

with initial condition 

The quantities and relations defined in (1 )-(9b) have been 
discussed by Lewis and Leach2 and by Goedert and Lewis. 1 

As is indicated in the foregoing paragraph, the Un are 
the roots of an Nth-degree polynomial whose coefficients 
figure importantly in the structure of an N-resonance invar­
iant. Motivated by this fact, for N<4, we introduce a repre­
sentation of the Un that displays clearly the relationship 
which the roots of the polynomial must have among them­
selves. That relationship can be expressed by 

N 

Uk =Al + L ykjAj , 1 <k<N, 
j~2 

(10) 

where the Y kj are numbers that only depend on the value of N 
and any particular nonzero Ykj can be chosen to be ofmodu­
Ius unity. For N<4, relation (10) can be verified and 
numbers Ykj determined by examining the formulas for the 
roots of quadratic, cubic and quartic equations.8 We choose 
the numbers Ykj such that the Uk can be written as follows: 

For quadratic equations, 

U 1 =AI +A2' U2 =AI -A2• 

For cubic equations, 

UI =AI +A2 +A3, 

U2 =AI + wA 2 + w*A3, 

U3 =AI + w*A2 + wA3, 

where 

w = ei21r
/

3 = - ~ + i.J3/2, w2 = l/w = w*. 
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(11 ) 

(12) 

(13 ) 

For quartic equations, 

U 1 =AI -A2 + iA 3, 

U2 =AI -A2 - iA3, 

U3 =AI +A2 + iAM 

U4 =Al +A2 - iA4 • 

(14) 

The functions Un are related to the Un and the moments 
gk through the first N of Eqs. (4): 

N 

gk = L u~un' O<k<N - 1, (15) 
n=1 

where the gk are calculated from the differential recursion 
relation (9a) and (9b) in terms of the potential and 2N + 2 
unspecified functions of time ("integration constants"). 
The first of Eqs. (15), which is the definition of go, is the 
solution of (3a). 

Under the assumption that the Un satisfy (3c), the N 
Eqs. (3b) are equivalent to 

a ~ k a ~ k-I 
- £,.- UnUn +- £,.- Un Un 
aq n~1 aq n~1 

k av ~ k-2 
+( -1)- £,.-Un Un' 

aq n~l 
1 <k<N. (16) 

This can be obtained by adding the product of (3b) with 
U~-I to the product of (3c) with (k - 1)u~- 2Un and sum­
ming over n. For k in (16) in the range l<k<N - 1, we can 
use (15) to eliminate the summations in (16), thereby ob­
taining (9a). Because thegk in (15) satisfy (9a) byassump­
tion, Eq. (16) for 1 <k<N - 1 are satisfied identically when 
the Un are determined from (15). When k = N, Eq. (16) is 
not satisfied identically. It is the single condition that must 
be satisfied in order that functions Un and Un satisfying (3c) 
and (15) bea solution of the system (3a)-(3c). By using the 
algebraic recursion relation (5), we can write (16) for 
k=Nas 

a N agN_ 1 av - L akgN- k =--+ (N-l)gN_2 -. (17) 
aq k~1 at aq 

Because the ak are the coefficients of the polynomial (6) 
whose roots are the Un' the ak can be expressed as certain 
symmetric functions of the Un. By so expressing the ak , we 
transform (17) into an equation relating the Un and the first 
Nmoments. 

In the next two sections, we express the un for the two­
and three-resonance cases as in (11) and (12) and base our 
analysis on (3c), (15), and (17). 

III. TWO RESONANCES 

Substitute (11) into (3c) to obtain the following equa­
tions for A 1 and A 2: 

aA I aA2 a [1 A 2 A 2) A A ] _ av --+--+- -( 1+ 2 + 12---' 
at at aq 2 aq 

(18a) 

aA I _ aA2 + ~ [l.- (A i +A ~) -AIA2] = _ avo 
at at aq2 aq 

(18b) 
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The difference and sum of these equations yield 

aA2 a A A 0 --+-( 12) = , 
at aq 

aA I + J.. ~ (A i + A ~) = _ av . 
at 2aq aq 

(19) 

(20) 

We treat (19) by introducing an implicitly defined vari­
able x. Letf(q,t) be a particular solution of 

af +AI af =0. (21) 
at aq 

Define X by 

x =f(q,t) 

and the inverse by 

q = r(x,t). 

From the identity 

x =f[r(x,t),t] 

it is easy to establish the relations 

af af ar/at 
-=--, -=---
aq ar/ax at ar/ax 

(22) 

(23) 

(24) 

(25) 

From (21) and (25), we see that Al (q,t) is expressible as a 
function of x and t by 

(26) 

Equation (19), written in terms of (x,!) instead of (q,t), is 
an ordinary differential equation in t whose solution gives 
A2 (q,t) in terms ofx and t: 

W(x) 
A 2 (q,t) = --, 

ar/ax 

where W(x) is arbitrary. 

(27) 

Having expressed A I and A2 in terms of the as yet un­
known transformation function r(x,t) and the arbitrary 
function W(x), we shall view (20) as a specification of 
av /aqin terms of (x,t) and proceed to write (17) in terms of 
(x,t) as well. This will lead to an interesting and usable char­
acterization of all two-resonance cases in terms of the trans­
formation function. 

By using (20), we express - av /aq in terms ofr(x,t) as 

_ av = a
2
r + J.._1_~ [(W(X»)2] (28) 

aq at 2 2 ar/ax ax ar/ax . 

