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It is shown that Thomae’s identity between two ,F, hypergeometric series of unit argument
together with the trivial invariance under separate permutations of numerator and
denominator parameters implies that the symmetric group S is an invariance group of this
series. A similar result is proved for the terminating Saalschiitzian ,F, series, where S is shown
to be the invariance group of this series (or S; if one parameter is eliminated by using the
Saalschiitz condition). Here Bailey’s identity is realized as a permutation of appropriately
defined parameters. Finally, the set of three-term relations between ,F, series of unit argument
discovered by Thomae [J. Thomae, J. Reine Angew. Math. 87, 26 (1879)] and systematized
by Whipple [F. J. Whipple, Proc. London Math. Soc. 23, 104 (1925)] is shown to be
transformed into itself under the action of the group 5, X A, where A is a two-element group.
The 12 left cosets of S X A with respect to the invariance group Ss are the structural elements
underlying the three-term relations. The symbol manipulator MACSYMA was used to obtain

preliminary results.

L. INTRODUCTION

The generalized hypergeometric function—a natural
extension of Gauss’s function [see Slater! (Chap. 2) ]—has
proved to be of interest, not only as a mathematical object,
but also as a tool in physical applications. For example, the
functions ,F, and ,F; with unit argument occur, respective-
ly, in the definitions? (p. 429) of the Wigner coefficients and
the Racah coefficients for SU(2). These functions have a
high degree of symmetry in their parameters; this property
was investigated systematically by Thomae in 1879,® who
derived a two-term relation for ,F,. This relation was redis-
covered by Ramanujan® (p. 104), sometime before 1919.
Thomae’s work was reformulated by Whipple.® In addition
to numerous papers on generalized hypergeometric series,
Bailey® wrote an influential monograph in which he gave a
two-term relation for the finite form of ,F,, which still bears
his name. Here the fourth numerator parameter is a negative
integer, so that the infinite series becomes a rational func-
tion. (For this identity and the Saalschiitz condition which
must hold, see Sec. I1.) Variations of Bailey’s identity occur
in the definition of the Wigner~Clebsch—Gordan coefficients
of SU(3).”

For ,F, at least, there also exist three-term relations,
known since the time of Thomae. These and the two-term
relations mentioned above are (partially) given in tabular
form in Slater’s book.! Slater, however, does not discuss the
invariance properties that underlie these relations, nor is the
total number of possible relations established.

In the present paper we show that Thomae’s two-term
relation for ,F, and the invariance of the series to separate
permutations of the numerator and denominator parameters
may be subsumed under a single invariance group. Thus, we
show that under a rescaling of the function [ (2.6a) below]
and a linear transformation of parameters [ (3.4) below],
the new function is invariant under all permutations of the
new parameters, so that the symmetric group S; is the invar-
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iance group. A similar result is proved for the terminating
Saalschiitzian ,F, series, where it is Bailey’s two-term identi-
ty [(2.3) below] that leads to the symmetric group S as the
invariance group, or S; if one variable is eliminated by the
Saalschiitz condition [ (3.11b) below]. For these two-term
cases it is immediate that the number of distinct relations is
5!in each case.

The Ss symmetry property obtained here for the ,F, se-
ries generalizes a result of Wilson.® He found that Bailey’s
identity implies an S, symmetry in the four parameters of 2
certain class of orthogonal polynomials that are functions of
a variable 7 %, these polynomials being defined in terms of the
terminating Saalschiitzian ,F; series of unit argument. This
S, symmetry was also found by Biedenharn and Lohe® in
their generalization of Bailey’s identity.

The set of three-term relations for ,F, turns out to be
transformed into itself under the group S, X A, where Aisa
two-element group. The 12 cosets of this group with respect
to the invariance group Ss are the key structural elements
leading to the determination of all three-term relations. The
number of distinct relations is (3*) = 220; to get this result
requires some work.

The symbolic manipulation computer program MAC-
SYMA played a substantial role in obtaining and verifying
many preliminary results, which led to direct proofs of many
of the theorems.

il. THE BASIC EQUATIONS
A. Notational conventions

In general, ,F, and ,F; are, apart from parameters, func-
tions of a single variable z. In fact, they are power series. In
this paper, we shall always take z = 1. Here ,F,(z) does not
converge atz = 1 unless the numerator parameters a,b,c and
the denominator parameters d,e satisfy

Re(d+e—~a—b—c)>0.
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For ,F,(z=1) we consider only the “terminating” case
where the numerator parameters are a,b,c, — n, with n a
non-negative integer. We also require that the Saalschiitz
condition be fulfilled (see Sec. II B below). In our notation
for the generalized hypergeometric series of unit argument,
we display only the numerator and denominator parameters
[cf. (2.1a) below], which are then the variables for this anal-
ysis.

In the sequel we write the ;F, parameters as a five-tuple
a = (a,b,c,d,e). This five-tuple is treated as a column vector
when operated on by an appropriate matrix, i.e., a linear
transformation. Similarly for ,F;, but here the integer pa-
rameter n is fixed, and is omitted from the corresponding six-
tuple a = (a,b,c,d,ef).

We shall use the following notation for permutation ma-
trices. Let ¢; denote the nX 1 column vector with 1 in the jth
row and 0 elsewhere. Let i,,i,,...,/, be a permutation of
1,2,...,n. Then we define the symbol (71,8251, ] to be the
nXnmatrix [e; .e; ,...,e; ] The group of n X n permutation
matrices will be denoted by P,. For the subgroup consisting
of the disjoint permutations i,,i,,...,i,, and I,, . 1,6, 4 2500sin
we write P, , _ ,,. For example, a representative member of

Py, is
1 0 0 O
0 01 0 O
01 0 0 O
0 0 0 0 1

0 0 0 1 O
Finally, the symmetric group on n distinct objects will
always be denoted by §,,.

B. Classical results

As remarked above, the first two-term relation for ,F,
was given by Thomae® and rediscovered some years later by
Ramanujan* (p. 104). In Bailey’s notation it reads

a b ¢\ _ T(@)r'drI(e a b ¢
3F2(¢1 e ) I‘((a)i"(c(i ;I"Ee)) 3F2( e )’
(2.1a)
where the variables
a= (a,bcde), (2.1v)
= (a'\b',c'd'e) (2.1c)
are related by the linear transformation
=1a (2.2a)
with
-1 -1 -1 1 1
—1 0 0 0 1
t=| -1 0 0 1 0} (2.2b)
-1 -1 0 1 1
-1 0 -1 1 1

The second two-term relation is due to Bailey® (p. 56).
In stating it, we use the notation

(@), =T(n+a)/T(a).
The relation is then
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a b ¢ —n
4F3(d e f )
d"),(),(f), (a’ b’ —n)
= F. , (2.3
(D), (e), (N, “°\d' ¢ f (2.3)

where the variables a and a’, defined analogously to (2.1b)
and (2.1c), are related by the linear transformation

a’ = ba (2.4a)
with
-1 0 00 0 1
0 -1 00 0 1
0 0 1 00 0
=11 _1 0 0 1 1 (2.45)
-1 -1 01 0 1

0 0 0 0 0 1
Relation (2.3) is valid only when 7 is a non-negative integer
and the Saalschiitz condition is fulfilled:
a+b+c—d—-e—f—-n+1=0. 2.5)

In order to give the three-term relation for ,F, [Bailey®
(p. 15)] in convenient form, we first define a rescaling of ,F,
as follows:

Fa-al * )

XI[C(@)yrEe)'(d+e—a—b—c)]™!, (2.6a)

witha = (a,b,c,d,e). Next, we introduce new parameter col-
umn vectors a’ and a”. To define these in terms of a by linear
transformations, we effectively extend the column vectors to
six elements by adjoining the element 1 to each and writing

()=mD) (7)=m) @)
where m,, m, are the matrices
1 0 0 0 0
1 0 0 0 -1 1
™, = 1 0 0 —1 0 1
1 0 -1 0 0 1y
1 —1 0 0 0 1
0 0 0 0 0 1
0 0 1 -1 0 1
0 0 1 0 -1 1
o R e
0 -1 1 0 0 1
0 0 0 0 0 1
The three-term relation then takes the form
Fy(a) = a'(a):Fy(a) + " (a),Fy(a"). (2.7)

The coefficients o', @” in this expression are given by

a'(a) = mC(=b) . (2.82)
I'(d—a)T(e—-a)T(c)sinm(c —a)

a’(a) = 71 —b) . (2.8b)
I'(d—o)I'(e —c¢)T(a)sin w(c —a)
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We note that the device used to write (2.6b)—familiar
to geometers working with homogeneous coordinates—al-
lows translations of parameters to be written as linear trans-
formations. We shall return to this point in Sec. IV. Finally,
we mention the trivial symmetries of ,F, and ,F; under ap-
propriate permutations of the parameters. Reverting to the
original definitions of a and a’ for these two cases, namely,
a = (a,b,c,d,e) and a = (a,b,c,d,ef), respectively, with the
a’ similarly defined in terms of the primed parameters, we
have

Io(a) = ,F,(a’), (2.9a)
Fi(a) = Fi(a'). (2.9b)

Here a' = pa in both cases, with p a permutation matrix. In
the first case, p belongs to the (permutation) representation
P, of §;X.5,;in the second case, p belongs to the representa-
tion P; ; of §5X.5;.

Hil. GROUP STRUCTURE OF THE TWO-TERM
IDENTITIES

The structure of the two relations (2.1a) and (2.3) be-
comes trivial when expressed in terms of the proper vari-
ables. To find these variables, the first step is to write down
two matrices A, and 4, which commute with all elements of
P, and P, ; respectively, while also satisfying some other
restrictions. The matrices 4, and 4, are far from unique; we
shall write down a suitable pair ad soc, leaving their deriva-
tion to the remarks at the end of the section.

Let
1 0 0 1 1
01 0 1 1
A;=}0 0 1 1 1} (3.1
1 11 2 1
1 1 1 1 2
Then
A7'pA,=p, pels,, (3.2a)
A7%4,=1[1,54,32]. (3.2b)

Here ¢ is defined by (2.2b). For the permutation matrix no-
tation on the right, see Sec. II A. Equation (3.2a) is obvious
in the form p4, = A4, p because each row permutation p and
column permutation p has the same action on 4,; (3.2b) is
also immediate on verifying the equality 4,
=A,{1,54,3,2].

The group theoretical resuit we need to interpret (2.1a)
is the following.

Theorem 3.1: The matrices in P,, together with
[1,5,4,3,2] generate P,.

Proof: Since [3,1,2,5,4] and [1,2,3,5,4] belong to P, ,
the matrix [3,1,2,5,41[1,5,4,3,21[1,2,3,5,4] = [3,4,5,1,2]
is in the set of matrices generated by P,, and [1,5,4,3,2].
Now [3,4,5,1,2] written in cycle notation is just (13524).
Similarly, [3,2,1,4,5], which belongs to P, ,, is just the two-
cycle (13). Asis well known, (13) and (13524) generate P
[see, for example, James and Kerber'® (p. 5)]. Hence, the
group generated by P;, and [1,5,4,3,2] contains Ps. But
since all products of 5X5 permutation matrices are them-
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selves 5X 5 permutation matrices, we must obtain exactly
P |

To interpret relation (2.1a) in terms of P, we define a
new function ,E, by

JEx(x) = B, (4,%), (3.3a)
with
X = (xX,0,2,u,0). (3.3b)

Thus the function ,E, is given in terms of j‘z [see (2.6a) ] by
the change of variables

a=Ax. (3.4)
Now relation (2.1a) takes the form
B (xp.z,u,0) = 5 E,(X,0,u,2,p) (3.5a)

in consequence of (3.3a) and (3.3b). Moreover, the invar-
iance of the original ,F, to separate permutations of the nu-
merator and denominator parameters, and the invariance of
the denominator in the definition of ,F,, is expressed as

3E2(px) = 3E,(x), pePs,. (3.5b)

Theorem 3.1 and the invariance properties of ,E, given
by (3.5a) and (3.5b) imply the following.

Theorem 3.2: The group P; is an invariance group of the
function ,E,, i.e.,

3E2(px) = ,E,(x), pePs. (3.6)

This result incorporates relation (2.1a) and the invar-
iance of the original ,F, series under separate permutations
(belonging to P, ,) of the numerator and denominator pa-
rameters into a single relationship. It also extends this result
to the group P;: the function ,E, is invariant under all 5!
permutations of the variables (x,y,2,u,0).

We next establish results analogous to Theorems 3.1
and 3.2 for the ,F; series relation given by (2.3). Define the
nonsingular matrix 4, by

1 100
1 01 0 0O
1 10 0 0 O
A= 1 1110 o0f (37
1 11 010
1 1 1 0 0 1
Then
A ; pA2 =p, pEP3,3, (3-8&)
A4 504, = [2,1,6,5,4,3]. (3.8b)

Here b is the matrix defined by (2.4b).

We can now prove the following result by an argument
analogous to that used in Theorem 3.1.

Theorem 3.3: The matrices in P, ; together with the ma-
trix [2,1,6,5,4,3] generate P,.

To obtain results analogous to Theorem 3.2, we first
define the polynomial ,Q, (a) by

a b ¢

40s(a) = (d), (), (), 4F3(d e f -“n). (3.9)

Next we define the new polynomial ,P,(x) by making
the change of variables
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a=A4,x, (3.10a)
where

x = (X,y,z,u,0,W). (3.10b)
Thus

F5(x) = 0,(A4,x). (3.10c)

Relations (2.3) and (2.5) are expressed in terms of the
polynomials ,P;(x) and the variables x, respectively, by

Ls(xy.z,u0,w) = Py(yxwn,uz), (3.11a)
X+y+z4+u+v+w+n—1=0 (3.11b)

The invariance of ,F;(x) under separate permutations of
numerator and denominator parameters is expressed by

4P3(PX) =4P3(x)’ P€P3,3. (3-110)

Theorem 3.3 and the invariance properties of ,P; given
by (3.11a) and (3.11c) now imply the following.

Theorem 3.4: The group P, is an invariance group of the
polynomials ,Py; i.e.,

4P3(PX) = 4P3(X), p€P6,
for all x,y,z,u,v,w that satisfy (3.11b).

This theorem extends the special results in (3.11a)-
(3.11¢c) to the full permutation group Pg for all (x.,
zupw) that satisfy x+y+z4+u+v+w+n—1=90,
the polynomial ,P;(x,y,z,u,v,w) is invariant under all 6! per-
mutations of these variables. (Wilson® points out a lower
symmetry of ,F,;, namely that under S,.)

The operation of reversing the terminating Saalschiit-
zian ,F, series [ Bailey® (p. 56)] is included in the group P,
It is expressed in terms of the polynomials ,P; by

(3.12)

L(xXp2,u,0,w) = Py (10,0,4,2,9,X) (3.13)

for all (x,y,z,u,v,w) satisfying the Saalschiitz condition.

Remarks: (a) There is considerable freedom in choos-
ing the matrices 4, and 4,. It is not difficult to prove that the
most general matrices commuting with all elements of P, ,
and P, 5, respectively, are

a B B v 7V
B a B v V¥
Ci=}B B «a Y}
vy v v a B
voror B (3.14)
a B B ¥V VvV ¥V
B a B v VY
c,=|# B v ¥ 4
Yy v v a B B
vy v v B o B
vy v v B B «

Consider the determination of 4. Since the trace of the
matrix ¢ is 1, we select any permutation matrix p with the
properties pePs, p&P; ,, tr(p) = 1, and impose the condition
tC, = C,p with C, nonsingular. To satisfy this condition, the
permutation corresponding to p must belong to the class
(24,1) of Ss; moreover, each such p admits a solution C,
when suitable restrictions on a,8,y,&',8 ',y are imposed. In
particular, the choice p = {1,5,4,3,2] in (3.2b) requires that
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a' =2a,B' =yv =a,y=a+ . Similarly, we find that
the equation &C, = C,p with pePy, p¢P, ,, tr(p) =0, has a
nonsingular solution C, if and only if p corresponds to a
permutation in class (2°) of S¢, and that each such p admits a
solution C, for suitable restrictions on the parameters
aBy.a’ B’y . In particular, the choice p = [2,1,6,5,4,3] in

(3.8b) requires that a’'=a+8, B =2a, ¥ =a,

¥ = a + . Thus, the most general nonsingular matrices C,

and C,, respectively, which can replace 4, and 4, in (3.2)
and (3.8) are

a B B a a
(/3 a f a «a
Ci=18 B a a al
\7 Y v 2a vy
Yy v v v 2a (3.15)
a B B a a «a
(B a B «a a a
C. — B B a a a¢ a
vy v v v 2 2
Y v 2a ¢y 2
Y v 2a 2a vy

v

wherea#f and y = a + f.

(b) The invariance properties of the functions ,E,(x)
and ,P;(x) under the action of the transformation groups Ps
and P, respectively, can also be realized in terms of the func-
tions ,F,(a) and ,Q,(a). Namely, one has

Fo(p'a) =,F5(a), pedPA T, (3.162)
0Os(p'a) = ,0s(a), p'ed,PA 5" (3.16b)

iV. GROUP STRUCTURES UNDERLYING THE THREE-
TERM RELATION

In this section we set up the group theoretical apparatus
which we use in Sec. V to derive further three-term relations
from (2.7). We have shown that 4,Ps4 T ! is an invariance
group of 3F, (a), while its isomorph P; is an invariance group
of ,F,(A4,x). Clearly, these isomorphic invariance groups
will have an important role in our treatment of (2.7).

All this suggests that we look for a simple structure un-
derlying (2.7) which is similar to what we found in Sec. IIL
The matrices m, and m, are, however, six dimensional. We
therefore extend the matrices peP; ,, t, and 4, to 6 X6 form

as follows:
, A ;
(o 1 0 1 o 1

here 0 is a column or row matrix consisting of five zeros.
Under this substitution, (3.2a) and (3.2b) become

G 6D G060

—1
(A‘ 0) (’ O) (A‘ 0):[1,5,4,3,2,6].
0 1 o 1/ \o 1

(4.2b)

4.1
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Theorem 3.1 is still valid if we replace the group P , by
the group

(6 leer).

replace the permutation matrix [1,5,4,3,2] by [1,5,4,3,2,6],
and use P;, in place of Ps.

The natural next step would be to transform the matri-
ces m, and m, as we transformed (§ { ) above. Unfortunate-
ly, this procedure leads to complicated results. To obtain the
simple structure we are looking for, we must recognize, first,
that the similarity transformation in (4.2a) and (4.2b) isnot
the only one that leaves those relations invariant, and sec-
ond, that it is the matrix m, = mm, that we should trans-
form.

The matrix m, is given by

(4.3)

01 -1 0 1

fo 1 0o —1 0 1

1 0 0 -1 0 1

- . 44

™=lo 0 0 —1 0 2 44

0O 0 0 —1 1 1

0 0 O 0 0 1

We note that the set of matrices

M = {I,m,,m,m;} (4.5)

is an Abelian group of involutions.
We find that there exists a nonsingular matrix A such
that

4949 .
4 (01 A=\g 1) PP (4.6a)
A—‘((t) (1’) A=1[1,54326], (4.6b)
A~"mad = [3,2,1,6,5,4]. (4.6¢)

The choice of the permutation matrix p’ into which m; is
transformed is narrowed by the requirements p'eP, p'¢Ps ,,
tr(p') = 2, which imply that p’ belongs either to the class
(1%2,2%) or to (1%,4). Taking p’ to belong to the second class
fails to produce a solution. With p’e(12,2%), we construct the
required 4 by bordering 4, with a row and column so that
conditions (4.6a)—(4.6c) are satisfied. This determines 4 up
to a multiplicative constant, and we have

1 0 0 1 1
01 0 1 1 O
A 0 0 1 1 1 0 ’
1 11 2 1 0O
1 1.1 1 2 0O
1 1 1 1 1 1
4.7)
1 -2 -2 1 1
-2 1 =2 1 1 0
qoo1 -2 -2 1 1oof
3 1 1 1 1 -2 0
1 1 1 -2 1 0
1 1 1 -2 -2 1
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We summarize these results in the following theorem.
Theorem 4.1: The set of matrices

[(ﬁ (1)) 'pGPZ!.Z]y [1r5,4’3,2’6]’

generates the permutation group Ps , . Then P, ; and the ma-
trix [ 3,2,1,6,5,4] generate P,. Equivalently, the set of matri-

L e €0

generate the group 4 P, ;A ~'. This group and the matrix m,
generate A P,A ~'.

Proof: The only result not already proven is that Ps , and
[3,2,1,6,5,4] generate P, But this follows easily from the
same argument used to establish Theorem 3.1. |

The reason for choosing m;, instead of m, or m,, to
determine the matrix A, is found in the relations

(4.8a)

(4.8b)

A7 'mA=2416,5,4,3,2,1], (4.92)
4 —_lmzA = )“[4’5’6’19213]9 (4.9b)
where A is an involution defined by
-2 1 1 1 1 1
1 -2 1 1 1 1
1 1 1 -2 1 1 1
A= EX B! 1 1 -2 1 1
1 1 1 1 -2 1
1 1 1 1 1 -2
(4.10)

It is easy to see that A commutes with every element of P;.
This implies that no nonsingular matrix B exists such that
Bm,B ! =peP,, since then we would have p(BA)
= [6,5,4,3,2,1]1(BA), and therefore, (BA) ~'p'(BA) =4
for p'eP,. But since tr(4) = — 4 and tr(p') >0, we have a
contradiction,; this proves the nonexistence of B. In the same
fashion, we can show that m, is not similar to any peP;.

We are now ready to prove the following.

Theorem 4.2: The set of matrices

[(f) (1)) 'pep3’2 ]’ [ 1’5’4’3’2’6] ’ ﬂ’ [675’493,2,1 ]

generates the direct product group of 1440 elements
PeX A = {PoAPg); (4.11)

here A is the two-element group A = {I,A}. The group
A ~'MA [with M defined by (4.5)] is a subgroup of Py X A.
Equivalently, the set of matrices

6 Y )

generates the group 4 (Ps X A)A ~', which contains the sub-
group M.
Proof: By Theorem 4.1, the set of matrices

16 %)
0 1

generates the group P ;. We see that the matrix 4 ~'m,A4
=A[4,5,6,1,2,3] is obtained from the matrix 4 ~'m,4

= A[6,5,4,3,2,1] by multiplying from the right and left by
[3,2,1,4,5,6]€Ps . Because m, = m,m,, we have 4 ~'m,A

pEP?n,Z]’ [1,5,4,3,2,6],
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= (4 "'m;4) (4 "'m,A) = [3,2,1,6,5,4]. This matrix and
the group P;; generate P; (Theorem 4.1). The matrix A is
now obtained fromA = (4 ~'m,4)[6,5,4,3,2,1], and is seen
to commute with all elements of P,. This implies that no
further matrices, not in P X A, can be generated by the ma-
trix set specified in the statement of the theorem. |
With the application of Theorem 4.2 in mind, we digress
here to consider some problems of notation not dealt with in
the Introduction. In the rest of the paper we shall frequently
be acting on five-tuples such as a = (a,b,c,d,e) and x = (x,,
z,u,v) with 6 X6 matrices. We recall that a and x are tl)\e
coordinates on which the functions ,E, [(3.5a)] and ,F,
[(2.7)] are defined. We shall need a special notation for this
action. Before introducing an appropriate symbol, we write
down some abbreviations for quantities already defined, viz.,

G=P,xA, G,=AGA"",
H=P,,, H, =AHA"

These definitions will be used from here on.

Let SL(6,R) denote the group of 6 X 6 nonsingular ma-
trices over R, and let R” denote the set of all n-tuples. Let
Y = (Pubabadays)ER® and let 2= (y,y5)eR® denote any
six-tuple with projection 7 on the first five coordinates given
by 7z = y and with yg a given function fofy,i.e., ys =f(¥).
We now define the mapping SL(6,R): R® - R® by the follow-
ing rule. For BeSL(6,R) and yeR®, the action of B on y is
denoted by Boy, and BoyeR? is defined to be

Boy = (Bz) =y';

(4.12)

(4.13)

here Bz is ordinary 6 X 6 on 6 X 1 matrix multiplication. This
action of SL(6,R) on R satisfies the usual axioms.

Let us take the elements of R® to be a = (a,b,¢,d,e) and
apply (4.13) to the mappings G,: R®—R5. This gives
acR?, (4.14)

where a’ is obtained from b = (a,1)€R® by the rule given in
(2.6b). In particular, since each g, has (000001) as its sixth
row, the sixth component of g, b is also 1.

gqfa= 2, 84 GGA »

|

xX+u+tv
F(xypz,uyp) = 3F2(X

with
D=T(x+y+z+2u+v)

XC(x+y+z+u+20)L(x+y+2). (4.17)

The action of the group G on the coordinates xeR® of
F(x) is given by

gox =1(gz), geG, xeR’ (4.18a)
where
x = (x,p,2,u,0), (4.18b)
z=X1—x—y—z—u—v), mz=X
i |

al(l —y—u—v)

y+u+v
+y+z+2u+v x+y+z+u+2v

The three-term relation (2.7), rewritten in terms of the
new notation, reads

SFy(2) = o' (a)F,(m,0a) + a” (a),F,(m,on). (4.15)

In order to take advantage of the simplicity of the matri-
ces in G, in contrast to those in the isomorphic group G, we
must make the change of coordinates from acR® to xeR*®
given by

(“) =d (X) (4.16a)
1 w
that is,

a=17(Az), (4.16b)

for z = (x,w)€R®. The sixth coordinate w is therefore not
independent, but is given by

w=1l—-x—y—z—u—nu. (4.16¢)
Since (4.16a) yields a = 4,x [cf. (3.4) ], wefind that it is the
function ,E, of the five variables x = (x,y,z,u,v), defined by
(3.3a), that is associated with the new coordinates x. The
subscripts 3,2 on this function prove rather unwieldy when
further subscripts must be appended. In the sequel, there-
fore, we shall denote ,E,(x) by F(x).

It is time to take stock of what we have achieved so far.
The original three-term relation has been reformulated in
new coordinates with the help of a new operation of projec-
tion. As we shall see in the next section, this reformulation
will enable us to give a complete solution to the problem of
finding all the distinct three-term relations for ,F,, and in a
relatively transparent manner.

New formulation summary: The results given below for-
mulate the original three-term relation in terms of coordi-
nates and functions chosen so that the associated groups G
and HCG have the simplest possible structures:

z+u+v)D_l

I
The basic relation (4.15) is expressed in terms of the

coordinates x by

F(x) = a(x)F(g,°x) + B(x)F (&,°X), (4.19)
where g,,2,€G are the 6 X 6 matrices

&1 =/1[6,5,4,3,2,1], (4203.)

4] 2/1[4’5)6’1’213]- (420b)

The coefficient functions « and £ are defined in terms of the
new coordinates by

(4.21a)

a(x) =

Bx,p,z,uw) = a(z,y,x,u,v).

Fry+z+uw)T(y+z+v)T(z+u+v)sin7(z — x) ’

(4.21b)

We note that the subgroup HC G has special significance for (4.19) because it is an invariance group for F(x):
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F(hox) = F(x), heH. (4.22)

(This is actually Theorem 3.2, adjusted to the present con-
text.) An immediate consequence is the following: let keG
and let g be an element in the left coset Hk of H in G. Then
g = hk for some heH and

F(gox) = F(ho(kox)) = F(kox). (4.23)
If we define the function F, by

F, (x) = F(gox), 2<G, (4.24)
then (4.23) may be written as

F,, (x) =F,(x), heH. (4.25)

Thus, all functions F, corresponding to the elements of a
given left coset of H in G are equal. Since G contains 1440
elements and H contains 120, there are 12 left cosets of H in
G. In other words, the action of G on the coordinates x of F
defines exactly 12 new functions of x, one for each coset. It is
this fact (as will be explained in greater detail in Sec. V) that
accounts for the 12 subtables in Tables 4.2 and 4.3 in Slater®
(Whipple,’ Bailey®).

The next step is to partition G into its left cosets with
respect to H. First we consider the left cosets of H = P;, in
P,

Theorem 4.3; The group P, contains six left cosets Hk,
where the elements k€P, may be chosen to be elements of the
set

K=A{k |r=1.2,.,6},
where

ki=1, k,=1[6542321],

k,=[4,5,6,1,2,3],

ke = [3,2,1,5,6,4].

Proof: The six sets Hk,, r = 1,2,...,6, are disjoint, since
k'k ~'¢H for all pairs k'#k and k’,keK. Hence,

(4.26a)

k3 = [5’614)3’2,1]y
ks =[3,2,1,6,5,4], (4.26b)

6
P¢= U C,, C, =Hk,.

r=1

(4.27)
a

In the next section we shall need the multiplication table
for these cosets. This is reproduced as Table I.

The extension of these results on cosets of H in P, to
cosets of H in G is immediate, and is given by the following.

Theorem 4.4: The left cosets of the subgroup H in G are

Hk, ke{KAK}. (4.28)

Denoting the 6 X 6 array in Table I by C, the multiplica-
tion table for the left cosets of H in G is given by the array

TABLE 1. Multiplication rules for left cosets of H in G: C, = Hk,,
r=12,..,6.

C, G G Ca Cs Cs
G, G G G Cs Gs Cs
C, C, C, C, Cs C, C,
G G Cs Cs Ce G G
Cs Cs Cs G <, G G
G G C G & G G
Cs Ce G & G Cs &
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c A
c ¢/
It will be convenient for subsequent applications to de-
note the 12 matrices in the set {K,AK} by

krs r= 1’23'"9611t’2*5“"6*'

(4.29)

(4.30a)

Forr = 1,2,...,6, the k, are the permutation matrices defined
by (4.26b), while the corresponding k,. are just

k. =4k, r=12,.6. (4.30b)

Thus, k. =4, ke = Ak, =A[6,5,4,3,2,1], etc. Since 4 is
an involution, so that

Ak. =k, (4.30¢)
we must also, for consistency, write (#*)* = r. Weshall refer

to r* as the conjugate of .
Finally, since only the 12 functions

F, (x) =F(k,ox), r=12,.,61%2%, . ,6*

can be generated by the action of G on the coordinates xeR®
[cf. (4.23)-(4.25)], we may simplify the notation still
further by writing

F.(x)=F,(x), r=12,.,61%2%. . 6* (4.31)

Equation (4.22) exhibits the invariance of the function
F(x) under the action of the group H. This property togeth-
er with the definition (4.31) implies that F, (x) is invariant
under the group H, = k [ 'Hk, obtained by the automor-
phism with k,eX:

F.(hox)=F,(x), heH.. (4.32)

V. THREE-TERM RELATIONS BETWEEN ,F, SERIES

In the notation defined by (4.30a)-(4.30c) and (4.31),
the basic three-term relation (4.19) becomes

F\(x) =a(x)F,. (x) + B(X)F,. (x), (5.1)

sinceg, = Ak, = k,. and g, = Ak, = k,.. In this section, we
obtain all three-term relations derivable from (5.1) by appli-
cation of the transformation group G with the action:

x—gox, geG, (5.2)

and by an elimination procedure to be described below.
The mapping (5.2) can be written in the form

heH, r=12,.,6,1%2%..6% (5.3)

This suggests carrying out the transformation of relation
(5.1) in two steps, by first performing the mapping x—hox,
heH, and then the mapping x—k, ox.

The first step, applied to (5.1), gives

Fi(x) = a(hox)F,. (x) + B(hox)F . (x), (5.4a)
where the index pair (p*,¢*) is uniquely determined by find-
ing the left cosets to which &,. # and k,. /4 belong; that is, by
solving the inclusion relations

ky heHk,., Kk, heHK,. (5.4b)

Since the group H = P, contains only permutation
matrices, it follows that p* and ¢* are both “»-integers” in

(5.4a) and (5.4b). Accordingly, the index pair (p,q) may be
found by solving

x—ho(k,ox),
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k.heHk,, kheHk,. (5.5)

We found the solution of these inclusions for all heH by
calculating (on MACSYMA) the 12 matrices khk ',
kshk L p = 1,2,...,6, and identifying the representative pair
of matrices in H. The simple solution is as follows: for each
pair (p,q) with p#¢e{1,2,3,4,5} define the subset H, , of H

by

(5.6)

Each subset H,, , then contains six elements of H. For exam-
ple, H,, contains the six permutation matrices
[i1,1,i5,3,i5,6] corresponding to the six permutations
(iysisis) Of (2,4,5).

Using these notations, the solutions of (5.5) are given in
the following.

Theorem 5.1: For each heH, , we have

k.heHk, , ,, kiheHk, (5.7)
for each pair (p,q) with p#¢e{1,2,3,4,5}.

Proof: By MACSYMA, as described above, or by verifying
(by hand) that k,hk ' eH and khk ;' €eH for each
heH, , (it is only necessary to verify that the sixth compo-
nent in these products of permutation matrices is 6). |

Applying Theorem (5.1) to (5.4a) gives

F(x) = a(hox)F,  1)s (x) + B(hoX)F, . 1)+ (X),
heH, (5.8)

pa’
for each pair (p,q) with p#ge{1,2,3,4,5}. (We show below
that the coefficient functions in this result are invariant for
each heH,, ,.)

To obtain the transformation of the basic relation (5.1)
by a general element geG, we must transform (5.8) by
x—k,ox [cf.(5.3)]. This results in

F (x) = a(gox)F,(x) + B(gox)F,(x), (5.9a)
with
g=hk, heH,, r=12,.61%2%. 6% (59b)

The indices s and ¢ are uniquely determined by the relations

kipr ook, eHk,, ke, 1k, eHE,, (5.9¢)

in which p#¢e{1,2,3,4,5}. [Throughout the remainder of
the section, (7,5,¢) denote integers with domain {1,2,...,6,
1*2%, .. 6*}. It will occasionally be convenient to replace the
statement

re{1,2,...,6,1*,2%,...,6%}

with the phrase “with 7 in the standard domain.”] The tri-
ples (r,s,t) of positive integers that can occur in (5.9a) are
completely determined from (5.9c) above by the multiplica-
tion rules for left cosets of H in G given in Table . To present
the results, it is convenient to represent this table by sub-
scripts alone.

We define the 6 X 6 array J by
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1 2 3 4 5 6
2 1 1 5 4 4
3 6 6 6 3 3
J= 4 s 5 1 2 2| (5.10a)
5 4 4 2 1 1
6 3 2 3 6 5

The full table for left coset multiplication is represented by
the 12X 12 index array

J J*
J_{J* J]’ (5.10b)
where rows and columns are enumerated by 1,2,...,6,1%,
2%, ...,6*, respectively, which coincide with the entries in col-
umn 1 and row 1.

All possible triples (7,s,¢) that can occur in (5.9a) are
obtained by transcribing the left coset multiplications

Cois1C.=C;, Cuiy:C =C, (5.11a)
into index multiplication (denoted by *) in the array J:
p+D*r=s, (@g+D*r=t (5.11b)

for p#qe{1,2,3,4,5}. We have tabulated these multiplica-
tions in Table II. The values of 7 in the standard domain are
listed in the first row; hence r is a column index. The major
row heading is H,, ,, which includes two rows for each choice
of p <q. We refer to this pair of rows as the “double-row
(p,q).” The pair of entries in column r in the double-row
(p,q) is (s5,¢) with s in the top row. For example, for hcH, ,,
the triples (»,s,t) that can occur in (5.9a) are determined by
4% .y =5, 5*.-r = t, and are found from Table II to be

TABLE II. Triples (#,s,¢) occurring in three-term relations.

r 1 2 3 4 5 6 1% 2% 3* 4+

w
*
(=)
»

H, s 2% 1* 1* 5% 4% 4+« 2 1 1 5 4 4
3* 6% 6* 6* 3* 3* 3 6 6 6 3 3

H,, s 2% 1¥ 1* 5% 4% 4+ 2 1 1 5 4 4
4% 5% 5% |* 2% 2¢ 4 5 5 1 2 2

H, s 2% 1% 1* 5% 4% 4% ) i 1 5 4 4
5% 4* 4% 2* 1* 1* 5 4 4 2 1 1

H, s 2% 1* 1* 5% 4% 4* 2 1 1 5 4 4
t 6% 3* 2% 3* 6* S5* 6 3 2 3 6 5

H,, s 3* 6% 6* 6* 3* 3* 3 6 6 6 3 3
4* 5+ S5* 1* 2% 2* 4 5 5 1 2 2

H,, s 3* 6* 6* 6* 3* 3* 3 6 6 6 3 3
5% 4% 4* 2* |* |* 5 4 4 2 1 1

H, s 3* 6* 6* 6* 3* 3* 3 6 6 6 3 3
6% 3% 2% 3* 6* 5¢* 6 3 2 3 6 5

H;, s 4* 5* 5% 1* 2* 2¢* 4 5 5 1 2 2
5% 4% 4% ¢ 1* 1* 5 4 4 2 1 1

H,, s 4% 5% 5% 1* 2¢ 2* 4 5 5 1 2 2
6* 3* 2% 3* 6* 5* 6 3 2 3 6 5

H,s s 5% 4* 4* 2* 1* 1* 5 4 4 2 1 1
6* 3* 2% 3* 6* 5* 6 3 2 3 6 5
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(1,4*%,5%), (2,5%4*), (3,5*,4*),
(4,1%,2%), (5,2%,1*), (6,2%,1*),
(1*%,4,5), (2%,5,4), (3*,54),
(4%,1,2), (5%2,1), (6%2,1).