The coefficients ak and moments gk required for (17) 
can be written as 

a l = - (u l + u2 ) = - lAl' a2 = U I U 2 =A i-A L 
(29) 

go=EI(t)q+E2(t), gl= -!E I (t)q2_ E2 (t)q-E3(t), 
(30) 

where a dot denotes differentiation with respect to t and 
where E I' E2, and E3 are arbitrary functions of t. Condition 
( 17) can be written as 

agl _ ~ [UIU~O - (u l + u2)gd + go av = o. (31) 
at aq aq 
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It can be transformed to 

~ [gl-goAl] +~ [AI(gl-goAl) +goA2] =0 
at A2 aq A2 

(32) 

by mUltiplying by 2/(u l - u2 ) = lIA 2• We define 

ho(x,t) =go[r(x,t),t], hl(x,t) =gdr(x,t),t], (33) 

and write (32) in terms of (x,t) as 

~ [ (ar/ax)2(h l - ho(ar/at») ] + ~ [hoW(X)] = o. 
at W(x) ax ar/ax 

(34) 

Condition (34), which is the expression of ( 17) in terms of 
(x,t), has the following significance. For a two-resonance 
invariant to exist, it is necessary and sufficient that there 
exist functions r(x,t) and W(x) that satisfy (34), where 
ho(x,t) and hI (x,t) are defined by (33). The remainder of 
this section \S devoted to exploring some properties of (34 ) 
and to writing two-resonance invariants and their associated 
forces in terms of solutions of (34). In the next section, we 
proceed to obtain new examples with two resonances. 

The second derivative of r(x,t) with respect to t is relat­
ed to derivatives of f(q,t) by 

(35) 

where we have used the subscript notation for derivatives. 
Thus we can express - av /aq from (28) in terms off(q,t) 
as 

_ av = _ [~_ J, ~] J, +!~ {J, W[f(q,t)]y 
aq at /q aq /q 2 aq q 

(36) 

The class of potentials that admit an invariant which is 
quadratic in p is known2

•
6 and is a subset of the potentials 

that admit a two-resonance invariant. (This is because the 
reciprocal of a quadratic invariant is an invariant with two 
poles.) Those potentials can be obtained by takingf(q,t) to 
be a function of a linear function of q, 

f(q,t) =F(q-a)/p), (37) 

where a(t) andp(t) are arbitrary functions of t. Direct cal­
culation shows that this choice off(q,t) yields 

av p ( ) .. --=- q-a +a 
aq p 

+_1 ~[F,(q-a)w(q-a)]2, (38) 
2p2 aq p p 

whereF'(x) = dF /dx and a dot denotes differentiation with 
respect to t. Because Wand F are arbitrary, (38) gives the 
class of potentials with invariants quadratic inp.1t should be 
noted that the form of F is unimportant for obtaining this 
result. Since any function of a solution of (21) is also a solu­
tion, we could, for example, choose F to be linear. In that 
case, we must be able to satisfy condition (34) by taking 
r(x,t) to be linear in x. That is indeed possible for arbitrary 
W(x) by choosing, for example, ho(x,t) to be identically 
zero and suitably choosing hI (x,t), which is then only a 
function of t. 
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In order to obtain more general solutions of condition 
( 34), it may be useful to view it as an ordinary differential 
equation for W 2(x) given r(x,t) , ho(x,t), and hi (x,t): 

J.. ho dW
2 

+ [~(hO)]W2 = -~ [r;(hl-hwt )]' 
2 rx dx ax rx at 

(39) 

The solution is 

W2(X) = G:Y {D(t) 

-2 (X dx'.!!JL~ [r!,(hl-hWt )]}, (40) Lo rx , at 

where 

D(t) = W 2(x)/( r x lho)21 X=Xo' (40') 

As long as W2(X) calculated from (40) is indeed indepen­
dent of t, then (40) represents a valid solution of (34). Thus 
a characterization of two-resonance examples is that they 
can be derived from any functions r(x,t) , ho(x,t), and 
hi (x,t) if W 2(x) calculated from those functions via (40) is 
indeed not a function of t. [It is to be remembered that 
ho(x,t) and hi (x,t) are linear and quadratic functions of 
r(x,t) as given by (33) and (30).] 

It might be thought that new examples with two reson­
ances could be found by requiring that the ratios of the coef­
ficients in (39) be independent of t, so that W2(X) would 
satisfy an equation that does not involve t. The two equations 
that express this requirement, under the assumption that 
ho(x,t) not vanish identically, are 

~ [~log(ho)] =0, (41) 
at ax rx 

(42) 

Analysis of these equations leads to the conclusion that 
r(x,t) can be written as a linear function of a function of x. 
However, since this is the same as takingj(q,t) to be a func­
tion of a linear function of q, the examples are again from the 
class given by (38). 

The failure of the approach described in the preceding 
paragraph to yield new examples is associated with the fact 
that W(x) enters the determination of av laq from (36) in 
an irrelevant way except when ho(x,t) vanishes identically. 
If ho(x,t) vanishes identically, then W(x) can be removed 
from (34) by multiplication and formula (36) for av laq 
contains W(x) in a nontrivial way. Now suppose that 
ho(x,t) does not vanish identically. Define y and s(Y,t) by 

y = fX W(x')dx', (43) 

s(y,t) = r(x,t) = q, (44) 

and the inversion of ( 44) to give y as a function of q and t by 

y = ¢>(q,t). (45) 

In terms of y and t, condition (34) is 

! {(ZY[gl(S,t) -go(s,t) :;]} + ; [~s~~] =0, 

(46) 
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which does not involve the function W. Equation (36) can 
be written in terms of ¢>(q,t) as 

_ av __ [~_A~] A+J..~¢i (47) 
aq - at ¢>q aq ¢>q 2 aq q' 

which also does not involve W. Therefore, if 
ho(x,t) = go[r(x,t),t] is not identically zero, then av laq is 
independent of the function W. 