We have included in Table II only those subsets H,,
C H having p < g. The table can be extended to include the
H, , havingp > g by interchanging the two rows appearing to
the right of H_,, leaving the indices s and t in place. Since
there are six elements of H in each set H,,, where p#g
= 1,2,3,4,5, all 1440 relations (5.9a) are accounted for in
the extended table. Some of these relations, however, are
identically the same in consequence of properties of the func-
tions a(x) and B(x). Indeed, we prove in Theorem 5.4 be-
low that the distinct relations (5.9a) are exactly those corre-
sponding to the 120 triples (r,s,¢) given in Table II.

We need two theorems on the properties of the coeffi-
cient functions a(x) and B(x) that occur in (5.1) and are
defined by (4.212) and (4.21b).

Theorem 5.2: Let 4,z 'cH,, , for p#4¢€{1,2,3,4,5}. Then

a(hox) = a(h'ox), B(hox)=B(h ox). (5.12)

Proof: The functions a(x) and S(x) are invariant under
all permutations of (y,u,v), that is, under the group of per-
mutation matrices R defined by

R = {[1,i5,3,i,,i5,6]| (insisis) a permutation of (2,4,5)}.

We can prove the theorem by showing that 2 'h ~'eR forh’,
heHM [see (5.6)]. The product of any two 6 X 6 permuta-
tion matrices, #' and 4 ~!, the first of which has columns
2.4,6 given by e ,e;,e, respectively (see the Introduction for
the notation), and the second of which has rows p,g,6 given
by

(100000), (001000), (000001),

always has columns 1,3,6 equal to e ,e;,¢4; ie., A 'h ~'eR.A

Theorem 53: Let heH,, and h'eH,, with
p#4q€{1,2,3,4,5}. Then
a(hox) =B(h'ox), B(hox)=a(h’ox). (5.13)

Proof: Let h” = [3,2,1,4,5,6]. Then, from the defini-
tions (4.21a) and (4.21b) of @ and f3,

B(x) = a(h "ox), (5.14)
and, from the definition (5.6) of H,,,

H,,=h"H,,. (5.15)
These results together with Theorem 5.2 imply the stated
properties of @ and 3. ]

We can now prove the first of three principal results for
three-term relations between ,F, series.

Theorem 5.4: There are 120 distinct relations between
the functions {F,|r = 1,2,...,6,1%,2%,...,6*} obtainable from
the basic relation (5.1) by the group of transformations
x—gox, geG. These relations are

F (X)) =« (X)Fu(X) 4 Bpo,s (X)F,. (x), (5.162)

F.(X) = a@pu, (X)F,(X) 4+ B, (X)F,(x), (5.16b)
where (7,s,t) is any of the 60 triples satisfying

re{1,2,...,6}, s<tef{1,2,...,6} — {r}. (5.16¢c)

The coefficient functions in these relations are obtained ex-
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plicitly in terms of @ (x) and 8(x) as follows, using Table II.
For each triple (7,5,¢t) determine, in column r, the double-
row (p,q) in which s* and ¢ * occur (in either order), and let
h be any representative element heH, . If s* occurs in the
top row, and ¢ * in the bottom row, then

[2 290P (X) = a(hkrox)’ ﬁrs‘z' (X) =B(hkr°x);
(5.17a)

if s* occurs in the bottom row and ¢ * is in the top row, then

ars‘l“(x) =ﬂ(hkr°x)) ﬂrs‘p' (x) =a(hk,0x).
(5.17b)

The coeflicients with conjugate indices are given by

QA prsy (X) = Qpgay e (iOX), Br‘st (x) =Bmu,~ (I{OX).
(5.17¢c)

Proof: By Table I, its extension to p > g, and Theorems
5.2 and 5.3. Observe in particular that the 120 triples in the
set {(r,s*,t*), (r,t *,5*) } obtained by the conditions (5.16c)
enumerate exactly the triples in the left half of the extended
Table 11, with half in Table II. [ |

Properties of the coefficient functions a(x) and B(x)
are very important for deriving distinct relations between
the 12 functions F,, as shown by the application of Theorems
5.2 and 5.3. These properties can be quite tedious to verify.
In what follows we prove an important result that implies
the existence of various properties of these coefficients which
allows us to ignore, for some purposes, the details. Let us
define a relation between the 12 functions F, tobe “F linear”
if the relation is invariant under the substitutions F,—uF,
for r=1,2,...,6,1*,2%,...,6%, ucR. The following theorem
then greatly simplifies the proofs of the results obtained in
the sequel.

Theorem 5.5: Let (7,s,¢) be distinct integers in the stan-
dard domain. Then one can derive from the basic relation
(5.1) at most one F-linear three-term relation

F,(x) = a,, (X)F,(x) + B, (x)F, (x)

between the functions F, (x), F,(x), and F, (x).

Proof: If there are two relations of the form (5.18), then
F_(x), F,(x), and F,(x) are pairwise related, i.e., two-term
relations exist between these functions. Applying the trans-
formation x—k, ox to these three (hypothetical) two-term
relations, we find two-term relations between all functions
with index pairs given by (r-p,s-p), (r'p,t'p), and (s'p,t'p),
with pe{1,2,...,6,1*,2%,....6*}.

Let us write 7 ~sif F, (x) = 7,,(x)F, (x), where v, isa
quotient of products of gamma functions. The relation ~ is
then an equivalence relation between the integers » and s.
The existence of two relations of the form (5.18) then im-
plies that

rp~sp~tp, pe{l,2,.,61%2*, . 6%}

(5.18)

(5.19a)

Our strategy is to use this last result, which is implied by
the existence of two relations of the form (5.18), to show
that 2* ~4* i.e., that F,. (x) and F,. (x) are related by a
two-term relation. But this is false, since, by assumption, the
basic relation (5.1) is a three-term relation. This contradic-
tion will then prove the theorem.

We need to show that the set of equivalence relations
(5.19a) implies 2* ~4* for every possible choice of (7,s,1)
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with 7 < s < ¢. In many instances, it is possible to show that
rp~sp, pe{l,2,.,6,1%2% 6%} (5.19b)

implies 2* ~4*. We consider these cases first.

Recall that »~s implies all the equivalences (5.19b),
i.e., each pair of integers occurring in the same column and
row r and row s of the index array J is equivalent. For exam-
ple, for (»,s) = (1,3) we find from columns 2* and 4* that
1~3 implies 2* ~6* and 6* ~4*, i.e., 1 ~3 implies 2* ~ 4*,
The conjugate result, 1* ~ 3* implies 2 ~4 is obtained simi-
larly. In this way, we verify that

r~simplies 2* ~4*, r* —s* implies 2 ~4 (5.20a)
for all pairs
(rs) = (1,3),(1,5),(1,6),(2,3)(2,4),
(2,6),(3,4),(3,5),(4,6),(5,6). (5.20b)

For the ‘“missing” pairs (r.s) = (1,2),(1,4),(2,5),
(3,6),(4,5), we find 1 ~2 implies 1 ~3, 1~4 implies 2~ 6,
2~5 implies 1~4, 3~6 implies 2~6, and 4~5 implies
1~2. Combining these equations first among themselves, as
necessary, and then with (5.20a) and (5.20b), we find that
relation (5.20a) is also valid for

(rs) = (1,2),(1,4),(2,5),(3,6),(4,5). (5.20c)

Next, we use the fact that the existence of two three-
term relations between the same three functions implies the
equivalence, not of pairs of indices, but of triples, as given by
(5.19a). Since each triple always includes a pair of indices in
the sets (5.20b) and (5.20c) or the conjugates of these pairs,
we conclude that 7 ~s~¢ implies 2* ~4* for all possible tri-
ples. ]

Remark: Theorem 5.5 implies that the relations between
the @ and B functions given in (5.17a) and (5.17b) must be
true, for otherwise the theorem would be false (by contradic-
tion). Theorem 5.5 simplifies considerably the task of enu-
merating all additional F-linear three-term relations that can
be derived from the results given in Table II.

Theorem 5.4 gives 120 relations derivable from the basic
relation (5.1) by direct application of the group of transfor-
mations x—gox, geG. Further F-linear three-term relations
can be found from these 120 by the process of elimination.
We show next how this is done. There are two kinds of rela-
tions (given in Theorems 5.6 and 5.7 below).

Consider three relations of the form given by (5.16a) in
Theorem 5.4:

F,(X) = @ppuge (X)Fpu (X) + By (X)Fpe (x), (5.21a)

F,(X) = Qe (X)Fpe (X) + Bypege (X)F o (x), (5.21b)

F,(x) = @ppegr (X) Fpu (X) + Brpuge (X)Fu (x), (5.210)
where each triple (7,p,q), (s,p,q), (,p,q) is chosen by the
rule (5.16¢) and such that r <s <. We can now prove the
second principal result for three-term relations.

Theorem 5.6: There are 40 distinct F-linear relations
between the functions F,, with 7 in the standard domain,

obtainable by elimination between triples of relations of type
(5.21a)-(5.21c). Twenty are given by

Vet (XVF, (X) + 8, (X)F, (X) + €, (X)F,(x) =0, (5.22a)
and 20 by the conjugates to these:
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Vyogrre (X)F e (X) + S rageps (X)Fou (X)
F Epegepe (X)F,. (x) =0, (5.22b)
there being a relation of each type for each triple (7,5,¢) such

- that

res<te{l,2,..,6}. (5.22¢)

The coefficient functions are given explicitly in terms of
a(x) and £(x) by Egs. (5.17a)~(5.17c) and the following
relations and their conjugates:

Vrsr (x) = asp‘q' (X)Btp‘q‘ (x) - arp‘q' (x)ﬂsp‘q' (X),

(5.23a)
5rst (x) = atp‘q‘ (X)Brp‘q‘ (X) - arp’q‘ (x)ﬂxptqt (x),

(5.23b)
€rse (X) = Apprge (X)Bpegs (X) — Qpuge (X)B, 000 (X).

(5.23c)

Proof: Equation (5.22a), with coefficient functions giv-
en by (5.23a)-(5.23¢c) follows directly from the three rela-
tions (5.21a)-(5.21c). The conjugate relation (5.22b) is ob-
tained similarly. Thus, to prove the theorem, we must show
that there are 20 distinct sets of three relations of the form
(5.21a)-(5.21c); i.e., a set for each triple (r,s,t) satisfying
conditions (5.22¢).

Consider the left half of Table II (columns 1 through 6).
The set of 60 triples {(r,p*,g*)} associated with this half of
the table can be described as follows. Select any pair p#£¢g
from the set {1,2,...,6}, and then  from the set {1,2,...,6}
—{ gt = {r,,rz,r3,r4}. Then one of the two triples (7,
p*.q*) or (r;,q*,p*), but not both, occurs in the table for
each i = 1,2,3,4. This is true for all 30 choices of the pair
(»,9), thus giving all (30/2) X 4 = 60 triples. For each pair
(p,q), then, there are four sets of three relations of the form
(5.21a)-(5.21c), a set for each triple (r,s,t) with r<s<¢
selected from {7,,7,,75,7,}.

We illustrate the preceding results with some examples.
For p=1, ¢=35, we find (2,1*,5%), (3,1*,5%), (4,5%1%),
and (6,1*,5%) from the table, SO that
{rirars,ray =1{2,3,4,6}; the four sets of three relations
(5.21a)-(5.21c) all have (p,g) = (1,5) and correspond to
(rs,t) = (2,3,4), (2,3,6), (2,4,6), or (3,4,6). A second ex-
ample p =1, ¢ = 2 leads to (rs,t) = (3,4,5), (3,4,6), or
(4,5,6), which illustrates that a given triple—in this case
(r,5t) = (3,4,6)—may be repeated, even though the index
pairs (p,g) = (1,5) and (1,2) are not equal. For this reason,
the same three functions Fj, F,, and F, can be expressed in
terms of F,. and F.., or in terms of F,. and F,.. Either of
these sets of three relations must lead, however, by Theorem
5.5, tothe same relation (5.22a), up to a common multiple of
the coeflicient functions.

Considering all 15 sets of four triples that can be ob-
tained from the left half of Table II, we find all the possible
(§) = 20triples (r,s,2) with r < s <t€{1,2,...,6}. Some triples
are repeated, as noted above, but by Theorem 5.5, only one
new relation per triple can be produced. The 20 relations
corresponding to these index choices are relations between
the F, with r = 1,2,...,6; hence, all are new (i.e., not obtain-
able directly from Table II). Since the right half of the table
is gotten by applying the *-operation to the left half, we also
obtain relations (5.22b) for all s,z satisfying (5.22c). W
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There is a second process of elimination that leads to
three-term relations not obtainable from Theorems 5.4 and
5.6. We select any triple (r,5%,¢*) with r#s#te{1,2,...,6}
from the left half of the table, where we always find either
(s*,r,t) or (s*,t,r). The corresponding three-term identities
are

F (X) = apue (X)F o (X) + Brgors (X)F, e (x), (5.24a)
F,. (X) = @guy (X)F, (X} + B e (X)F, (%), (5.24b)

where the coefficient functions are given explicitly by
(5.17a)-(5.17c). We now eliminate F.(x) between
(5.24a) and (5.24b), which leads to the third principal re-
sult for three-term relations.

Theorem 5.7: There are 60 distinct F-linear relations
between the F,, with r in the standard domain, obtainable by
elimination between pairs of relations of type (5.24a) and
(5.24b). Thirty are given by

Eree (X)FL(X) + Ny (X)F(X) + §pee (X)F, (x) =0,

(5.252)
and 30 by the conjugates to these:
Ermine () F e (X) + Nprge, (X)Fia (X)
+ Spores (X)F, (x) =0, (5.25b)
there being a relation of each type for each
r#te{1,2,...,6}. (5.25¢)

The coefficient functions are given explicitly in terms of
a(x) and B(x) by Egs. (5.17a)-(5.17¢c) and the following
relations and their conjugates:

e (X) = Qppope (X) e, (X) — 1, (5.26a)
Nrees (X) = Qpapn (X)B e, (X), (5.26b)
;r;,-(x) =Brs‘;'(x)- (5.26¢)

All indices in these relations should be conjugated in obtain-
ing the coefficient functions in Egs. (5.25b).

Proof: Elimination of F,. (x) between the expressions
(5.24a) and (5.24b) gives (5.25a) with the coefficients de-
fined by (5.26a)-(5.26c). We find from Table II that all
choices of indices rs£t€{1,2,...,6} occur, some pairs (7,t)
more than once for the same s*. Whenever (5.24) occur, so
do their conjugates. By Theorem 5.5, we can obtain one rela-
tion, up to a common factor between the coeflicients, for
each triple (r,t,t*). [ |

Our final theorem is the following.

Theorem 5.8: All F-linear three-term relations between
the 12 functions F,, with r in the standard range, which are
obtainable from (5.1) by transformations from the group G
and by elimination, are given in Theorems 5.4, 5.6, and 5.7.

Proof: There are (12) = 220 distinct choices of the in-
dices r < s < £, with the indices in the standard range, and we
have given exactly this number of three-relations in Theo-
rems 5.4, 5.6, and 5.7. Moreover, none of these relations can
degenerate to a two-term relation (for general values of x),
since Theorem 5.5 would then be violated. [ |

We note that each of the possible 220 choices of the
triple (7,s,t) corresponds to an F-linear three-term relation.
If there were a direct way of seeing this, our paper could be
considerably shortened.
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Remark: As noted earlier, the coefficient functions
a(x) and B(x) must possess a number of properties beyond
those already given in Theorems 5.2 and 5.3 in order that
Theorem 5.5 be valid. Let us give an illustrative example.
Consider the transformation of the basic relation (5.1) cor-
responding to the elements of the Abelian group of involu-
tions {Z,k,. ,k,. ,ks}, which is the transformation 4 ~'M A4 of
the group M defined by (4.5). This leads to three additional
relations:

th (x) =a(k20 OX)FI(X) +B(k2. OX)FS(X), (5.27a)
F4‘ (x) =a(k4‘ OX)FS(X) +B(k4.OX)F1(X), (5.27b)
Fy(x) = a(ksox)F,.(x) + B(ksox)F,. (x). (5.27¢c)

Eliminating F,. (x) between (5.1) and (5.27a) leads to a
relation between F,(x), F,. (x), and F5(x), which is exactly
the relation (5.27b) because of the identities,

a(x)a(ky ox) + B(x)B(k4ox) =1,
a(x)B(ky.0x) + B(x)a(k40x) =0.

The correctness of these relations may be verified directly
from the definitions (4.21a) and (4.21b). The compatibility
of the set of four relations (5.1) and (5.27a)-(5.27¢c) is im-
plied by (5.28).

We conclude this section by noting the relationship
between the results obtained here and those of Whipple® (see
also Bailey® and Slater'). We refer to Slater’s tabulation of
these results, and use the notation introduced there. The set
F,(p) [resp. F,(p)] for each pe{0,1,...,5} is defined by

Fp (P) = {Fp (P;U:T) |U< Te{oylr-'vs} - {P}}’ (5.293)
[resp.

F,(p) = {F,(p;0,7) |0 <me{0,1,...,5} — { p}}.]
(5.29b)

Each of the ten symbols in a given one of these sets de-
notes a ;F, series having distinct sets of numerator and de-
nominator parameters. Thus, we have defined in Egs. (5.29)
12 sets, each containing ten ,F), series with distinct param-
eter sets. (The letters p and n serve to denote two types of
sets.) In all, we have 120 ,F, series, each with its distinct
parameter set, distributed into 12 sets of ten each. The 12 sets
are given in Tables 4.2 and 4.3 of Slater, where typical pa-
rameters of the ten functions in each set are listed.

It is convenient to extend the sets F, (p) [resp. F, (p)]
to 120 functions, obtained by including all 12 “place” per-
mutations of the numerator and denominator parameters
for each of the ten ,F, series in the set. We denote these
extended sets by the notation # , (p) [resp. F,(p)]. We
now have 1440 distinct ,F, series (counting the place permu-
tations of numerator and denominator parameters as dis-
tinct) distributed into 12 sets, each containing 120 functions.
Finally, we also introduce the 12 sets of functions &, de-
fined by

F, ={F,(hox)|heH; x = A ~'oa},

(5.28)

(5.30a)

each r in the standard domain. The functions in this set may
also be written [cf. (2.6a), (3.4), (4.17), (4.18a)] as

FL(hoX) |y _ 41 = sF,(k th o), (5.30b)
where
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k:=Ak, A=, h'=Ahd"". (5.30¢)

With these preliminaries, the results obtained by Whip-
ple (Tables 4.2 and 4.3 in Slater) have the following compre-
hensive explanation in terms of the group G and the sub-
group H.

(i) The sets of functions # , (p), F , (p), and F#, are
related by

yp(P)=~9‘-p+1, ?n(P)zy(p+1)',
p=0,1,.,5

[see (4.26a) and (4.26b), (4.30b) and (4.30c), and
(4.31)]. Thus, the 12 sets of functions given in Slater’s two
tables are one-to-one with the left cosets of H in G (equiv-
alently, with the left cosets of H, in G ). The functions in a
given set, e.g., F, (p) [resp. F,(p)], which is now trivially
extended to #  (p) [resp. &, (p)], and contains 120 func-
tions as described above, are those with parameters

(5.31)

a'=k, h’oa (resp. &=k, ,.h'0a),
h'eH,.

The functions within a given set are then all equal because
the subgroup H is an invariance group of the function F(x),
or, equivalently, because H, = k ~'Hk, is an invariance
group of the function F,e% , [see (4.32)]. It is important to
observe that this implies there are no new results for two-
term relations beyond F(hox) = F(x), heH, which are con-
tained in Slater’s tables: the invariance of the functions in the
set &, under the group H, is equivalent to the invariance of
the functions in the set ¥, = 5, (0) under the group H.

(ii) Theorems 5.4, 5.6, and 5.7 together give 220 rela-
tions between the 12 functions F, (x), with r in the standard
range. As noted, these relations split into a set of 110 rela-
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tions and a set of 110 conjugate relations, where the relation
conjugate to a given one is obtained by the transformation
x—>Aox. [ This transformation interchanges the letters » and
pin (5.29) and (5.31).] The results given in Slater’s Sec.
4.3.2 (or Sec. 3.7 in Bailey) are related to those given in
Theorems 5.4, 5.6, and 5.7 as follows. Slater’s (4.3.2.1) and
its conjugate (4.3.2.2) are two of the 120 relations given in
Theorem 5.4; (4.3.2.3) and its conjugate (4.3.2.4) are two of
the 40 relations given in Theorem 5.6; and (4.3.2.5) and its
conjugate (4.3.2.6) are two of the 60 relations given in
Theorem 5.7.
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Continuous Hahn polynomials have surfaced in a number of somewhat obscure physical
applications. For example, they have emerged in the description of two-photon processes in
hydrogen, hard-hexagon statistical mechanical models, and Clebsch-Gordan expansions for
unitary representations of the Lorentz group SO(3,1). In this paper it is shown that there is a
simple and elegant way to construct these polynomials using the Heisenberg algebra.

I. INTRODUCTION

Most of the familiar orthogonal polynomials of math-
ematical physics satisfy second-order linear eigenvalue dif-
ferential equations. The Hahn polynomials are unusual in
that they satisfy a second-order difference rather than differ-
ential equation.

Originally, the Hahn polynomials’ were constructed as
totally discrete analogs of the more conventional polynomi-
als of mathematical physics. These polynomials were origin-
ally defined by two three-term recursion relations, one in the
index and one in the argument, and were shown to satisfy a
discrete orthogonality relation. It was only very recently in
1985, that Atakishiyev and Suslov? and Askey’ generalized
these discrete polynomials to continuous polynomials in the
following sense: (1) the argument can be extended from a

Sy(x) = f(x* — 14x* +9),
Ss5(x) = gl (x* — 30x> + 89x),
Se(X) = oy (x® — 55x* 4 439x% — 225),
S5(x) = (1/7)(x7 — 91x° + 1519x — 3429x),
Sg(x) = (1/81)(x® — 140x° + 4214x*

— 24 940x% + 11 025),
So(x) = (1/91) (x° — 204x” + 10 038x>

— 122 156x® + 230 481x),
S1o(x) = (1/101) (x° — 285x® 4 21 378x°

— 463 490x* + 2250 621x2 — 893 025).

2.1

To compute these polynomials we can use the two-term re-

discrete variable to a continuous variable; (2) the orthogo-
nality relation can be written as an integral rather thanasa
sum over a weight function; and (3) the index can be analyti-
cally continued to complex numbers. This continuous gener-
alization establishes a complete analog between the Hahn
polynomials® and the more conventional polynomials of
mathematical physics except for the fact that the continuous
Hahn polynomials satisfy functional difference rather than
differential equations.

In this paper we consider a special class of continuous
Hahn polynomials which we designate S, (x). We have or-
ganized our presentation as follows. Section II discusses the
elementary properties of S, (x), some of which are new re-
sults. In Sec. III we give the main result of this paper; name-
ly, the connection between the Heisenberg algebra and
S, (x). More detailed mathematical properties of S, (x),
such as its asymptotic behavior, its zeros, its representation
as a generalized hypergeometric function, and the expansion
of functions as a series of S, (x), are discussed in Sec. IV.

. ELEMENTARY PROPERTIES OF S,,(x)
The first few polynomials S, (x) are
So(x) = (1),

Sl (x) =ux,
Sy(x) = %(x2 —1),
Ss(x) = §(x* — 5x),

*) Permanent address: Physics Department, University of Southern Missis-
sippi, Hattiesburg, Mississippi 39401.
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cursion relation

nS, (x) =x8,_,(x) — (n—1}S,_,(x). 2.2)
If we define the generating function G(z) by
6 =3 1S, (), 23)

n=0
then the recursion relation (2.2) gives a simple differential
equation satisfied by G(2):

(1+1)G'() = (x—G(@). (2.4)
The solution to (2.4) satisfying the normalization condition
G0)=1is

G(t) =exarctanz/(l +t2)”2- (2‘5)
Applying the Cauchy integral formula to (2.5) gives a sim-
ple integral representation for S, (x):

1 dz
S, (x)=— s
) 2riJe 1 (142212
where C is a contour encircling the origin in the z plane.
The functional difference equation that the polynomials

S, (x) satisfy is
(1 —ix)S, (x+20) + (1 +ix)S, (x — 2)

= (4n +2)§, (x). (2.7)
It is not easy to find equations that relate S, (x) and its de-
rivatives. The simplest such relation we have found is

{(n —13/72] R
S,x)= ¥ Sao1oy ™)

j=o 2i+1

eX arctan z

(2.6)

(—1Y. (2.8)
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It is easy to discover the weight function W(x) for the
orthogonality relation satisfied by S, (x) using experimental
methods. If we require that S, (x) satisfy an orthonormality
relation of the general form

f dx W(x)S,(x)S,,(x) =8,,,, (2.9)

we can assume that W(x) is an even function because the
polynomials exhibit parity. Then we can compute the first
few even moments y,,, of W(x):

=J dx W(x)x™. (2.10)
The results are po=1, g, =1, p,=35, pg==61, pg
= 1385,..., which we recognize are just the absolute values
of the Euler numbers

Bon = |Esp . (2.11)
From the integral formula®
—f _B g (2.12)
« cosh(mx/2)

we immediately identify a = « in (2.10) and the weight
function

Wi(x)=1/2 cosh{mx/2). (2.13)
It is easy to verify the orthogonality condition
® dx§ S
f 55, x) _ o (2.14)
~w 2cosh{mx/2)

We insert the complex integral representation for .5, (x) in
(2.6) and interchange orders of integration. Then we use the
integral identity®

1 f B
2) .
and the trigonometric identity
(2 + 1)V2(2’? + 1)/? cos(arctan z + arctan z')

cosh(xz) _ 1
cosh(wx/2) cosz

(lz| <7/2), (2.15)

=1-2zz. (2.16)

The result is
© dxS,(x)S,,(x)
J-_,, 2cosh(1rx/2)
§§ dzdz 5
(217'1)2 czm 21 —zZ') m

Further mathematical properties of the polynomials
S, (x) are discussed in Sec. IV.

11l. CONNECTION WITH QUANTUM MECHANICS

We now proceed with a discussion of the connection
between S, (x) and the Heisenberg algebra.

The Heisenberg algebra consists of two Hermitian oper-
ators p and ¢ which satisfy the commutation relation

[g.p] =i (3.1)

In terms of ¢ and p we construct a set of homogeneous poly-
nomial operators T, ,. Here T, , is defined as the sum of all
possible terms containing m factors of p and # factors of ¢
and is thus a totally symmetric Hermitian object containing
(m + n)l/(m!n!) individual terms. For example,
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To,l =4q,

T\, =pg+qp,

T, =p°q +pgp + qp’,

T,, = qpqgp + papq + pa’p + pe’q + 0’4" + '

The operators T, ,
erties:

exhibit some very elementary prop-

le.T,,1=im+m)T,_,,, (3.2)
[Tm,n,p] =im+mT,, ;, (3.3)
— m + k)m! 1
mm+k (2 )’(m—}-k)’ 2{ mm,q} 3 (34)
2 m!
m+k,m_.:_(_’_"_,w__{ mm, }+_ (3.5)

2m)l(m + k)! 2

The connection between the operators T,,, and the
polynomials S, (x) is extremely simple. First consider T, .
Using the commutation relation (3.1) one can always re-
structure 7, , as a polynomial in T, ;; this polynomial is
proportional to S, (T ;) (see Ref. 7):

T,,=1[1/Qn— 1S, (T,,). (3.6)
Using (3.4) we can generalize (3.6) slightly to read
_@m+k)
Tm,m+k - (m + k)!2m+l {q :Sm(Tl,l )}»{.-' (3'7)

In fact, we could regard (3.6) as the defining equation for
S, (x). The formula in (3.4) would then be in exact analogy
with the defining equation for Chebyshev polynomial; the
fact that cos(#8) is a polynomial in cos @ allows one to de-
fine the #th Chebyshev polynomial T, (x) by

cos(n@)=T, (cos 8).

We conclude this section with a heuristic discussion of
the connection between the algebra of the polynomials
S, (x) and quantum mechanics. We argue that the polyno-
mials S, {x) are, in fact, the discrete analogs of the Hermite
polynomials He,, (x). The first few Hermite polynomials are

Hey(x) =1
He,(x) = x,
He,(x) =x* — 1,

(3.8)
He,(x) = x*> — 3x,

He,(x) = x* — 6x* + 3,

Hes(x) = x° — 10x> + 15x.
The Hermite polynomials satisfy an eigenvalue differential
equation®

He/(x) —x He, (x) + n He, {x) = {(3.9)

The eigenvalue difference equation in (2.7) may be re-
cast in a form in which the discrete differences are explicit:
S, (x +2i) —25,(x) +S,(x—20)

(2)?
S 2i) — S, (x — 2
s o (x + 2i) . w (x — 2} +nS, ()
4
The first term in (3.10) is the central second difference,

DS =[S, (x +h) =25, + S, (x = W) ] /h?,

=0. (3.10)
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and the second term is the central first difference, In similar fashion we can find a lowering operator 4 for

DS, (x) = [S,(x+ k) — S, (x — k) ]/(2h), the Hahn polynomials S, (x):

where 4 = 2i. Thus (3.9) takes the form A= tan(—dd—-) . 4.1)
X
2 —

DS, (x) — xDS, (x) + 1S, (x) =0, (3.11) The operator 4 has the property that
which is the lattice analog of 3.9. This similarity between S () 0
difference and differential formulations of quantum me- AS,(x) = [ n—1 X > (; 4.2)

b n = *

chanics has arisen in a very natural way. The polynomials
S, (x) emerge from a formulation of quantum mechanics on which follows easily from the integral representation for
a discrete-time lattice using the method of finite elements S, (x) in (2.6). The operator A is well defined as a conver-
(see Ref. 7). Apparently, the Hahn polynomials S, (x) are  gent Taylor series in powers of d /dx.

the natural basis for the states in discrete-time quantum me- By the same logic the raising operator 4 T is
chanics just as the Hermite polynomials He, (x) are the nat- R d
ural coordinate space basis in the continuum. Both sets of 4= COt(E) . (4.3)

polynomials arise from the same underlying Heisenberg al-

gebra [gp] =i. Evidently this operator exists only in a formal sense; 4 T is

actually a nonlocal integral operator.
Note that since both 4 and A4 ' are functions of d /dx
IV. FURTHER MATHEMATICAL PROPERTIES OF S, (x) only, we seem to conclude formally that

A. Raising and lowering operators [44%] =0, (4.4)

It is well known that the Hermite polynomials He, (x) in contrast with [a,a’] = 1. Indeed, the identity (4.4) holds
listed in (3.8) can be constructed by means of raising and when [4,4 1] operates on S, (x) (n>0). However, (4.4) is
lowering operators a',a. If we define a =d/dx and a'  false when it operates on S,(x) = 1 apparently because of

= x — d /dx, we find that ambiguities associated with the definition of [d /dx] .
aHe,(x) =nHe,_,(x), B. Representation of S, (x) as a generalized
hypergeometric function

a' He,(x) =He,, , (x), ‘

In Ref. 3 a general four-parameter class of continuous

where [a,a'] = 1. Hahn polynomials P, (x) is described. In this paper P, (x)
J  satisfies an orthogonality relation

f P.(x)P, (x) W(x)dx = Fnt+a+ca)(n+a+d)I'(n+b+c)I(n+b+d) 5, . (4.5)
e 2n+a+b+c+d—-NDNI'n+a+b+c+d—1) '
where
2 T(@+c+nm)(a+d+n) .
P, =/ Fol—nn+a+b+c+d-—la—ixa+ca+dl 4.6
(x) =1 T@te)ratdn 3% ( +c+ +ca+d;l) (4.6)
|
and C. Asymptotic behavior of S, (x) and distribution of
(a4 ix)T(b + ix)T(c — ix)T(d — ix) zeros .
Wx) = o : One of the most prominent features of polynomials are

(4.7) their zeros. Using MACSYMA we computed the first one
hundred polynomials S, (x) and their zeros. We found that
the zeros of S, (x) are real and occur in symmetrical pairs
centered about x =0 in a band that ranges just above

We obtain the connection between S, (x) and P, (x) if
we expand our weight function in (2.13) as a product of four
gamma functions. By comparing the result with (4.7) we

. . x = — 2ntojust below x = + 2n. Our numeral results also
can identify the parameters a,b,c,d: suggest that as # — « the separation between adjacent zeros

a=c=} b=d=} (4.8) near a fixed value of x slowly vanishes. In addition, the zeros
From this result and a comparison of the orthogonality rela- ~ ©fS» (x) and S, ., (x) interl.ac.:e. _ o
tions in (4.5) and (2.14), we can identify our polynomials We now present an explicit asymptotic analysls which
S, (x) as generalized hypergeometric functions of argument demonstrates the correctness of the above numerical obser-

1: vations for large n. We begin by rewriting the integral repre-
sentation for S, (x) in (2.6) in Laplace form:

" 1 ix 1
S,(x) = F(—n,n+l,———;—,l;l).
o 4 4’2 S, (0) = b Z y(2)e*, 4.10)
4.9) 2mi
The connection between our continuous Hahn polynomials where
and 3j symbols is given in Eq. (1) of Ref. 3. ¥(z) = 1/z(1 + 22) /3 (4.11)
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(4.12)

It is simplest to use the method of steepest descents® to
evaluate S, (x) in (4.10) as n— « . We find the saddle points
by solving ¢’ (z) = 0. There are two saddle points located at

z, =[x+ (x*—4n*)""?)/2n. (4.13)

Note that the value of z , is a function of n. If |x| < 2n then
z, ~Xx/2n +i(n— ©).

The controlling factor® (the most rapidly varying com-
ponent) of the leading asymptotic behavior of S, (x) as
n- oo is given by

¢(z) = —nlnz+xarctanz

e?(z+) + e?7) (4.14)

When ¢(z, ) is imaginary S, (x) is oscillatory and
when ¢(z ) is real S, (x) is growing and not oscillatory.
From (4.13) we can see that the transition between these
two distinct behaviors occurs when z , changes from com-
plex to real. This happens at [x| = 2n. Thus, asymptoticaily,
the zeros £, (k = 1,2,3,...,n) of S, (x) must lie in the range

—2n<8, <2n.

It is easy to illustrate this result numerically using &,

the largest positive zero of S, (x). We have determined that

£1/10 = 1.3428, £,,/20 = 1.5638,
£55/25 = 1.6191, £30/30 = 1.6594,
£oo/50 = 1.7520, 1007100 = 1.8399.

If we extrapolate these values of §,,/n we find that §,/n—2
asn—oo.

Next, we substitute (4.13) into (4.14) to obtain an ex-
plicit form for the controlling factor of the asymptotic be-
havior of S, (x) for large n. When — 2n<x<2n we obtain
the oscillatory controlling factor

cos{x In(4ne/x)""?).
Thus the &k th zero £, of S, (x) satisfies the equation

& In(dne/E )2~k — (n+ 1)/2)7
(n>w, k=12,.,n). (415

Therefore the separation A = §, , | — &, between two large
consecutive zeros of S, (x) satisfies the asymptotic formula

A~27/In(4n/E) 1<E<2n), (4.16)

where £ = (£, + &4, 1 )/2. Note that for fixed £, A decays
logarithmically as » increases.

The asymptotic result in (4.16) is extremely accurate.
In Table I we compare the exact value of A with the asymp-
totic prediction in (4.16) for the positive zeros of Ss4(x).
Observe that except near k = 25 and k = 50 the relative er-
ror is much less than 1%.

From (4.15) it is also evident that the zeros of consecu-
tive polynomials S, (x) and S, , , (x) must interlace.