In fact, we can go further and transform (46) to a form 
that does not involve the functions go and g I at all. Again 
assume that go(q,t) does not vanish identically and define 

f
S(y't) 

K(y,t) = dq' go(q',t). (48) 

The derivatives of K(y,t) are 

(49) 

(50) 

where we have chosen the "integration constant" in (48) 
such that 

K(y,t) +! €I (t)S2 + E2(t)S + E3(t)· (51) 

Then (46) can be written as 

a [(as)2 aK] a [ aK lay ] 
at ay at = ay (aslay)2 . 

(52) 

As will be apparent shortly, it is useful to define a variable r 
and a function J(y,r) by 

l' = {2 I'dt' EI (t '), for EI (t)~0, (53) 

I'dt' ~ (t '), for EI (t) =0; 

and 

{

[ 1I(2EI)] (EIS + E2)2 = K(y,t) + b( 1'), 

J(y,r) = for EI (t)~0, 

E~ + E3 = K(y,t) , for EI (t) =0, 

(54) 

where 

(55) 

Then (52) becomes 

~[J;~(J_b)]=~[!...], forEI(t)~O, (56a) 
ar Jar ayJy 

(56b) 

Equation (56a) or (56b) is the necessary and sufficient con­
dition for a two-resonance invariant to exist if the moment 
go(q,t) does not vanish identically. 

The introduction of J(y,1') is especially convenient be­
cause the force - av laq and the invariant can both be ex­
pressed directly in termsofJ(y,1'). To calculate the force, we 
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use (44) and (45) to eliminate y from (54), 

J [tP(q,t),1"] = {{1![2EI (t)]}[E1 (t)q + E2 (tW, 
E2 (t)q+ E3(t), 

EI(t)¢O, 

EI(t) =0. 
(57) 

From the two equations obtained from differentiating (57) 
with respectto q or t, we can solve for tPq and tPt and use them 
in (47) to calculate - av /aq. We can express the result 
conveniently in terms of 

X=EI(t)q + E2 (t) [=go(q,t)], 

p(t) = 1!E2 (t), a(t) = - E3(t)/E2 (t)· 

The derivatives tPq and tPt are 

The expressions for the force are 

av 

aq 

(58) 

(59) 

(60) 

(61) 

+ -- --EI - +~X- E2 [ 
1 ( 1 )" 1 ( 1 ).2 ] ()" 
2 EI 4 EI J y EI 

+ 4EiJTT 2- - 4€fJ; _1_, EI(t)¢O, (62) 
X X 3 

_ av = P q+ pii-ap _~[JYTJT + Jyy ], 
aq p p p3 Jy J~ 

EI(t) =0. (63) 

In order to calculate the invariant from (2), we need to 
calculate U I (q,t), u2 (q,t), VI (q,t), and v2 (q,t). We use (54) 
as an explicit relation between J(y,1") and s(y,t): 

{

{1![2EI (t)]} [EI (t)s(y,t) + E2 (t)] 2, 

J(y,1") = EI (t)¢0, 

E2 (t)S(y,t) +E3(t), EI(t) =0. 

(64) 

From the two equations obtained from differentiating (64) 
with respect to y or t, we can solve for Sy and St' From (26), 
(27), (43), and (44), we can express Al and A2 as 

Al = St and A2 = l/sy. 

The result for A I and A2 is 

A _ X 2 EI EI 

{ 

2EIJT + ~(~)'X _ (E2 )', EI (t)¢0, 

1- Ez!T+CJ·(E2q+E3)-(::)'. EI(t) =0, 

EI(t)¢O, 

EI (t) =0. 

(65) 

(66) 

(67) 

The functions U I and U2 are given in terms of A I and A2 by 
(11). 

The functions VI (q,t) and v2 (q,t) are obtained by solv-
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ing Eqs. (15). The result is 

VI = (gou 2 - gl)/(U2 - u I ), 

V2 = (gl - goul)/(uz - u l )· 
(68) 

Finally, the invariant is expressed in terms of U I' U2, VI> 

and V2 by (2). 
In the next section, we find solutions of (56a) and (56b) 

that give two-resonance examples of invariants for potentials 
outside the class given by (38). 

IV. PARTICULAR SOLUTIONS WITH TWO 
RESONANCES 

In this section we find solutions of (56a) and (56b) that 
determine potentials with invariants of two-resonance form. 
We begin with (56a) and assume a solution of the form 

J(y,1") = 8(1")Y + t/!(1"). (69) 

Substitution of (69) into (56a) and integration once with 
respect to 1" leads to 

82 ~ (8y + t/! - b) = (1" - 1"0)(8y + t/!). (70) 
a1" 

In order for (70) to hold, both the linear and constant terms 
iny have to be equal separately: 

a8 8- = 1" -1"0 (7Ia) 
a1" 

and 

at/! 1" - 1"0 t/! _ db 
a1" --r - d1" . 

(7Ib) 

Equation (71a) has the general solution 

8 2 = r - 21"01" -1"1' (72) 

Equation (7Ib) can be transformed by use of (7Ia) into 

at/! _~ a8 t/!= db. (73) 
a1" 8 a1" d1" 

This last equation can be integrated exactly, 

fT 1 db 
t/!( 1") = 808 + 8 - - d1"', 

8 d1"' 
(74) 

where 80 is a constant. 
TheJ(y,1") defined by (69), (72), and (74) determines 

a force that possesses a two-resonance invariant. The result, 
according to (62), is 

_ av = _ V_ 3 _ V_ 2 _ V_I _ V
o

- VIX (75) 
aq X 3 X 2 X ' 

where 

V_ 3 =4€fb;, 

V_ 2 =0, 

V_I= -4EibTT , 

Vo = (E2/EI)", 

EI 3 €i -2 EI 
VI =----+ 3(TO +1"1)-' 

2Ei 4~ ~ 

(76a) 

(76b) 

(76c) 

(76d) 

(76e) 

Here we make the surprising observation that the force 
given by (75) and (76) has exactly the same q dependence as 
that associated with a one-resonance invariant. 2 In fact, as 
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we shall demonstrate, the class of forces represented by (75) 
and (76) is the same as the class for which there exists a one­
resonance invariant. 