(n'—’OO,

D. Expansions of functions in series of S, (x)

In this subsection we construct a general procedure for
expanding an arbitrary function f(x) as a series in S, (x):

o

Y a,S, (x).

n=0

flx) = (4.17)

Let us assume that f(¢) has a Fourier transform representa-
tion:
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TABLE I. A comparison between the exact values of and the asymptotic
predictions for the differences between pairs of consecutive zeros of S5, (x).
The zeros of Sso(x) are labeled §, (k = 1,2,...,50). Only the positive zeros
(k = 26,27,...,50) are listed. The exact separation between consecutive ze-
ros is denoted A = £, , | — £,. The asymptotic prediction A{*¥mptotic)
is given in (43). Except for the smallest and largest values of § the agree-
ment between AL and A{¥™P'°%) j5 very strong,

k ;k A;(exlc() A;‘uympwtic)

26 0.4885 1.1522 1.2001
27 1.6407 1.3915 1.4121
28 3.0323 1.5757 1.5874
29 4.6079 1.7370 1.7464
30 6.3449 1.8887 1.8971
31 8.2337 2.0364 2.0443
32 10.2701 2.1833 2.1907
33 12.4534 2.3319 2.3385
34 14.7853 2.4841 2.4894
35 17.2694 2.6417 2.6448
36 19.9111 2.8066 2.8063
37 22.7177 2.9808 2.9755
38 25.6985 3.1667 3.1541
39 28.8651 3.36711 3.3439
40 32.2322 3.5858 3.5474
41 35.8181 3.8276 3.7673
42 39.6457 4.0989 4.0073
43 43.7446 4.4091 42720
44 48.1536 4.7720 4.5677
45 52.9257 5.2098 4.0034
46 58.1355 5.7605 5.2925
47 63.8960 6.4976 5.7566
48 70.3936 7.5927 6.3358
49 77.9863 9.6115 7.1239
50 87.5978 e e

flt) = r ds €F(s). (4.18)

From the orthogonality relation in (2.14), the general for-
mula for the coefficients a,, is

a, f AQON
=) T 2cosh(mt/2)

Substituting the expression for f(¢) in (4.18) and the inte-
gral representation for S, in (2.6) gives

Z
@ ——f dsF(s)SEW
ez(u+ arctan z)}

) dt —— ———— |
Xf_ w 2cosh(wt/2)

where we have interchanged orders of integration.
We can evaluate the ¢ integral using (2.15):

1 J‘ ® sec(is 4 arctan z)
e ds F(s SSdz .
277.1 w ) zn+l(l+22)l/2

as F& 1 dz 1 .
coshs2miJ z"+! 1 —iztanhs

Next, we evaluate the z integral by expanding the denomina-

tor and integrating term by term:

(4.19)

(4.20)

2 (7 dsF(s
a, =l"f asFs) (tanh s)". 4.21)
—w coshs
We now consider some special cases.
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Example 1: f(x) =8(x), F(s) = (2m)~'. Using the
general formula'®
J°° sinh*x _ 1 T{(p+ 1)/2)0((v —p)/2) (4.22)
o cosh"x 2 I'((v+1)/2)

we obtain

_(=DTe+h g
- , .1 =0.

¥ PN
Thus

= (= 1)PT(p+1)
s =S 8, = DTe+h
pgo » 2T

Note that this formula is a special case of the general state-
ment of completeness of the polynomials S, (x):

(4.23)

o S, (x)S, (a)
8(x—a)= .
x—a) ,Z‘o 2[cos h(mx/2)cosh(ma/2)}'/?
(4.24)
If we set a = 0 in (4.24) and use the property that
8, 0)=T(n+1(—-1)"/nNr,
’ : & (4.25)

San +1 (0) =0,
we recover (4.23).

Example 2: f(x) = 8(x —a), F(s) =e “*/2m. Here
we are rederiving the expansion in (4.24). For this choice of
F(s) the integral (4.21) can be done by considering a rectan-
gular complex contour whose vertices are located at
(— o, + o, 4+ o +im, — o +iw). This contour en-
closes the (n + 1)-order pole at s = iw/2. Translating vari-
ables s = iz + ir/2 and comparing with the expansion in
(4.24) gives an interesting Rodrigues-like formula for
S, (x):

1. d)" "+ e (cos z)"
=—lim{—) ———. (4.26)
S () n! zl—lg(dz (sinz)"*+!
Example  3:  f(x) =[2cosh(#t/2)]~!,  F(s)

= (27 cosh s) . For this case we evaluate (4.21) using
(4.22) and obtain a formula for the expansion of the weight
function W(x):
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1 a5, (=1)
2 cosh(7x/2) _,,=o m2p+1)
Example 4: f(x) =sin(ax), F(s) = (1/2{)[6(s — a)
— 8(s + a)]. In this case we obtain from (4.21)

> (—1)’(tanha)*+!

(4.27)

si = S. x). 4.28)
n(ax) ,,g’o cosh a 2p+1 (%) (
Similarly, we have
= (—1)?(tanh a)?
os(ax) = S . 4.29
cos(ax) ,,;o cosha 2 (%) (429

Finally, combining (4.28) and (4.29) and replacing a by
— ia, we have
o S (tana)

=Yy 2225, (0,
n=0 €OSQ

(4.30)

which is valid as long as |a| < 77/2. This formula was used in
Ref. 7.
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It is shown that the canonical realization of the representations of SL(2,R) proposed by
Gel’fand and co-workers yields a generating function of the Clebsch—Gordan coefficients of the
group in the hyperbolic basis. This function is the coupled state and appears as the solution of
an ordinary differential equation reducible to the hypergeometric equation. The desired
expansion of the generating function that yields the Clebsch—-Gordan coefficients is essentially
a generalization of Barnes’ theory of analytic continuation of the hypergeometric function. In
this paper the normalized Clebsch—Gordan coefficients for the coupling of two representations

of the positive discrete class are calculated. The final result is an analytic continuation of the
corresponding expression in the SO(2) basis. The possible application of the generating
function to the reduction of the Kronecker product of three irreducible representations is

discussed.

I. INTRODUCTION

The Clebsch—-Gordan problem of the group SL(2,R)
was investigated by Pukanszky,' Holman and Biedenharn,?
Ferretti and Verde,* Wang,* Verdiev, Kerimov, and Smoro-
dinskii,> Barut and Wilson,® and us’ among others.® Pu-
kanszky' confined his attention to the structure of the
Clebsch-Gordan (CG) series for the coupling of two repre-
sentations of the continuous class. However, he did not at-
tempt the remaining couplings or the problem of explicit
evaluation of the Clebsch-Gordan coefficients (CGC’s).
These aspects of the problem were considered by Holman
and Biedenharn®> (HB), Wang,* and us.” HB based their
investigations on the fundamental recurrence relation satis-
fied by the CGC’s. Their first paper was mainly concerned
with the coupling of two representations of the discrete class,
and other cases of coupling were considered in the second
paper. The CG series was obtained by them by examining the
resolvent of the Laplace-Beltrami operator in the space of
Bargmann’s representation functions. The non-normalized
CGC’s determined by Ferretti and Verde® formed the start-
ing point of the investigations of Wang* who attempted to
normalize them by adopting a summation prescription ori-
ginally due to HB. All these authors used the compact
SO(2) basis for the unitary irreducible representations
(UIR’s) of SL(2,R). More recently we made a departure
from the previous practice by evaluating the CGC’s in the
noncompact E(1) basis.® The problem of evaluation of the
CGC’s in the hyperbolic SO(1,1) basis was attempted some
time ago by Mukunda and Radhakrishnan.!® However,
some of their results given in terms of the generalized hyper-
geometric functions of the F, (1) type turn out to be diver-
gent. This may be attributed to their use of the oscillator
realization, which does not seem to be particuarly suitable
for this problem.

In this paper we make a fresh attack on this problem
along entirely different lines. We show that the realization of
the representations of SL(2,R) proposed by Gel’fand and
co-workers'! constitutes a convenient starting point for the
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CG problem of the group in the SO(1,1) basis. In a previous
paper'? (I) we analyzed this representation space in some
detail and obtained the unitary transformations connecting
the three subgroup reductions. We now show that the use of
the Gel’fand realization leads to a generating function of the
CGC’s in the continuous SO(1,1) basis. A similar generat-
ing function made its appearance some time ago in connec-
tion with the CG problem of SL.(2,R ) in the compact SO(2)
basis.” The generators of the group were constructed in the
space of homogeneous functions of two complex variables
&, &, transforming according to the fundamental represen-
tation of SU(1,1) [isomorphic to SL(2,R) ], which is essen-
tially the Bargmann realization.’® The bases of the coupled
representation f,, were then shown to satisfy an ordinary
differential equation reducible to the hypergeometric equa-
tion. The CGC’s then become identical with the coefficients
of Fourier or Taylor expansion of an appropriate solution of
this equation. The connection of this approach with that of
HB can be established by writing the series solution of this
equation in the form X g, x™:. Substitution of this solution
in the differential equation yields

(L+m+1D(jy—m + Da,,
+ AL+ + LR+ —ji(+ 1D +2mm,]

xXa,, + (o—my+1)(j+m + l)amz—l =0.

This recurrence relation is completely equivalent to the re-
currence relation of the CGC’s derived by HB. However,
since the SO(1,1) basis is continuous no such discrete recur-
rence relation exists in this basis in the usual sense.

On the other hand, the bases of the coupled representa-
tion in the Gel’fand realization still satisfy an ordinary dif-
ferential equation of second order. This equation turns out to
be formally the same as the one in the SO(2) basis, but with
m replaced by — iA. This simplification may be attributed to
the close similarity between the monomial eigenbases of the
continuous SO(1,1) basis in the Gel’fand realization and
those of the discrete SO(2) basis in the Bargmann realiza-
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tion. The basic difference in the use of the generating func-
tion in the two problems lies in the intrinsic difference in the
structure of the representation spaces of Gel’fand and Barg-
mann. This has the consequence of not only restricting the
values of j,, j,, but also the domain of the variable x of the
differential equation, which is determined by the exponen-
tiability of the generators to the UIR’s of the group. For
example, for the Kronecker product of two positive repre-
sentations, the variable x in both the problems is the ratio of
two complex numbers x, and x,, but the domain of the two
variables as well as the scalar product in the Hilbert space
(see Sec. II) are entirely different. In the Gel’fand realiza-
tion x, and x, represent two complex numbers each span-
ning the upper half-plane Im x, > 0, Im x, > O whereas in the
Bargmann realization x, and x, are complex numbers vary-
ingover the open unit disk 0 < |x,| < 1,0 < |x,| < 1. The solu-
tion of the above differential equation, which is once again
reducible to the hypergeometric (HG) equation by a simple
substitution, constitutes the generating function of the
CGC’s in the SO(1,1) basis.

We start with the coupling of two UIR’s belonging to
the positive discrete class. Since the SO(1,1) basis spans a
continuum we look for an expansion of the generating func-
tion as an integral over the continuous SO(1,1) state label.
In a sense this expansion is a generalization of Barnes’ theory
of analytic continuation'* for the product of a binomial and a
hypergeometric function (HGF). Although the generating
function has two different Taylor expansions inside and out-
side the unit circle, it represents a single analytic function. It
then follows from Barnes’ theory that the desired integral
representation must be the same in all regions of the complex
plane. The coefficient of the product state in this integral is
the unnormalized CGC. To get the normalized CGC we
compare this integral with the inverse expansion which is
essentially the CG series.

ll. THE FUNDAMENTAL EQUATION AND THE
DISCRETE PART OF THE SPECTRUM

The group SL(2,R) [isomorphic to SU(1,1)] consists
of all 2 X 2 real matrices with determinant 1. In the realiza-
tion of Gel’fand and co-workers,!! the representations of
SL(2,R) are constructed in the space D, of functions f(x)
of a single real or complex variable x. As shown in Paper I
the generators J,, J,, J; can be represented as differential
operators of the form

2
=52 L,

2 dx
[ d .
J2=t[x7d;——_]], (21)
2
J3=i[L1_+x_>_ff__jx] ,
dx

The generators (2.1) can be exponentiated to the representa-
tions of the positive discrete class when x is a complex vari-
able spanning the half-plane Im x > 0. The representation
space then consists of functions analytic in the upper half-
plane and the generators (2.1) are Hermitian under the sca-
lar product
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(1o)== f Fix) fo(x)

Imx>0
X(Imx) =%~ %dxdx. (2.2)
For the negative discrete class the representation space con-

sists of functions analytic in the lower half-plane and the
scalar product is given by

2F(—2 -1)

(Fufa) = f AT

Imx <0

2F(—2 -1

X|Imx| =¥ 2dxdx. (2.3)

The principal and the exceptional series of representations
are realized, on the other hand, in the Hilbert space of func-
tions defined on the real line. The generators (2.1) are Her-
mitian for the principal series, under a local scalar product,
and, for the exceptional series, under a nonlocal scalar prod-
uct. Although the intrinsic structure of the representation
space is different for each class of representation the formal
differential operators (2.1) are the same for all UIR’s.
We shall now consider the Kronecker product

ThXTE.
The variables for the carrier space of the representations are,
respectively, x, and x,, which can be complex or real de-
pending on the nature of the representations coupled. In the

hyperbolic SO(1,1) basis, the product states are “mono-
mials” of the form

i 2.4)
when j; and j, belong to the UIR’s of the discrete class. For

the representations of the principal or exceptional series
these are distributions of the form (see Paper I)

(x; + i0) —Ai(x, 4 i0) 2 =42, (2.5)

Although the product states (2.5) are fundamentally differ-
ent from (2.4) the formal operations presented below can be
justified for both.

By definition, the coupled states g,; are the simulta-
neous eigenstates

x{ﬁ‘bhx?

(J3 =T} —T)gu =jj+ )gyu (2.6a)
a a

J.='(x—— _— —)~=/l~. 2.6b

Bip =1 1&‘1‘*"‘262 Ji1—J2) & &1 ( )

Equation (2.6b) implies that g;; is a homogeneous function
of degree (j, +j, — iA) in x, and x,. This suggests the fol-
lowing transformations:

X =Xy, XpoX X, X=X/X,,

o 27N
Gia (X1,%2) = x{' +2 e (x) .
Now we have to convert the partial derivatives acting on
functions of x, and x, into those acting on functions of x, and

x = X,/x,. This can be done by noting
d 4

AN , 2.8
ax, dx, x,dx Ix, (2.8)

Using Egs. (2.7) and (2.8) and eliminating the variable x, in
Eq. (2.6a) we obtain, after some calculations the ordinary
differential equation satisfied by the function ¢, (x),
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2

x(1—x)? 222 4 L4, — 2id — 2jx —2
dx
L de,
+Q_h_+£_ﬂ_x(jl+j2_u_l)]x_‘2ﬂ_
x dx

—[iLlh—D =G+ D+ jG+1)

— 2iAj, — 2x(jy +j2 —iA)]en =0. 2.9)
It is interesting to note that the differential equation (2.9) is
formally identical to the corresponding equation in Ref. 7
with m replaced by — iA.

For the determination of the spectrum of j-values ap-
pearing in the reduction it seems necessary to express the
solution of Eq. (2.9) in terms of known functions of analysis.
This is done by the substitution

e (x) = (1 —-x)""/"'F(x), (2.10a)
o=ji 4+t 1, (2.10b)

which reduces Eq. (2.9) to the standard differential equa-
tion satisfied by the HGF:

d*F . . .
x(1—x) 7t [+ (1 =x)(o+id+1-2)]
9L | (G— i) (o—J)F=0, (2.11a)
dx
Jo=Jji—Ja- (2.11b)

When j belongs to the discrete spectrum, the appropriate
solution is given by

F=F(—j+il,jo—Jj —2;1—x). (2.12)
Whenj lies in the continuous spectrum we have to take suit-
able linear combinations of the first and second solution of
the HG equation (2.11a).

The discrete part of the spectrum is obtained by apply-
ing the operator
K=J®—J@ =,-(x, -‘l_zx_‘l_jo) (2.13)
dx, Ix
to the coupled eigenfunction
gj,l =x‘j. +j2—i}.(1 _x)a—j— 1
XF(—j+id,jo~—ji — 21 —x), (2.14)
and using the Hermiticity condition. Operating g;, by the
operator (2.13) we have
—i(F+A s =) (o +))
2747 - 1)
g +2i(c—j—1)g 14 -
(2.15)
This result is obtained by using the recurrence relations,
ab ab(c — b)(c—a)

2 r_
¢ e+ 1)

X xF(a+ 1,b+ Lie 4+ 2),
(1 =x)F = [ab(c — a)(c — b)/c*(c* — 1)]
Xx*F(a+ 1,b+ l;c+2)
— [e(c—a—b—1) 4+ 2ab/c(c—2)]xF
+Fla—-1,b—1;c—-2), (2.16b)

K,gu(x) = i 14
Adjy
JjGi+ 1

dF
1—x) 22 =
(1—x) i
(2.16a)
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with
F = F(a,b;c;x) , etc.

We now introduce the normalized coupled eigenbases
Su=Nuga (2.17)

where N;; is the normalization constant. The Hermiticity of
K, ie.,

(Ko fiarfio1a) = Kaf;_120) s (2.18)
now yields
] 2 =2 2y\p2042
Mo o _@-PFE-D (g
Ni_1a (F+A o ~ e + J|

This equation determines the normalization factor and the
range of j-values but with a degree of uncertainty. First, Eq.
(2.19) asserts that Ny; = N _,,, ; =0 so that the identity
and D _,,, representations do not appear in the reduction.
Second, since the remaining factor on the rhs of (2.19) is
positive, the ratio |N,, /N, _, ; |* will be positive if
(@2 —7/(js =) >0.

We shall analyze this condition case by case. Let us first
consider the coupling of two discrete representations, i.e.,
D XD orD;- XD ;. For this case (g + j)/(}jo| —J)
<0. Therefore we must have (o —j)/(| jo| + j) <0. Thisis
possible if

j=o0—-10—2,..,— o,
or if

i= —lioly = ljol + 1., = 1 (or —3).
The first region has an upper boundary atj = j, + j,, whichj
cannot cross, and the second region has a lower boundary at
J= —|Jol. The first case corresponds to the coupling D ;¥
XD ;* and the second case to D ;- X D ;¥ . For other cases of
coupling involving the continuous representations, Eq.

(2.19) permits all values of j< — 1, —3 to appear in the
reduction.

Ill. THE COUPLING Djf XD}t
A. The CG series

To start with, we consider the coupling of two UIR’s of
the positive discrete class. For the determination of the nor-
malized CGC’s and the complete spectrum of j-values it is
necessary to expand the monomials x”: ~“: in terms of the
coupled eigenfunctions e;,. The expansion coefficients will
be the complex conjugates of the CGC’s. We start with the
identity"®

_a (=@, 8),

xH =
<o (c+r—-1)1
-, ¢c+r—1, —r]
F. 1—x)"
X 3F, o b (1-x)
XF(a+rb+rc+2rl —x), 3.1)
with
pu=j,—id,, r=0—j—1, a=1—o+ir,
b= =2, ¢=2-20, 7=1,+4,. (3.2)
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A little simplification yields the desired expansion:

h+ i

sz——i)Q: Z ( _ )a—j—l

XF[ —J'.+i/l, J'?— Js ‘—U—j ]

l—o+ir, —2, —2i—1, o—j
—jatidy —o—] j+1—‘7]

F .

% 2[ l—o+ir, —2, 4

(3.3)

B. Expansion of the generating function and Barnes’
theory of analytic continuation

We shall now consider the problem of expansion of the
coupled state e;; (x) in terms of the product states xl2— i,
Since the spectrum of A, is the entire real line, the desired
expansion of e, (x) is of the form

e, (x) =Jw a(z)x”?"%dz, (3.4)

where the path of integration is the entire imaginary axis.
The coefficient a(z) is then the unnormalized CGC of
SL(2,R) in the hyperbolic basis.

We note that the coupled state ¢;; (x), being the product
of a binomial and a HGF, defines a single analytic function
of the complex variable x. The Taylor expansions of ¢;; in-
side and outside the unit circle |x| = 1 are, however, differ-
ent. When the contour of (3.4) is closed on the left we get the
Taylor expansion of e;; for |x| < 1, and when it is closed on
the right we get the expansion for |x| > 1. But either of the
expansions represents the same analytic function, It there-
fore follows that the expansions of ¢;; (x) in the two regions
|x} <1 and |x|> 1 must yield the same coefficient a(z). In
short, (3.4) is essentially the same as the expansion of the
HGF in Barnes’ theory of analytic continuation, ' except for
a shift of the path of integration. This shift is necessary to
avoid the poles of the integrand which may otherwise lie on
the path of integration. But the beauty of Barnes’s theory is
that the integrand has the same form in all regions of the
complex x plane so that it defines a single analytic function.
The same conclusion holds good for the CGC’s a(z) in our
approach.

To evaluate the coefficient a(z) we first expand the cou-
pled state e;; (x) in a Taylor series and rewrite the series as
an integral over the imaginary axis. We start from the Taylor
expansion inside the unit circle |x| < 1. The HGF appearing
in e;; (x) has a branch point at the origin x = 0. To get the
Taylor expansion about the origin we therefore apply the
following formula for analytic continuation'®:

F(a,b,c,1 —x)

—a—b
=r[c’ c—a ]F(a,b,a+b—c+1,x)
c—a, ¢c—b

a+b—c]
b

X X" *F(c—ac—bec—a—b+ 1x).
Using Eq. (3.5) and the formula!”

+T [c’
a,

(3.5)
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(1 — x)#F(a,b,c,x)

(a),(b),
=2
—u, 1—c—n, -—n] n
X[l—a——n, l—b—n]™" (3.6)
we obtain after some calculation
il o —J—id  —jo—i
r[ J Jc_)_ 21{ j Jo J] € (X)
=Xjf°"" +x‘f*"""Xj“j"'—"’1 , (3.7)
where
jorid (-)"
Xpi=2 n!

XT [ =)+ i+ jo—j+n, —jo—id—n]
j+1—0, —j,—iA—n, —n]
F) ..
Xty j—id—n 14j—jo—nl*
(3.8)

The various terms in the sum (3.7) are the residues at the
simplepolesz =j, —nandz =j, + il —n(n=0,1,2,...) of
the analytic functions

X(Z)=F[—]+l/1+j2—z, jl_j'_z)

z—ji—id, z—}]

j+1—0, —j,—id +2z —j2+z] o
XF[ C . x=7E.
i —4z 1 i+

(3.9)

Besides the singularities at z=j, —n, z=j, +il —n,
which lie on the left of the imaginary axis, the function y(z)
has simple poles at z= —j+il+j,+n and z=j;
—j + n, which are situated on the right. The function has,
in addition, simple poles at the points where one of the de-
nominator parameters of the generalized HGF becomes a
negative integer (denominator catastrophe), i.e., at d=1
+j—iA —j+z= —n and e=l+ j—j +z= —n
(n =0,1,2,...). It can be shown that the only possible singu-
larities because of the denominator catastrophe lie on the
right of the imaginary axis.

Let us now choose a contour C consisting of an infinite
semicircle on the left and the pure imaginary axis. The singu-
larities enclosed by the contour are the simple poles at
z=j,—n and z= j, + il — n. Therefore by Cauchy’s
theorem,

1 o0
5 iLx(z) 'z n§=oRes[x(z)],=k_,,

+ 3 Resly@ e ju_n>  (3.10)
n=0

and we obtain

A Jo—) —f— A, —jo—]
J Jo_ 2]{ J Jo J] e (X)
=—1——.J-x(z)dz. (3.11)

2mi Je
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Using the asymptotic forms of the gamma function and the

generalized HGF, it can be shown that the function y(z)
J

goes rapidly to zero as |z| - « in the region Re z <0 pro-
vided |arg x| < 7. Thus

1 oo '-J+IA' +j2~—2, jl _j"'zs Z_jl _l/i: Z—jz; _2_1]
e, (x) =— dzl‘[ S T, I, T,
i (%) 27 J i —J+Ii4, Jo—1Js —Jj—id, —jo—J
j+1l—0, —ji—id+z, —jo+2z| , _
XF[ ., ) . x=77, 3.12
PPt =tz 14—+ (12)
1]

where the path of integration is the entire imaginary axis.
This integral representation was derived under the condition
|x| < 1. However, the integral represents a single analytic
function e, (x). Using the principle of analytic continuation
we can now assert that the integral representation outside
the unit circle (i.e., |x| > 1) must be identical and the condi-
tion |x| <1 can be dropped. It can in fact be verified by ex-
plicit calculation that the above integral when closed on the
right will yield the Taylor expansion of e, (x) for |x|> 1.
The formula (3.12) is therefore valid in all regions of the
complex x plane.

C. Evaluation of the normalized CGC’s

Let us now introduce the normalized product and cou-
pled states

‘f}l;{'l f.;'z'lz = ‘AGIAI Nj2j’lx{‘
f}/l =]Vﬂ x.]i|+iz——i/1ejl(x) , (3.13h)

where the normalization factors N, ; , N, , ,and N,; arecho-
sen in such a way that the product and the coupled states are
orthonormal:

— i, x{z —idy s

(3.13a)

( A ./?J.anl‘-l“j:-z,{i) =5(1~1 - A ; )6(12 _15) y

e =fd/1£ a(d)x= =", (3.15)

where a(A}) is given by Eq. (3.12). Using Egs. (3.13)~
(3.15) we get

(i 2 9)=Gdadin
= 84— Ay — A} (N /Nyi N, da(hy) .

(3.16)
On the other hand, from the CG series we have
. . Stk
xh e = Y b(pe., (3.17)
i= -
where b( j) is given by Eq. (3.3). This yields
=(iv J» J
C QI! 122 /l) = ( JiAy f}z '1:.:’].;71 )
= 6(/{ - Al - '&2)(1\}.}1"1: A{fz‘z/Ai'% )b(j) *
(3.18)
Equations (3.16) and (3.18) require that
N, 2 B
J - b( ) ] (3.19)
Nja, Nia, a(d,)

Thus 5( j)/a(4,) must be a positive definite quantity. To
ensure this we shall first show that the generalized HGF

(Forfor) =8,8(4 —A"). (3.14) appearing in a(4,) can be transformed into the complex
M ? conjugate of the one appearing in b( j). We start from the
We now write the expansion of e;; (x) in the form Thomae-Whipple identity,'®
)
a b, c 14+b—e l4a—e d, e }
= — —cr\
3F2[ d,e] (=) [d—e e —c, l4+b+c—e l4datc—e
¢ 1—s5 14c—e ]
><3F2[1—+—b+c—e, l+a+c—el’ (3:20)
wheres=d +e—a —b—candc= j+ 1 — ois a negative integer. From this we obtain
- . iy _ n._.’_._.’_ ]
-5’—5-’—’=21rr*[ . At A N A (321)
a(d,) ~Y—Lo—j =% —j—iA+idy —ji+il—iky, —jo+iky, —)— i,

which is a positive definite quantity. This ensures the correctness of our result. Combining all these results we now obtain the

final expression for the CGC:

VIO | (—)y /!
C(/1 ):————-5(/1—1 —A,)
. /12 ﬂ, r.._21T 1 2

< {I‘{ —Jj=iA jo—J —o—j, =2, —ji—iky, —ji+iky, —j+id, —j— Mz]}m
_j+ i’l» _‘jo —j’ - 2j~— 1: O'—j

r|
T _op1—0—ia

1 ] i+ 1—0, —o—}, —jz—t}lz]
2 -2, l—0o—id ’

(3.22)

where we have omitted a phase. This expression is essentially the analytic continuation of the corresponding formula for the

SO(2) basis. >’
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IV. CONCLUSION

The principal advantage of the Gel’fand realization is
that it provides a convenient starting point for many practi-
cal calculations particularly those requiring explicit reduc-
tion under the noncompact SO(1,1) or E(1) subgroups. In
this paper we have shown that this realization yields a gener-
ating function of the CGC’s in the continuous SO(1,1) basis.
The differential equation whose solution yields the generat-
ing function is the analog of the recurrence relation of HB. In
this paper we have used this function to evaluate the CGC’s
of SL(2,R) in the SO(1,1) basis for the coupling of two
UIR’s of the positive discrete class. For other cases of cou-
plinglike D ;- XD ;" orD; XD ;" ,the CG series has contri-
bution from the UIR’s of the principal series. This presents
an additional difficulty because the representations of the
SO(1,1) subgroup within the principal series are doubly de-
generate. However, the difficulty can be circumvented by
taking suitable linear combinations of the solutions of the
HG equation. Calculations for this case are under way and
the results will be communicated shortly.

The Gel’fand realization may also turn out to be helpful
for the reduction of the Kronecker product of three irreduci-
ble representations of SL(2,R). There are several sets of
commuting operators which may be diagonalized simulta-
neously for the coupling of three UIR’s D; , D, , and D; . A
particularly convenient set is

12 22 33? y2 2
J()’J()’J()’Jim’J’Jsr

where JO* = J{* — J (0% _ J {1 etc. In the above setD,
can be the UIR contained in D; XD, ,D; XD, ,orD, XD, .
Following the notation of Rose'® the connection between the
first two couplings is given by

en(J) =3 Ryren(Jj7),
“

where 2 stands for the summation over the discrete and inte-
gration over the continuous j”-values and R;.; is the Racah
coefficient of SL(2,R). Since e, (j) and e; (j") are ex-
pressible in terms of HGF’s, the problem essentially consists
in expanding a HGF in terms of a series of other HGF’s. A
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variety of formulas of this genre have been derived by Burch-
nall and Chaundy?® and it is interesting to see whether one of
them followed, if necessary, by a Sommerfeld Watson trans-
formation yields the Racah coefficient of SL(2,R). This
problem will be treated in a forthcoming paper.
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Nonlinear equations with superposition formulas are obtained, corresponding to the action of
the complex and real forms of the exceptional Lie group G, on the homogeneous spaces G,/H.
The isotropy group of the origin H is taken as one of the maximal parabolic subgroups of G,,
or as one of the maximal reductive subgroups, leaving some vector space VeC’ (or VeR")
invariant. The parabolic subgroups, as well as the simple subgroups SL(3,C), SU(3), SL(3,R),
or SU(2,1) lead to equations with quadratic or quartic nonlinearities. The semisimple
subgroups SL(2,C) ® SL(2,C), SU(2) ® SU(2), and SU(1,1) ® SU(1,1) lead to equations
with quadratic nonlinearities and additional nonlinear constraints on the independent

variables.

I. INTRODUCTION

Part I of this series' (further referred to as I) was devot-
ed to a classification of the maximal subalgebras of the com-
plex and real forms of the exceptional Cartan Lie algebra g,
and to an analysis of their matrix realizations.

In this paper we make use of the results of I to construct
the homogeneous spaces G /H. Wetake G to be the complex
exceptional Lie group G,(C), the real compact Lie group
GS(R), or the real noncompact Lie group G} (R), and H
to be one of the corresponding maximal subgroups. The real-
izations of the homogeneous spaces are then used to obtain
systems of nonlinear ordinary differential equations
(ODE’s) with superposition formulas, based on the action
of the group G on the space G /H.

Such equations will in general have the form

dx* _ ., & 2w

o =X .-21 a;(&x*, u=i,..n,
where the g, () are arbitrary functions of ¢ and the é ; are
vector fields representing the Lie algebra L of the Lie group
G, when acting on the homogeneous space G /H:

n n d
;= Y(x!yx™) ;

§ V§=:1 § ax”

The general solution of Eq. (1.1) can be written as a

function of a finite number m of particular solutions and of n
significant constants ¢; :

xH(t) = FHX(8),00 00X, (£)5C150005C ),

(L.1)

i=1,..k (1.2)

p=1.,n  (13)

It is (1.3) that we call a “superposition formula” and
X,(),....X,, (¢) is a “fundamental set of solutions.”

These concepts were originally introduced by Lie, who
also gave the necessary and sufficient conditions for a system

®) Chargé de recherches F.N.R.S., Belgium.
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of ODE’s to allow a (nonlinear) superposition formula.”

Out interest in ODE’s with superposition formulas was
motivated in earlier publications.*~'° Let us mention, as far
as mathematical interest is concerned, that the application of
the theory of transitive primitive Lie algebras has made it
possible to solve a problem posed by Lie, namely to classify
the systems of “indecomposable” ODE’s with superposition
formulas.® From the practical point of view the superposi-
tion formulas provide a new method for obtaining analytical
or numerical solutions of certain systems of nonlinear
ODE’s.>!? Finally, from the physical point of view, it should
be stressed that ODE’s of the type (1.1) occur in many appli-
cations.”>™ A prime example are matrix Riccati equations,’
occuring as Bicklund transformations for the nonlinear o
model'!"'? and in many engineering applications,'? specially
in optimal control theory.’

Tables of all maximal subalgebras of the Lie algebras
2,(C), g5 (R), and g (R) are given in Ref. 1. Use was made
of seven-dimensional irreducible representations of these al-
gebras and the corresponding Lie groups. A given maximal
subalgebra can be imbedded in this representation either re-
ducibly or irreducibly. A subalgebra 4 imbedded reducibly
in g, by definition leaves a proper nontrivial subspace of C’
(or R7) invariant. This makes the construction of the corre-
sponding homogeneous space G /H much easier. In this arti-
cle we restrict ourselves to the case of reducibly imbedded
subalgebras and we obtain the ODE’s for all such cases. The
problem for irreducibly imbedded subgroups has only been
partially solved, even for the classical groups.®’

We shall see below that the homogeneous spaces we are
interested in, i.e., G,(C)/H, GS(R)/H, and G)“(R)/H,
where H is any one of the corresponding maximal subgroups
(I), can always be imbedded into O(7,C)/I?, 0(7)/1?, or
O(4,3)/f], respectively. Here H, is again a maximal sub-
group of the corresponding compact or noncompact rota-
tion group. For certain subgroups H and H the spaces G,/H
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and O(7,F)/H are actually locally diffeomorphic (and in
particular have the same dimension). The G, equations for
such spaces will be special cases of the O(7,F) equations. For
other subgroups we find dim[G,/H] <dim[O(7,F)/H].
The G,/H space is then properly contained in the other one
and we must find the conditions that restrict the larger space
to the lower-dimensional one. Typically the G, equations are
then obtained as O(7,F) equations with further constraints
imposed on the dependent variables. In principle, if not nec-
essarily in practice, these constraints can be solved and some
redundant variables can be eliminated from the system. In
the case of maximal reductive subalgebras the constraints
are obtained via the invariance properties of the completely
antisymmetric tensor 7' discussed in Ref. 1.

Section II is devoted to equations related to maximal
parabolic subalgebras of g,(C) and gy “(R). In each case
two different maximal parabolic subalgebras exist, one in-
volving additional constraints with respect to the O(7,C) or
0(4,3) case, the other not.

The simple maximal subgroups SL(3,C) CG,(C),
SU3)CGS(R), SL(3,R)CGYS(R), and SU(2,1)
CGX(R) are treated in Sec. III and are shown to lead to
special cases of projective Riccati equations®* (with no non-
linear constraints).

The reducibly imbedded
SL(2,C) ® SL(2,C) CG,(C), SU(2) @ SU(2) CGS(R),
SU(2) e SU(2)CGY(R), and SU(1,1)eSU(L,1)
CGY(R) are shown in Sec. IV to lead to rectangular ma-
trix Riccati equations with four additional nonlinear con-
straints leading to more complicated nonlinearities in the
equations.

semisimple subgroups

Il. EQUATIONS RELATED TO MAXIMAL PARABOLIC
SUBGROUPS

A. General form of the equations

It was shown in I that the noncompact groups G,(C)
and GY°(R) have two mutually nonisomorphic maximal
parabolic subgroups each. We denote them P, (F), with
a = lor2,and F = Cor R; the corresponding maximal para-
bolic subalgebras of g,(C) and gl“(R) are P, (F).

To simplify the presentation, we shall consider the case
F = Cexplicitly. All formulas of this section are equally val-
id for F =R, with the complex orthogonal group O(7,C)
replaced by the real pseudo-orthogonal group O(4,3). Simi-
larly, all subgroups of O(7,C) restrict to the relevant sub-
groups of O(4,3).