Let us denote the potential for the one-resonance case by 
W(q,t) and write - aw /aq in the form2 

- ~~ = - ~-;3 _ WQI _ Wo - WIQ, (77) 

where 

Q=aq+p, (78) 

and 

W_ 3 = r/(4a), (79a) 

W_ I = (a/2)(y/a2
)", (79b) 

Wo = (P /a)"', (79c) 

WI = (a/a2
)", (79d) 

where a, p, and yare arbitrary functions of time. 
We now show that the class of forces represented by 

(75) and (76) and (77)-(79) are the same. We assume that 
the forces are not simply linear in q. Therefore, € I (t) and 
a(t) are nonzero and the forces are singular in q. For the 
forces to be equal, their singularities must be located at the 
same value of q, which implies 

(80) 

where A (t) is an as yet unspecified function of t. An immedi­
ate consequence of (80) is 

X=AQ. (81) 

Therefore the necessary and sufficient conditions for the 
forces to be equal are 

V_ 3 =A 3W_ 3, 

V_I=AW_ I, 

Vo= Wo, 

AVI=WI· 

By virtue of (80), condition (82c) is satisfied. Define 

(82a) 

(82b) 

(82c) 

(82d) 

a(1") =a(t), f\(1") =€I(t), r(1") =y(t), A(1") =A(t). 
(83) 

Then condition (82b) reduces to 

b - 1 d [Ar,. J ,.,. - -"2 d1" T' (84) 

with the solution 

b,. = - ¥r,./a + CI' (85) 

where c I is a constant. Condition (82a) is then equivalent to 

c i =0. (85') 

Condition (82d) can be written as 

(86) 

This equation has a two-parameter family of solutions for 
each pair (1"0,1"1)' For any pair (1"0,1"1) and any function 
E I ( 1"), we can choose a particular a ( 1") to satisfy (86). For 
that a(1"), we can then choose any other pair (1"0,1"1) and 
choose another function E I ( 1") to again satisfy (86). Thus 
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varying (1"0,1"1) does not vary the class of forces that can be 
represented by (75) and (76). The pair (1"0,1"1) can be cho­
sen for convenience and any particular solution of (86) can 
be used for making the forces (75) and (77) equal. Given 
either a ( 1") or E I ( 1"), the solution of (86) then determines 
A ( 1"). Thus we have demonstrated that the class of forces 
represented by (75) and (76) is the same as the class with a 
one-resonance invariant. 

Our two-resonance invariant for the force given by (75) 
is obtained by calculating U I, U2, VI' and V2 from (11), (66), 
(67), and (68). The result is 

U
1 

= 2€lb,. _ (iL _ D,. + ~)x _ (€2)', (87) 
2 X 2~ D D €I 

VI = (1 +D,.)X /2. (88) 
2 

The invariant is 

Jt , X ( 1 - D,. 1 + D,. ) 
I(q,p,t) = - €Idt +- + . 

2 p-u+ p-U_ 
(89) 

This invariant is functionally independent of an N = 1 
invariant for the same force for nearly all values of 1"0 and 1" I' 

An N = 1 invariant can be written as l
,2 

II = c(t) P - (gl/go - (go/c») , 
p - (gl/go) 

where 

c(t) = - r dt' €I(t')· 

(90) 

(90') 

The only class of N = 2 invariants that can be constructed 
from II is 

12 = kill + k2/II' (91) 

where kl and k2 are any constants. The poles for 12 are 

(92) 

An examination of (87) shows that the poles for the two­
resonance invariant defined by (89) satisfy 

U2 -U I = -go/c= -XIc (93) 

only if 1"0 = 1"1 = O. A similar consideration shows that near­
ly all of the N = 2 invariants derived in Ref. 2 for this force 
are also functionally independent of II' 

New two-resonance examples can be found by applying 
the Lie theory of extended groups to (56a) and (56b) to 
identify similarity solutions. Following BIuman and Cole9 

with the help of a MACSYMA computer code written by J. L. 
Schwarzmeier, the only similarity variable that we found is 

x = 1"Y· (94) 

In terms of this variable, there are similarity solutions of the 
form 

J(1",y) =F(X) =F(ry). (95) 

Using (95) as an ansatz in (56a), we find that b( 1") has the 
form 

b( 1") = ko + kl log 1", (96) 

where ko and k I are constants. Assuming b ( 1") to be of this 
form and substituting (95) into (56a), we get a second-or­
der ordinary differential equation for F(X)' That equation 
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can be integrated once with the result 

XF'2(XF' - kl)/F= 1/F' +Fo, (97) 

where Fo is an integration constant. Any solution of this 
equation will lead to a potential with a two-resonance invar­
iant. These examples are new. 

We now turn to a consideration of (56b). An ansatz like 
(69) would not lead to anything new because theny could be 
expressed as a linear function of q, which would imply that 
the force is in the class defined by (38). Therefore we adopt 
the similarity ansatz (95). 