In order to obtain the nonlinear ODE’s with superposi-
tion formulas we need to construct a coordinate realization
of the homogeneous spaces G,(C)/P,, (C). To do this we
first construct the corresponding homogeneous spaces
O(7,C)y/P,(C), where P,(C) is a maximal parabolic sub-
group of O(7,C) leaving an a-dimensional completely iso-
tropic vector space invariant. We then restrict from O(7,C)
to G,(C) and impose further constraints whenever neces-
sary. It was shown in I that we have P,(C) = SIM(5,C) and
P,(C) =O0PT(5,C), i.e,, P,(C) and P,(C) are the simili-
tude and “optical” groups'* of C7, respectively.

521 J. Math. Phys., Vol. 28, No. 3, March 1987

The spaces O(7,C)/P, (C) can be realized as the Grass-
mannians of complex isotropic g-planes in €7>°.

We use the “antidiagonal” metric, given by the symmet-
ric formJy, with (Jy ), =8, 5 _ . The Lie algebrao(N,C) is
represented by matrices MeC" >V satisfying JyuM + M 7J,,

= 0 (T denotes transposition). We have

J
J= JN—Za ,
Ja
2.1
A BT C
M= D E _JN—Za‘BJa
H —-JD%y_,. —J,A7,
a=12,.,[N/2], A,C,HeC**4, B,DeCN -~ xa

EeCWV-xWN=z2 J C+CTJ, =0, JJH+H"J, =0,
Jn_2E + E"Jy_,, =0.The Lie algebra g,(C) is obtained
by setting N = 7 and imposing further conditions on the en-
tries in (2.1). More specifically, M of (2.1) coincides with
M7 of (1.4.21) and 4,....H can be read off from (1.4.21),
separately for a = 1 and 2 (notice the correction of a sign
misprint with respect to Ref. 8).

We shall use both homogeneous and affine coordinates
on the Grassmannian O(N,C)/P, (C) of isotropic a-planes.
Homogeneous coordinates are given by the matrix elements
of the rectangular matrix

Xl
X=|Xx],
X3
X X;eC,  X,eCH—2xe  rank X =gq, (2.2)
satisfying the isotropy condition
XIX=XTJX,+XJJ X, +X1J,_,.X,=0. (2.3)

As usual, the homogeneous coordinates are highly redun-

dant, i.e., the matrices X and Xg with geGL (4,C) describe

the same point. To remove this redundancy we choose the

point X, =0, X, =0, X; =1, as the origin on O(N,C)/

P, (C) and introduce affine coordinates as components of

the rectangular matrix

z=7]
z)’
Zl =X1X3_ lecaxa’ 22 =X2X3_ lec(N—za)Xa

(2.4)

(in the neighborhood of the origin we have det X,#0). The

isotropy condition (2.3) in affine coordinates is

er-la +J.Z, = _ZZTJN—2aZZ' (2.5)
Thus, the “J-symmetric” part of the matrix Z, is not inde-

pendent. The coordinates on O(N,C)/P, (C) can be identi-
fied with components of the two matrices

Z, and R=2Z7J,—J,Z, (2.6)

Following the usual procedure®= we can now write the non-
linear ODE’s corresponding to the action of G,(C) on
G,(C)Y/P,(C).
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In homogeneous coordinates we have a set of linear
equations
x=mx, x=%%
dt
with the nonlinear constraint (2.3) and the redundancy

(2.7)

X ~Xg,geGL(a,C). Going over to affine coordinates, we get
rid of the redundancy. Moreover, we can eliminate the J-
symmetric part of Z, from the equations, using (2.5). In
terms of the variables in (2.6) we obtain the final form of the
O(N,C)/P, (C) equations:

R=2C"J, +ZT(BJ,) — (J,BNZ,+ R(J,ATJ,) + (J,AJ,)R
+H{ZT(Un_2DI)R +R(J,D"Jy_,,)2,} +iR(HJ,)R

+ %{ZZTJN— 2a (Z2JaD T— D‘IaZ{)JN—ZaZZ} + %(Z;JN—ZaZZ)HJa (Z;—JN—ZaZZ)’

(2.8)

Z,= —Jy_,,BJ, +EZ,+Z,(J,A7J,) —}(DJ,)R + }Z,(HJ,)R
+ Z,(J, Dy 3.2, — Y (DI)Z [y 20 +5Zo(HIDZ [Ty 3,2,

The matrices 4, B, C, D, E, and H are given functions of ¢,
satisfying the conditions given in (2.1) (for all ¢).

Equations (2.8) can also be viewed as equations based
on the action of the real group O(N /2,N /2) (N even) or
O((N + 1)/2,(N -~ 1)/2) (N odd) on the corresponding
Grassmannian of real isotropic a-planes (with 1<a
<[N /2]). In this case the matrices R,Z,,4,...,H are real.

In order to obtain the equations related to the action of
the group G, on the space G,/P,, we set N =7 in all the
above equations and consider the casesa = 1 anda = 2 sepa-
rately.

B. The G,/P,, equations
We have shown in I that we have
P, (C) ~G,(C)NSIM(5,C),
P, (R) ~GYC(R)NSIM(3,2).

The corresponding homogeneous spaces are diffeomorphic,
i.e., we have

G,(C)/P,, (C) ~0O(7,C)/SIM(5,0),

2.9

(2.10)
NC(R)/P,, (R) ~0(4,3)/SIM(3,2),
J
BT = (—a0020 — V2803, — 13, — A33), A= —a,
D7 = (— ay,802 — V2a30, — a31, — G3,),
—a,+a a V'2ay o3
ay; a, —2a, V2a 0
E=] V2a, V'2a,, 0 —12a,,
Q30 0 —V2y —a,+2a,
0 —ay —V2ay, —ap

Equations (2.11) and (2.12) provide the G,(C)/P,, (C)
ODE’s if all the entries Z,,4,B,D,E are allowed to be com-
plex. The G,(R)/P,, (R) equations are obtained by con-
straining the above matrices to be real.

C. The G;/P,, equations

This case is somewhat more complicated and more in-
teresting. As shown in I, we have
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[with SIM(5,C) = P,(C), SIM(3,2) =P,(R)]. Indeed,
the dimensions satisfy

dim G,/P,, =14 —-9=35,

dim O(7,C)/SIM(5,C) =21 — 15=35,

and it is easy to verify that G,(C) acts transitively on
0(7,C)/SIM(5,C). The same is true in the real case. We
concentrate on the complex case, all results are valid for
GYC(R) as well.

In view of (2.10) we can directly use the coordinates
(2.6) for a =1, N=17. In this case we have J, = 1, Z,eC,
hence R =0 and also C = H = 01in (2.1). Equations (2.8)
reduce to complex conformal Riccati equations,* which in
this case we write as

Z,= —JB+ (E+A)Z,+ Z,(D"J,)Z,
- %D(Z;JSZZ),
Z,,B,DeC’, AeC, EeC*°, JE+ETJ,=0.
(2.11)

The G,(C)/P,, equations are a special case of (2.11), ob-
tained by requiring that the matrix M of (2.1) be an element
of g,(C). Comparing with (1.4.21) we see that this implies

0
— Qo3
— V' 2a,, (2.12)
—day
a,—a,
[
P, (C)~G,(C)NOPT(5,0), (2.13)

however, G,(C) does not act transitively on O(7,C)/
OPT(5,C). Indeed, in this case we have

dim G,/P,, =14 —9 =5,

_ (2.14)
dim O(7,C)/OPT(5,C) =21 — 14 =1.

Our first task is to provide a model of the space G,/P,, as a
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subspace of O(7,C)/OPT(5,C) and to introduce an appro-
priate coordinate patch.

To do this we use a decomposition of the Lie algebra
g,(C) in the form

g =N+p,,, (2.15)

where N is a nilpotent algebra represented by matrices M of
the form (2.1) satisfying

0 BT C
M= 0 O - JsBJ2 )
0O 0 0
( —V2a, — 013)
V'2a,, Qo3 ’ (2.16)

[see (1.4.21)]. We parametrize elements of the group
G,(C) as

g=¢e"g,, g,€P, (2.17)
We have
J
. [ —a, ay ] BT = [azo —Vay
—ay —a,+a az, V'2a,,

ao a2 a, —2a, V'2a,,
D=| -V V2yn|, E=|V2a, 0

—ay, Qs 0 —V2ay,

We obtain the G,(C)/P,, (C) equations as

eV =I+N+IN2 (2.18)

We act with the general element of G, (C) in the form (2.17)
on the origin (X ,.XT.XT) = (0,0,1,) of the Grassmannian
and use the fact that g, leaves the origin invariant. The ac-
tion of " then provides the required coordinates on the
Grassmannian G, (C)/P,, (C). Explicitly, in affine coordi-
nates, we obtain

7 _ W+ 1 (xy — uz) —xz—y? ]
T ~x2—uy — W + Yy — uz)

’ , (2.19)
Z,=|vax —vy

u x

The J-antisymmetric part of Z, is
r 0 v

R=2Th-1zi=|_ | (2.20)

Substituting Z, and R into Eqgs. (2.8) and writing the ele-
ments of the matrix M of (2.1) in the form agreeing with
(1.4.21), i.e.,

_a13], C=[—az3 0],
Qo3 0 ay3

0 (2.21)
—a 0
—V2a, |, H=[ 3?2 ]
0 Q32
—a; + 2a,

x =1 —ay,(x % + 2%u + xzu) + 2a4,x * + 2a3, y* + Sasoxy + 2a,xu

+ @3x0 — 4@, yu + Gz — 2(a, — @y)X + 4G4, Y — 20,04 — Q30 — 2050},
v =Hap(x)? + 2x °z + yzu) — 2a,,x > + 2030 y* + Sagxy — daspxz

—2ay,yz + a3, Y + agpzu + 4a,0x — 24,y — 20,2 + Aot — 20,5},
2=H — a3, — 2u + 3xyz) — 6ay, y* — 2a3,2° + 3a,,xy + 6asy yz

— ayzU + a3z — 6a,, ¥ + 2(a, — 3a,)z — a0 + 2a,5}, (2.22)
i = a3, (2x3 — zu® + 3xyu) — 6a30x > + 2a,u* — 3a;xy + 6agxu

+ as,2u + ajuv — 6ag,x — 2(2a, — 3a,)u —a; v — 2a,,},
b= — a;,(4x%2 + 4p%u + 3x 3 — 22u? + 6xyzu) + a,,(2x> — zu* + 3xyu)

— 3ag(x %y + 20%u + xzu) + a3, (29> — Z%u + 3xpz) + 3a,0(2x %z + xp° + yzu)

+ 30”4 3a0,x0 + 3a30 YU — A3,20 + @00 — 6ag3x + 60,0 Y — 205,z — 2a,3u — 20,0 — 4ay, ).

I

considered to be real functions of ¢.
Let us mention that the inyariance of the completely

Thus, we obtain a system of five coupled nonlinear ODE’s
with polynomial nonlinearities of degree 4. All the coeffi-

cients @, are arbitrary functions of ¢. Notice that in agree-
ment with the general theory,® the cubic and quartic terms
have coefficients that already occur in linear or quadratic
terms.

The GY“(R)/P,, (R) equations coincide with (2.22),
but all coefficients a,, as well as the variables x,...,v must be
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antisymmetric tensor 7 of (I.2.11) under the group G, was
not explicitly used in the section. It was however used impli-
citly. Itis the invariance of T that imposes two constraints on
the seven coordinates of O(7,C)/OPT(5,C). A possible so-
lution of these constraints would lead to the five coordinates
xy,z,uv of (2.19).
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1. EQUATIONS RELATED TO MAXIMAL SIMPLE
SUBGROUPS LEAVING ONE-DIMENSIONAL
SUBSPACES INVARIANT

We have seen in Ref. 1 that the maximal subgroups of
the G, groups, leaving one-dimensional nonisotropic sub-
spaces in a seven-dimensional space invariant, are all com-
plex or real forms of SL(3,C). Four different cases occur,
namely G,(C)DSL(3,C), GS(R)DSU(3), GY°(R)
DSL(3,R), and GY°(R) DSU(2,1). We shall treat all these
cases in a unified manner. To construct the corresponding
homogeneous space we first construct a Grassmann mani-
fold of one-planes SL(7,F)/Aff(6,F), with F = Cor F = R,
respectively. We then restrict SL(7,F) to O(7,C), O(7), or
0(4,3), respectively, and introduce the corresponding met-
ric on the Grassmannian. Finally we restrict to the corre-
sponding G, subgroup. Since G, acts transitively on the ap-
propriate Grassmannian of nonisotropic one-planes, no
further constraints on the coordinates of the Grassmannian
pertain and we obtain, in all four cases, special cases of pro-
jective Riccati equations.*

In order to preserve the unity of presentation, we al-
ways, in this section, make use of the diagonal metric.

A. The G(C)/SL(3,C) equation

We first construct the SL(7,C)/Aff(6,C) Grassman-
nian by introducing homogeneous coordinates in C’ as

X
z|, xyeC?, zeC. 3.1
y

We choose the origin to be the point x =y =0,z=1 and
remove the redundancy of the homogeneous coordinates by
identifying any two points with coordinates satisfying

X xg
zy=)zg}, geC, g+#0. (3.2)
y Y8

Notice that the isotropy group of the origin (0,0,0,1,0,0,0)”
is indeed the affine group Aff(6,C) realized by the matrices

G, 0 Ggp
H~ GZI GZZ 623 H
G31 O G33

G11,613,G3,,G3€C, G,,,G5:€C %, G,,eC.

We restrict to O(7,C) by requiring that the SL(7,C)
matrices G satisfy G 7G = I, (the seven-dimensional identi-
ty matrix). Acting on the origin of the Grassmannian con-
structed above, the O(7,C) matrices sweep out a submani-
fold of nonisotropic one-planes with homogeneous coordi-
nates satisfying

X +2Z+y' =1 (3.3)

The isotropy group for the origin reduces to O(6,C).
Further restricting to G,(C) (in the I, realization, see
Ref. 1) we notice that the isotropy group of the origin re-
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duces to SL(3,C) [indeed SL(3,C) was obtained in I as the-
maximal subgroup of G,(C) leaving a nonisotropic one-di-
mensional vector space invariant]. Moreover G,(C) acts
transitively on O(7,C)/0(6,C). Comparing dimensions, we
have
dim SL(7,C)/Aff(6,C) =48 — 42 =6,
dim O(7,C)/0(6,C) =21 — 15 =6,

dim G,(C)/SL(3,C) =12 — 8 =6.

(3.4)

We can now write down the nonlinear equations with
superposition formulas in the usual manner.>*’

In homogeneous coordinates we have the SL(7,C)/
Aff(6,C) equations

X\ /R m V\/x
zl=|a" p n"llz],

v/ \w b U/l\y
R,V,W,UeC**3, m,n,abeC’,

pueC, pu= —(TrR4+Tr ). (3.5)

Removing the redundancy (3.2) by introducing affine co-
ordinates

§=x/z, n=y/z (3.6)
we obtain the projective Riccati equations
E=m+ (R—p)E+ Vn—E((a,8) + (nm)), 37

M=b+ WE+ (U—p)n—n((aE) + (n,m)).

The O(7,C)/0(6,C) equations are obtained by requiring
that the matrix MeC’>” in (3.5) should satisfy

M+MT=0. (3.8)
Equations (3.7) simplify to
E=m+RE+ V' + E(mE) — (nm),
(3.9

M= —n—VTE+ Un+n((m§) — (nn)).

Finally, we obtain the G,(C)/SL(3,C) equations by re-
stricting the matrix M in (3.8) to the Lie algebra g,(C).
Following I we see that this is achieved by putting

R m V
M=} —-m" 0 n"},
—-VvY —n U
m, ny
with m=|m,|, n={n,|, (3.10)
s 3
. [ 0 a; + m, —ay,—m,]
R=-2— —a; — my 0 a,+m, |,
a, -+ m, —a; —m, 0 ]
. 0 a, —m, —a,+m,]
U:; — s + 11y 0 a—m; |,
L 4, —m, —a,+m, 0 §
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1 Uy Uiz + N3 Uiz —
V=? Uy, — N5 Vsy v +n, |, (3.11)
Via+ny Uy —ny —U—VUp

m;,n;,a;v; = U,€Cin M and in Egs. (3.9).

B. The GS(R)/SU(3) equations

This case is completely analogous to the G,(C)/
SL(3,C) case treated above. We again start from a Grass-
mannian, this time SL(7,R)/Aff(6,R) and use homogen-
eous coordinates, as in (3.1) and (3.2), but with all entries
real. The restriction to O(7)/0(6) again leads to the condi-
tion (3.3) defining a sphere S,€R,. Finally the GS(R)/
SU(3) equations coincide with the equations (3.9)-(3.11)
with m;,n;,a,,0,€R in (3.10) and §meR’.

C. The GYS(R)/SL(3,R) equations

We use the metric I, ; = diag(1,1,1,1, — 1, — 1, —1).
The 0(4,3) matrices satisfy

LM+MT,, =0
and gN°(R) Co(4,3) is represented by the matrices (I)

R m V
m=[—mr 0 u, (3.12)
vl n U

with n, m, R, U, and V as in (3.11), but with real entries.
We introduce homogeneous and affine coordinates on
the Grassmannian SL(7,R)/Aff(6,R) as in Secs. III A and
III B. Restricting to O(4,3) we see that the orbit of the origin
(0,0,0,1,0,0,0) " under this group is the hyperboloid
x> +22—y*=1,
diffeomorphic to O(4,3)/0(3,3).
The O(4,3)/0(3,3) equations in affine coordinates are

E=m+RE+ Vq+E(mE) — (nm)),

n=n+ V7§ + Un +n((m§) — (n,m)).

The GY°(R)/SL(3,R) equations are obtained by taking the
valuesof R, ¥, U, m, and nas in (3.11) (and real).

(3.13)

(3.14)

D. The GY°(R)/SU(2,1) equations

The diffeomorphism that we are using in this case is
0(4,3)/0(4,2) ~GY(R)/SU(2,1). In order to be able to
use the same realization of GY°(R) as above and asin Ref. 1,
we must choose the origin in SL(7,R)/Aff(6,R) differently
than in the previous sections. A convenient choice is the
point (0,0,0,0,0,0,1)7 in homogeneous coordinates. The
group SO(4,3), realized by matrices satisfying GTIMG
= I, ; sweeps out the space

u
2 2 2 2 2 2
v), kw40 -k - 2= —1.

z
(3.15)
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We introduce affine coordinates
E=v/z,

and write an element of the 0(4,3) algebra as

n=v/2z,

A B p

M=|-1,B" E qf,
p’ a7, O
1
I,= —1 , A+A47=0,

—1

ILE+E™,,=0, ABER™® pgeR®. (3.16)

The O(4,3)/0(4,2) Riccati equations have the form
§=p+45+Bn—§((0.8) + (a.1:;m),

M =q+1,B7E+ En—n((p.§) + (a.1,m)).