Substituting (95) into (56b) and integratmg once with 
respect to X yields 

(98) 

where Fo is an integration constant. Here we make the obser­
vation that if the solution of (98) were a homogeneous func­
tion of X then the similarity solution would be separable and 
the resulting potential would belong to the same category 
represented by (38). In fact, by assuming F = XE we find 
that E would have to satisfy 

4€ - 2 = E - 1 = 0, (99) 

which is impossible. If we took Fo = 0, then the solution of 
(98) would be 

( 100) 

where k and FI are constants. But, from (54), (44), (43), 
and (22), this solution implies thatj(q,t) is a function ofa 
linear function of q; therefore the potential would again fall 
into the category represented by (38). The conclusion is that 
we have to find a solution of (98) with Fo=l-O in order to 
obtain a potential that is not already included in (38). This is 
possible to achieve in parametric form because (98) does not 
depend explicitly on F (see Ref. 10). 

To find the parametric solution of (98), we first solve 
(98) for X: 

= ct>(dF) = (1+FodF/dX)I/2 (101) 
X dX (dF /dX)2 

Then 

F(X) = FI + AX - r' ct>(u)du, 

X = ct>(A) = (1 + FoA)I/2/A 2, 

( 102a) 

( 102b) 

where FI is a constant, is a solution in terms of the parameter 
A. The parameter A is given implicitly as a function of X by 
(102b). Performing the integral in (102a) we get 

F(X) = FI + 2 (1 + FoA)I/2 
A 

Fo ((1 + FoA)I/2 + 1) +-log . 
2 (1+FoA)I/2-1 

(103) 

TheJ(y,1') defined by (103), (102b), and (95) deter­
mines a force that possesses a two-resonance invariant. The 
result according to (63) is 
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_ av = P q + piX - ap 
aq p p 

_J..J.. 2Fo(1 + FoA)I/2 
p3 r (4 + 3FoA) 

(104) 

Were it not for the factor of 1/ r, this force would be in the 
class represented by (38). This is a result of (103), (95), 
(54), and (44), which show that A is a function of 
E2q + E3 = (q - a)/p. Because of the factor 1/r, the force 
given by (104) is a new example of a force with a two-reso­
nance invariant. 

Our two-resonance invariant for the force given by 
(104) is obtained by calculating UI, U2, VI' and V2 from (11), 
(66), (67), and (68) using 

Jy = A 1', J
T 

=Ay, y= (1 + FoA)I/2/(1'A 2). (105) 

Because EI is zero, c(t) will be a constant. We incorporate it 
into the invariant and write 

I(q,p,t) = vI/(p - uI) + v2/(p - U2)' (106) 

V. THREE RESONANCES 

The three-resonance case can be formulated in analogy 
to the formulation for two resonances that was presented in 
Sec. III. Although we have not been able to carry the analy­
sis through in detail, we present the formulation in order to 
provide a basis for further study. 

The following equations for A I' A2, and A3 are obtained 
by substituting (12) into (3c): 

aA I aA2 aA3 -+-+-
at at at 

+ ~[J.. (A i + A ~ + A ~ ) 
aq 2 

] 
av 

+ A IA2 + A03 + A IA3 = - iii ' 
aA I + OJ aA 2 + OJ* aA 3 
at at at 

+ ~[J..(A i + OJ* A ~ + OJA ~ ) 
aq 2 

+ OJAIA2 + A03 + OJ*AIA3] = - ~; , 
aA I * aA2 + aA3 --+ OJ -- OJ--
at at at 

a[lA2 A2 *A 2) +--( I+ OJ 2+ OJ 3 
aq 2 

+OJ*A1A2+A:03+OJAIA3] = _ av. 
aq 

( 107a) 

( 107b) 

( 107c) 

Subtract (107a) from (107b) and (107c) and add (107a) 
through (107c) to get 

E aA2 + E* aA3 
at at 

+ : [~ (E*A i + EA ~) + EAIA2 + E*AIA3] = 0, 

q (108a) 
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E* aA2 + E aA3 
at at 

+ ~[~ (EA ~ + E*A i) + E*AIA2 + EAIA3] = 0, 
aq 2 

( 108b) 

aA I + ~ [~A i +A~3] = - aaqV, 
at aq 2 

(109) 

where 

E=W-l. ( 110) 

In analogy with the treatment for two resonances, we try to 
satisfy (108a) and (108b) in a general way and we take 
(109) as a formula for calculating av /aq in terms of A I' A2, 
andA3 • 

The difference of ( 108a) and (108b) is equivalent to 

~ (A 2 -A3) 
at 

+ ~ {(A2-A3)[A I - ~(A2+A3)]}=0' (111) 

This is of the same form as ( 19). We again define a variable x 
and functionsf(q,t) and r(x,t). The functionf(q,t) is some 
particular solution of 

af + [AI - ~ (A2 +A3)] af = o. 
at 2 aq 

The variable x is defined by 

x =f(q,t) 

and the inverse is 

q = r(x,t). 

In analogy with (26) and (27) we have 

1 ar 
A I - T (A 2+A3)= at' 

A A _ W(x) 
2 - 3 - ar/ax' 

(112) 

(113 ) 

(114) 

(115) 

(116) 

where W(x) is arbitrary. Thus A2(q,t) and A3(q,t) can be 
written in terms of r(x,t) and W(x) as 

A =A _ ar +~ W(x) 
2 I at 2 ar/ax' 

(117a) 

A3 =A
I

- ar _~ W(x) . 
at 2 ar/ax 

(117b) 

The sum of (108a) and (108b) yields 

+ ~ [~(A ~ +A ~) +A I(A 2 +A3)] = 0, (118) 
aq 2 

which, by using (117), can be written in terms of x and t as 
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a rt a 1 a [B 2 2-(BI -rt )-2--(BI-r,)+-- (I-rt) 
at rx ax rx ax 

+! (~~X)r+2BI(BI-r,)]=0, ( 119) 

where 

BI(x,t) =AI(q,t)· (120) 

We have not succeeded in solving ( 119) and, therefore, 
cannot proceed to study (17) with this approach. We at­
tempted to get a class of solutions by viewing (119) as an 
ordinary differential equation for W 2 (x) and requiring that 
the ratios of the coefficients be independent of t. That analy­
sis led to the conclusion that the potential would have to be 
restricted to the case of a driven linear oscillator. Since that 
problem is well understood, it was unnecessary to study ( 17) 
in this case. 

VI. DISCUSSION 

We have succeeded in establishing a fairly clear picture 
of two-resonance invariants and the potentials which admit 
them. Our examples extend the previously known examples 
of two-resonance invariants in an interesting way. The case 
of three resonances remains poorly developed. 

An attractive avenue for further research, which holds 
the prospect for progress when there are more than two re­
sonances, is to return to the general considerations presented 
by Lewis and Leach in Sec. VI of Ref. 2. If our results for the 
two-resonance case were understood in their context, then it 
would seem likely that the case of three or more resonances 
could be tackled more successfully. 

It would also be valuable to investigate the conse­
quences of removing the restriction of simple momentum 
poles in the original ansatz for the form of an invariant. 
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In an ideal two-dimensional incompressible fluid, B statistics for a pair of identical quantum 
point vortices is not well defined. 

I. INTRODUCTION 

The classical equations of motion for point vortices in an 
effectively two-dimensional incompressible fluid (e.g., a 
thin film) are well known to form a Hamiltonian system. 
The relative motion of two vortices of equal circulation is 
described by the equation dxl dt = {x,H} = aH lay and 
dyldt = {y,H} = - aH lax, where, after subtracting the 
individual vortex self-energies, H = - 1T-

1 ln(x2 + y2), 

and where the Cartesian coordinates x = x I - X2 and y = y I 
- Y2 are canonically conjugate; i.e., {x,y} = 1. For simpli­

city we have set the circulation K 2, a scale factor a = 1, 
and po = I (where p is the density and 0 the thickness of the 
fluid film). Using the fact that the phase space for this sys­
tem has a nontrivial topology (that of the plane R2 without 
the origin), it was recently argued in an interesting paper I 
that the quantum vortices obtained by quantizing these clas­
sical equations obey the B statistics introduced earlier for 
two-dimensional particle systems by several physicists,2 
with either B = 1T12 or 31T12. This conclusion is based on a 
change of variables between Cartesian and polar coordinates 
which appears to allow the introduction of a polar angle l/J 
and an associated winding number (of one vortex about the 
other), in terms of which the B statistics can be defined. The 
allowed values of B are determined from the eigenvalues of 
the angular momentum operator. Subsequently the conclu­
sion was generalized to B(N) = 1TIN or 1TIN + 1T for the 
case of N identical point vortices.3 

In this paper, we conclude that it is in fact not possible to 
assign B statistics consistently to identical point vortices in 
an incompressible fluid within the framework of quantizing 
the above classical equations. Mathematically, the statistics 
of a quantum system depends on the topology of its configu­
ration space, not its phase space.4 In this sense statistics is 
kinematical rather than dynamical. We shall see below that 
although the classical phase space for this problem is multi­
ply connected, no multiply connected quantum configuration 
space can be introduced that is consistent with the interpreta­
tion of the angular momentum operator as the generator of 
phYSical rotations. In particular, a mathematical argument 
taking account of operator domains demonstrates that this 
cannot be accomplished by transforming to polar coordi­
nates as in Ref. 1. We also consider other proposed phase 
operators,5 and examine why they cannot be used in this 
context to define B statistics. 

The physical reason underlying our result is the follow­
ing. Because x and yare canonically conjugate, the problem 
is effectively one dimensional. The uncertainty principle im-

plies that the winding number can be measured only for tra­
jectories where the vortices are well separated. If the vortices 
are sufficiently close (so that the region of uncertainty in­
cludes the origin), one cannot observe whether one vortex 
has passed "above" or "below" the other. Consequently B 
statistics cannot be defined in terms of the winding number. 

II. QUANTIZATION IN CARTESIAN AND POLAR 
COORDINATES 

Let us see why in the context of the present model the 
transformation from Cartesian to polar coordinates cannot 
be implemented quantum mechanically. Classically we have 
x = r cos l/J and y = r sin l/J, with {r 12,l/J} = 1 and 
H = - 1T-

1 ln r. To construct an analogous quantum-me­
chanicaltransformation, lettheoperatorsx,y = (lIi)d Idx, 
and H = - 1T-1 In(x2 + y2) be defined on the "Cartesian" 
Hilbert space JY'c = L 2 (R), where x and y satisfy [x,y] = i 
(setting fz = 1). The spectrum of (x2 + y2)/2 is the usual 
"harmonic oscillator" spectrum {n + !; n = 0, 1,2, ... }. Like­
wise letthe operators l/J and r 12 = - (lIi)d I dl/J be defined 
on the "polar" HilbertspaceJY'p = L 2(S 1), where the com­
mutator [r 12,q,] = i formally holds. Next consider the do­
mains on which these operators are defined. Since l/J is 
bounded, it is defined everywhere; D( l/J) = JY'p. There is, 
however, a one-parameter family of distinct self-adjoint op­
erators which can be defined from the differential operator 
- (lIi)d Idq" on the domains De of suitably smooth func­
tions <I>(l/J) such that <I>(21T) = exp( - iB)<I>(O). Defining 
yZ/2 on De, its eigenfunctions are exp[ - i(n + B 121T)l/J] 
witheigenvaluesn + (j 121Tforn = 0, ± I, ± 2 •... , which are 
unbounded above and below. 6 

Now a symmetric form of the coordinate transforma­
tion is needed to preserve the self-adjointness of the opera­
tors, which led [Ref. 1, Eqs. (18) and (19) J to the definition 

x = [exp(il/J/2)rexp(il/J/2) 

+ exp( il/J/2)r exp( - il/J12) ]12, 

y = [exp(il/J12)rexp(il/J/2) 

- exp( - il/J/2)r exp( - il/J12J12i. 

(1) 

We have introduced tildes in these equations to label 
operators that act in JY'p rather than JY'c. For the physics to 
be independent of the choice of coordinate system, there 
must be an isometry U: JY'c -JY'p such that x = U -IXU 
and y = U -lyU. In order for the transformation of Eq. (1) 
to be defined, the operator r must exist. But r can be defined 
only on the subspace of JY'p where the spectrum of r is 
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positive. Consequently the best one can do in setting up a 
correspondence between Cartesian and polar coordinates is 
to define U to map JYc onto a subspace JY/ of JYp • 

To determine the appropriate subspace JY/ and con­
struct U, we consider the angular momentum operator L z in 
JYc , defined to be the infinitesimal generator of physical 
rotations. Thus 

R(a)-lxR(a) = x cos a - y sin a 

and 

R(a) -lyR(a) = y cos a + x sin a, 

where R(a) =exp( -iaLz ), leading to the formula L z 

= - (x2 + y2)/2 + c, where c is a constant. In Ref. I the 
choice c = 0 is made. In any case, the spectrum of L z is 
{- (n +!) + c; n = 0,1,2, ... }. Let 

Iz = - (x2 + y2)/2 + c 

be the corresponding operator in JYp • From Eqs. (1) we 
have 

Iz = - [exp(ic,b/2),-2 exp( - ic,b/2) 

+ exp( - ic,b/2),-2 exp(ic,b/2)]l4 + c. (2) 

For the negative eigenvalues of Iz - c to coincide with the 
spectrum of Lz - c, it is necessary in Eq. (2) for the domain 
of,-2 to beD8 =o and the domain ofiz to beD8 =1T. Then we 
must choose JYp+ to be the closed subspace of JYp spanned 
by {exp[ - i(n + !)c,b]; n = 0,1,2, .. .}. Now Eq. (2) makes 

senseinJYp , whileiz maps vectors inJY/ nD8 =1T toJY/. 
The commutation relation [,-2 /2,c,b] = i is satisfied on the 
dense domain of vectors <l>ED8 =o such that c,b<l>ED8 =o 
(which is not, however, a very large domain-its elements 

are wave functions that vanish at ifJ = 0 and ifJ = 211', and thus 
belong to D 8 for all (). Moreover in Eqs. (1), x and y map 
vectors in JY/ nD8 =1T to JYp+, and the transformation 
makes sense in JYp with 

r:exp( -inifJ)-+(2n)I/2exp( -inc,b) forn;;.O. 

We emphasize, however, that the domain ofiz is not the same 
as the domain of,-2. Thus the classical relation x 2 + y2 = ,-2 is 
not valid as an operator equation, nor can x 2 + y and ,-2 be 
made equal by adding a constant, although they are both giv­
en by the same differential operator - (2/i)d IdifJ on their 
respective domains. 

Nevertheless, we can use the correspondence between 
eigenfunctions of Lz and I z to define U. The eigenfunctions 
of L z are normalized Hermite functions \II" (x), 
n = 0,1,2, .... The eigenfunctions with corresponding eigen­
values of I z in JY/ are 

<1>" (ifJ) = (211')-1/2 exp[ - i(n + !)ifJ]. 

The isometry U is now generated by linearity and continuity 
from U\II n = <I> n • Thus the image of U is JY/ ' and ULz U- I 

= Iz on the domain of Iz in JYp+ . A simple computation 
verifies that <I> n satisfies the same recursion relation for x as 
\II n does for x, namely 

similar argument UyU -I = y. This construction of U paral­
lels that used in discussing action-angle variables. 7 

Since the vortices are identical, the wave functions that 
describe them must undergo a fixed phase change when ro­
tated by 11' (not just by 211'). The equation exp( - i11'Lz )\II" 
= exp(i()\II" in JYc , or equivalently exp( - i11'Iz )<1>" 
= exp(i()<I>" in JY/, gives exp[i11'(n + 1/2 - c)] 
= exp(i(). Thus either n = 0,2,4, ... with () = (! - C)11', or 

n = 1,3,5, ... , with () = (~ - C)11'. 
But it is now apparent that U is incompatible with the 

operator c,b. For any nonzero <I> in JY/ ' ifJ<I> is not in JY/ ; 
thus ifJ is not an operator in JY/ . This means the polar angle 
operator on JYc , U -lc,b U, does not exist because the range of 
ifJ U meets the domain of U -I only at <I> = o. In short it is not 
possible to choose the domains of self-adjoint operators 
x,y,,-2, and ifJ so that the Cartesian and polar coordinate de­
scriptions are equivalent, with Eqs. (1) and the commuta­
tionrelations [x,y] = iand [,-2/2,ifJ] = isimultaneouslysat­
isfied on appropriate subdomains. Thus the polar angle ifJ is 
not an observable, and cannot be used to measure a winding 
number for the quantum vortices. While one can talk math­
ematically about a phase change of exp(i() in a wave func­
tion under the action of the rotation operator exp ( - i11'Lz ), 

one cannot perform a physical measurement of the phase. As 
a result the constant c in L z is physically indeterminate, and 
therefore arbitrary. 

For the case of a coherent state describing widely sepa­
rated vortices, such as an asymptotic state in a semiclassical 
approximation, a winding number could be defined by 
localizing in x and y, and defining the phase angle as 
tan -I ( (y) I (x) ). But because high angular momentum val­
ues enter, a small uncertainty in the angle results in a large 
uncertainty in the phase shift. Thus c remains indeterminate 
even in the semiclassical approximation. 

III. OTHER CANDIDATES FOR THE PHASE 
OBSERVABLE 

We have seen in detail why the polar angle ifJ is not an 
observable. Let us now consider other candidates for the 
phase observable. The operator ifJ' = U -I PifJ U, where P de­
notes orthogonal projection onto JYp+, defines a bounded 
self-adjoint operator (and thus an observable) in JYc • It 
turns out that ifJ' is equivalent to the phase observables de­
fined to be canonically conjugate to the number operator 
Nop in Ref. 5 (with L z equivalent to - Nop - ! + c). Thus 
L z and ifJ' are canonically conjugate on a certain domain; 
however, the domain is not sufficiently large to permit ex­
ponentiation of the commutation relation. Since ifJ' is self­
adjoint, one can transform to a Hilbert space JY' = L 2(S I) 
on which ifJ' is diagonal; i.e., ifJ'<I>' (w) = w<l>' (w) for all 
<I>'EJY'. To describe the effect of a physical rotation on c,b', 
define ifJ~ = exp(iaLz )ifJ' exp( - iaLz )· For statistics to be 
associated with measurement of the winding of vortices, it 
would have to be the case that 

ifJ~<I>'(w) = [(w + a)mod 211']<I>'(W), 

x<l>n = [(n + 1) 1/2<1>n + 1 + n l
/
2<1>" _ 1 ]12. whence ifJ' and ifJ~ would commute. But it can be shown ex­

plicitly that [ifJ',ifJ~] #0. Indeed, for ifJ~ to act as indicated 
Hence Ux U - 1 = X on the domain of x in JY/ ' and by a would require Lz to be an infinitesimal generator of rotation 
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in OJ space. Then L z would necessarily be a self-adjoint oper­
ator (1/i)d IdOJ on a domain D(j of suitably smooth func­
tions 4>(OJ) such that 4>'(211") = exp( - i8)4>'(O), with 
eigenvalue spectrum unbounded above and below-and 
could not be the physical rotation operator for our problem. 

IV. COMMENTS ON RELATED MODELS 

A. Vortex dipoles 

We have seen that 8 statistics is ill-defined for identical 
quantum point vortices. The same argument applies to a pair 
of distinguishable vbrtices, as long as the relative coordinates 
are canonically conjugate, which is true unless the vortices 
have equal and opposite circulations. In that case the x and y 
relative coordinates commute.8 This occurs because the cir­
culation enters both the Hamiltonian and the commutation 
relations. When the vortices are identical, x and y commute 
with X = (XI + x2 )/2 and Y = (YI + Yz)/2, respectively, 
i.e., [x,x] = [y,Y] = 0, while [x,y] = 4[X,Y] = i. When 
the circulations are opposite, x and y commute with each 
other and are conjugate to X and Y, respectively. Thus x and 
y can be observed simultaneously by giving up information 
about X and Y, and the configuration space, R2 without the 
origin, is multiply connected. When one vortex circles the 
other by 211", the wave function can be multiplied by an arbi­
trary observable phase exp (i8), with any value of 8 between 
o and 211" kinematically allowed. Such a "vortex dipole" sys­
tem is of interest because of its relation to the Kosterlitz­
Thouless mode1.9 As has been remarked elsewhere, in two 
dimensions "unusual statistics" makes sense even for parti­
cles which are not identical. 4 

B. MicroscopiC model for a compressible superfluld 

Haldane and WU,IO starting from a particular micro­
scopic model for a compressible superfluid, have also argued 
that 8 statistics for identical quantum point vortices is ill 
defined. While we agree with their conclusion, we stress that 
the results established here are rigorous, do not depend on a 
particular microscopic model, and follow directly from the 
assumptions of the model of Ref. I, irrespective of its intend­
ed domain of application. 

C. Quantum hydrodynamics 

The authors have proposed that theories of quantum 
hydrodynamics based on infinitely many degrees offreedom 
can be obtained from the classical configuration space. II For 
a two-dimensional, incompressible fluid, this space can be 
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identified 12 with the group Diffv (R 2) of all volume-preserv­
ing diffeomorphisms of R2. Quantization of such theories 
leads to the study of unitary representations of Diffv (R2

). 

This in fact first led us to the conclusions presented here. It 
turns out that the idealization of pure point quantum vorti­
ces is inconsistent in this picture. Quantum vortex systems 
that do exist (e.g., extended objects) possess degrees offree­
dom which have the effect of permitting the relative x and y 
coordinates to be simultaneously observable! Thus we antici­
pate that in effectively two-dimensional vortex systems, sta­
tistics can be observed. The determination of Bose, Fermi, or 
8 statistics is then an experimental question. Quantum vorti­
ces from this point of view are discussed by the authors in 
Ref. 13. 
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ERRATUM 

Erratum: Spherically symmetric perfect fluid solutions in isotropic 
coordinates [J. Math. Phys. 27, 1363 (1986)] 

Joseph Hajj-Boutros 
Physics Department, Lebanese University, Mansourieh El-Metn, P. O. Box 72, Lebanon 

(Received 5 May 1986; accepted for publication 7 May 1986) 

On p. 1364, the left-hand side ofEq. (3.2) should read 81Tp. 
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