(3.17)

The GY°(R)/SU(2,1) equations are obtained by making
(3.16) and (3.17) compatible with (3.12) and (3.11), i.e,,
putting

1 Vis—n,
A=R, p=— Vas + 1y ’
—Vu—"xn
: 2n,
q=7 —a,+ms,|,
a, —m,
(3.18)
1 2m, Vi Via + 1,
B='i" 2m2 V]z—n3 V22 s’
2my Vis+n, Vy—n
) 0 2n, 2n,
E=7 2n, 0 a; —m,
2n, —as+m, 0

IV. EQUATIONS RELATED TO MAXIMAL SEMISIMPLE
SUBGROUPS LEAVING THREE-DIMENSIONAL
NONDEGENERATE SUBSPACES INVARIANT

It was shown in Ref. 1 that the invariance of a nondegen-
erate three-dimensional subspace leads to semisimple sub-
groups of G,. More specifically the corresponding sub-
groups are SL(2,C) ® SL(2,C)CG,(C), SU(2) ® SU(2)
CGS(R), SU(2)®SUR)CGYC(R), and SU(1,1)
@ SU(1,1) CGYC(R). The construction of the correspond-
ing homogeneous spaces and systems of nonlinear ODE’s
with superposition formulas is of considerable interest, since
the invariance of the alternating tensor 7 [see (1.2.12)]
plays a crucial role here.

Let us consider the four cases separately.
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A. The G2(C)/[SL(2,C)®SL(2,C)] equations

It was shown in Ref. 1 that the subgroup
SL(2,C) ® SL(2,C) CG,(C) can be realized as the intersec-
tion [0(4,C) ® O(3,C) NG, (C). We make use of this fact
to imbed the homogeneous space G,(C)/[SL(2,C)
& SL(2,C)] into O(7,C)/[0(4,C) ® O(3,C) ]. Moreover, it
was shown earlier® that this last space can be realized in
terms of the Grassmannian of nondegenerate three-planes
G,(C7)~SL(7,C)/Aff(4,3,C), where Aff(4,3,C) is real-
ized by the matrices

G, O ]
Aﬂ(4y3yc) ~[ ’
Gy On
Gl 1€C4><4’ G22€C3X3, G21€C3><4,
det G, det G,, = L. (4.1)

Introducing the diagonal O(7,C) metric I,, and restricting
from SL(7,C) to O(7,C), we see that Aff(4,3,C) restricts to
0(4,C) @ O(3,C). The dimensions of the corresponding
spaces satisfy

dim SL(7,C)/Aff(4,3,C) =48 — 36 = 12,
dim O(7,€)/[0(4,C) XO(3,0)] =21 -9=12.

(4.2)

Having in mind that we shall below wish to restrict to
the G,(C) group, we define homogeneous coordinates on
the Grassmannian of nondegenerate three-planes as the ma-
trix elements of the matrices

b ¢
e=|z7], x¥eC*?, Z7eC,
Y

(4.3)

We choose the origin to be (0,0,1;)7; the fact that Aff(4,3,C)
and O(4,C) ® O(3,C) are the isotropy groups of the origin
within SL(7,C) and O(7,C), respectively, is then manifest.

The corresponding O(7,C) equations can be written in
homogeneous coordinates as

X R m V\/X

ZTl=] —m” o nn"lz"],

Y —vT _n U/J\Y
R,UVeC™3, mneC’™!,

RT+R=0, UT+U=0. (4.4)

The homogeneous coordinates satisfy the O(7,C) condition

X'X+ZZ"4+Y'Y=1 4.5)
Introducing affine coordinates in the usual manner
W, =XY "', WI=ZTY"!, detY+#0, (4.6)

we obtain a system of 12 nonlinear ODE’s associated to the
action of O(7,C) on O(7,8)/[0(4,C) XO(3,0)]:
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W,=V+RW,— WU+mW] + W, VW, + WnWj,
Wl =n"—m"W, — WIU + WIVTW, + WIaW]. (4.7)

Notice that (4.5) does not imply any restrictions on the ma-
trices of affine coordinates W, and W,. Notice also that
(4.7) could have been written in the form of one rectangular
matrix Riccati equation® for the matrix WeC**®, W7T
= (W W,), however, (4.7) is more convenient in the G,
context.

Consider now the homogeneous space G,(C)/
[SL(2,C) ® SL(2,C)]. We have

dim G,(C)/[SL(2,C)®SL(2,C)] =14 —6=28. (4.8)

Thus, four supplementary conditions must be imposed on
the components of W, and W, in (4.6). These must be conse-
quences of the specific properties of the group G,(Q), i.e.,
the invariance of the tensor 7 of (1.2.12). To see this, let us
apply an element G = { g, }€G,(C) to the origin. We have

(815 816 &17)]
825 82 827
535 836 837

0
Z'|=G|0|=|8ss 816 &ar (4.9)
I

Lg75 876 8§77

We are using the O(7,C) metric given by the identity
matric I, hence the nonzero components of the tensor T are
given by (1.2.12). The invariance conditions (1.2.11) relate
the first column of (4.9) to the other two:

8is T's16 = &is = 8m7 8n6 Limn- (4.10)
The O(7,C) conditions (4.5) can be rewritten as
8ic 8ic =8n 81 =1, & &7 =0. (4.11)

Thus, only 21 — 7 — 3 = 11 of the 21 homogeneous coordi-
nates are independent. To reduce further, namely to eight
truly independent quantities, we must, as usual, go over to
affine coordinates. In doing so, we automatically account for
the equivalence (X ,Z,Y ") ~(GIXT,GIZ,GIYT), where
in the considered case we have G, = O(3,C). This will effec-
tively remove three redundant coordinates, or provide three
needed constraints on the 11 quantities that we have so far
reduced to.
Using (4.6), we express

X=wyY, ZT=w]Iy,

wi={w,}, Wi={v, 0,0}, ik=123.
Using (4.9), we express X, Z 7, and Y in terms of the ele-
ments g,, of a G,(C) group element. We then eliminate
8.5 (@ = 1,..,7) using (4.10). Defining the minors Sis, Ss,
and S5 as

Sss = 866877 — 8671876 Ses = 857876 — 856 877>

575 = 856 867 — 857 866 (4.13)
we see that (4.9), (4.10), and (4.12) provide a system of

(4.12)
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four linear homogeneous equations for Sss, S¢s, and S,s.
Since this system must have a nonzero solution, the rank of
the matrix of the system must be 2. This in turn requires that
the determinants of four 3 X3 matrices vanish. The matrix
elements of these matrices are themselves third-order poly-
nomials in the components w;;, and v; of W, and W,. Thus we
obtain four nonlinear constraints

(4.14)

on the 12 components of the matrices W, and W,, reducing
the number of independent components to precisely 8, as
required. We give the determinants 4, in the Appendix.

The G,(C)/[SL(2,C) ® SL(2,C)] ODE’s with super-
position formulas are thus the matrix Riccati equations
(4.7), subject to the following conditions.

(1) The coefficients R, V, U, m, and n are such that the
matrix M of (3.10) is an element of g, (C) for all times ¢ [i.e.,
they satisfy (3.10) and (3.11)].

(ii) The matrix elements of W, and W, satisfy the con-
straints (4.14). These can be imposed at the initial time
t =t, and they will then be satisfied for all times ¢ [as a
consequence of the above condition (i) ].

We have not attempted to solve the constraints explicit-
ly: this would involve solving cubic equations and would
lead to very complicated explicit formulas. The nonlineari-
ties would, in general be irrational, involving square and cu-
bic roots of the dependent variables.

A, (Wy,0;) =0, p=1,.4,

B. The GS(R)/[SU(2)®SU(2)] and GY(R)/[SU(2)®SU(2)]
equations

The nonlinear ODE’s in these two cases are intimately
related to those obtained in Sec. IV A.

Consider first the compact case GS(R)/
[SU(2) ® SU(2)]. The metric is again given by the identity
matrix I, (see Table ITI of I) and the tensor 7 is exactly the
same as in the complex case. The nonlinear ODE’s associat-
ed to the action of GS(R) on G5 (R)/[SU(2)  SU(2)] are
hence the same equations (4.7) with the same g, constraints
on the coefficients R, ¥, U, m, and n, as above, and the some
nonlinear constraints (4.14) on the matrices W,(¢) and
W, (t). The only difference is that both the coefficients in the
equations, and the matrices of dependent variables are re-
stricted to be real.

The noncompact case GY°(R)/[SU(2) ®SU(2)] is
only slightly different. The appropriate metric is given by the
matrix I, ; (see Table IV of I). We have

I, O
I, =HTLH, H=(“ )

o i (4.15)

For the elements of Lie group G, (C), Lie algebra g,(C) and
the tensor 7, we then have

g =H '¢gH, M'=H 'MH, (4.16)
Tx{mn = (H—l)l‘aTabchchu' (417)
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The conditions (4.10) are not affected by this change, hence
the constraints (4.14) remain the same as in the complex
and compact cases.

The equations themselves are modified in that the ma-
trix M of (4.4) is replaced by (3.12), i.e.,

W,=V+RW,—~W,U+mW] - W, VTW, — WnW/,
Wl =n” —mW, — W/U — WIVTW, — WnW/, (4.18)

where all entries are real.

€. The GY°(R)/[SU(1,1)#SU(1,1)] equations

We shall again make use of the metric given by the ma-
trix I, ;. The subgroup SU(1,1) ® SU(1,1) was identified in
Ref. 1 as the maximal subgroup of GY'“(R) leaving a nonde-
generate three-dimensional subspace with signature
( + + — ) invariant. In keeping with this fact, and in anal-
ogy with our procedure in the complex case, we choose the
homogeneous coordinates of the origin in GY<(R)/
[SU(1,1) eSU(1,1)] to be

0 0 0
0 0 0
1 00
Uy=|0 1 0 (4.19)
0 0 0
0 0 0
0 0 1]

Correspondingly, the homogeneous coordinates of an arbi-
trary point in this space are

13 8 & X,

823 824 827

833 L3 837 Y,

843 8aa 847

U'=6U,= e m———————— =

853 854 8s7 X,

863 &Lea 8o7
73 814 877 Yy

X, YL, X,eR>3, YIeRY<3, GeGYC(R). (4.20)

The invariance of the tensor 7’ under the action of GY°(R)
allows us to express the first column in terms of the other
two:

8n = —iT [} &7 8ka> (4.21)

in analogy to (4.10). In order to reduce to the required num-
ber of real coordinates, namely eight, we again introduce
affine coordinates
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Y

W,=X,Y~, W,=X,Y YE(YIT), det ¥ #0
2

(4.22)

The G}'(R)/[SU(1,1)  SU(1,1)] equations in homo-
geneous coordinates are

(notice that in this formalism we have W,, W,eR?>*%). X‘ 4 - B AV A
Proceeding as in the complex case we can again obtain, Y t_ ]~ B b E q9 Y, (4.23)
from (4.20)—-(4.22), four nonlinear constraints on 12 com- X, ¢t ET F riyx: ]’
ponents of W, and W,. In view of their length we do not Y7 pT g -/ o/ \Y]
reproduce them here (they are available from the authors
upon request). where, in agreement with (3.12), we have
]
A=—1—( 0 a3+m3)’ D=( 0 m3) F=-1—( 0 a3—m3>
2 \—a;,—m, 0 -my; 0/’ 2 \—a,+m, 0 ’
B=(( ~a,—m,)/2 ml) C=~1—( Uy, v,2+n3) Ez((v12+n2)/2 (v23—n2)/2) (4.24)
(a,+m)/2 my’ 2 \vy, —ny ’ n, n, ’ )
p=__1-(013—n2)’ q=(( —‘”11—1’22)/2), r=_l_(—az+m2)'
2 1)23 + nl n3 2 al - m1
Rewriting (4.23) in the affine coordinates (4.22) we obtain
. D —B E
W, = (B,p) + AW, — W, (qT g)+CW2— W,( 7 1) W, — W, ( rT) W,
(4.25)

. D —
W2=(ET,r)+CTW,+FW2—W2( q)~W2(
p

g 0

B E
TT)WI_Wz(—rT>W2'

Thus (4.25), together with four constraints of the type (4.14) provide the nonlinear ODE’s corresponding to the action of

GY(R) on the space GY“(R)/[SU(1,1) @ SU(1,1)].

V. CONCLUSIONS

We have shown that nonlinear ordinary differential
equations with superposition formulas can be associated
with the exceptional Lie group G, in a manner quite similar
to that used for the classical Lie groups. Since G, is simple
and since we have only used homogeneous spaces G,/H,
where H is a maximal subgroup of G,, the obtained systems
of equations are all indecomposable.®

In all cases we have made use of the imbedding of a
seven-dimensional representation of G,(C), GS(R), or
GYC(R) into O(7,C), O(7), or O(4,3), respectively. The
ODE’s for some subgroups H turned out to be special cases
of 0(7,C), O(7), or O(4,3) equations. For other subgroups
new features appeared, due to the existence of an invariant
antisymmetric tensor T.

A mathematical by-product of our analysis is the con-
struction of quite a few models and coordinate systems for
various homogeneous spaces for the complex and real forms
of G,. These can also be used for other purposes than those of
the present article.

The emphasis in this article has been on deriving the
ODE’s themselves. In a forthcoming article we shall present
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the superposition formulas. This is of interest for both equa-
tions specific to the G, group, and for those that are restric-
tions of O(7) type equations. In the latter case the superposi-
tion formulas for the G, equations are more efficient than for
the O(7) ones, in that they make use of a smaller number of
particular solutions to express the general one.
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APPENDIX: THE CONSTRAINTS FOR THE
G2(C)/ [SL(2,0)#SL(2,C)], GS(R)/[SU(2)® SU(2)], AND
GY°/[SU(2)®SU(2)] EQUATIONS

The explicit form of the constraints (4.14) imposed on
the affine coordinates W, = {w, }, W71 = {v,,v,,v;} are ob-
tained by requiring that the determinants of all four 3x3
submatrices of the following 4 X 3 matrix should vanish:
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w,

Uy

Wiy + Wy, + Wiy + Wy (Wyats; — Wyolta)

+ Wy (Wypls; — WisWs,)
+ w3 (Wy3Way — Wips3)
+ (W Wy + WiaWy; + W13W32) V5
— (w1 W3 + Wyolys + Wy3W33) 0,

| — Wiz + U3 + Wy (W, — Wortss)
+ War (WypWsz — Wy3Ws;)
+ W3 (Wy3Wsy — WiplWy3)
+ (Wyyy; + W3, + Wystsg)v;

— (WpWy3 + Wy + Wasts3) Uy

Wy; — W3 — Vg + Wi (W335 — Wpls3)

+ Wi, (WoWs3 — Wyi3Wsz)

+ w3 (W3, — W)

+ (w3112 + Wiy, + Wials2) Vs
— (W335 + Wazltys + Wi )0,

— Way + Wiz + (W3, — Waolz3)Vy
+ (WyWs3 — Wi3l3;) ¥,

+ (Wy3ta; — W3 U5

+ (03 + VyWa; + U3W52) 0y

~ (0,Wy3 + VW + V3Ws3) Y,

Wy — Wy — V3 + Wy (Wi W3 — W3ttay)

+ Wiy (wizws, — Wy Wws3)

+ w13 (W, Wa3 — Wy3wyy)

+ (w1,W13 + Wialy3 + WiaWws3) Y,
— (W}, + Wy + WisW3,)Y;

Wy + Wy, + Wiz + Wy (W W33 — Wysts;)

+ Way (Wy3wsy — Wy yWs3)
+ Wy3 (w1 Wa3 — Wisl,)
+ (W13 + WyWas + Wasts3) 0y
— (W Wy; + Wyrlty; + W33y U3

W, — Wa3 + Uy W3y (W Wa3 — Waslyy)

+ Wsy (wy3wsy — Wy Ws3)
+ Wy3 (W Wy3 — W3y, )
+ (W335 + Wagtys + W),

— (W31 Wy + Wy, + Wasls; Vs

Uy + Wiy — Wy + (WyWa3 — WiW3) Y,

+ (wy3wyy — Wy W33)0,
+ (W) wy3 — Wy3Wy Vs
+ (V13 + VaWy;3 + V3w, )Y,
— (Vgwyy + VoW, + U3ws, )0y

W3 — Wiy + V3 + W (Wyrl3; — Wy Ws3,)

+ wyp (W) Wa; — Wpws;)

+ w3 (Wyaay — Wy W)

+ (W, + Wiy + WisWs3, v,

— (W, Wy + WWs; + Wy3W3,) Y,

Wyy — Wiz — Uy + Wy (Waol3; — Wy,W03;)

+ Wy (W), Wi, — WiWs)

+ w3 (WyWyy — Wy Wyp)

+ (W Wiy + Wylwy; + Wyas,) v,
— (w313 + Wh, + Wy3twsy)v,

Wy + Woy + Wiz + Wiy (Wyolsy — Wy Ww3,)

+ Wi (W)W — WiHlwsy)
+ Wi (wywy — w1 Wyy)
+ (W3,Wyy + Wsply; + Wa3ws3,) 0,
~ (W3, W), + Wils; + WasWs,)0,

Uy + Wy — Wy + (Wl — Wyws,)v,

+ (w133, — Wyw3,) 0,
+ (WipWy; — Wy W)y )05
+ (0w + oWy + V33,0,
= (VW3 + VW, + VW3 Y,
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Superposition formulas for rectangular matrix Riccati equations
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A system of nonlinear ordinary differential equations allowing a superposition formula can be
associated with every Lie group—subgroup pair GO G,,. We consider the case when

G =SL(n + k,C) and G, = P(k) is a maximal parabolic subgroup of G, leaving a k-
dimensional vector space invariant (1<k<n). The nonlinear ordinary differential equations
(ODE’s) in this case are rectangular matrix Riccati equations for a matrix W(#)eC"**, The
special case n = rk (n,r,keN) is considered and a superposition formula is obtained, expressing
the general solution in terms of 7 + 3 particular solutions for r>2, k>2. For r = 1 (square
matrix Riccati equations) five solutions are needed, for » = n (projective Riccati equations)

the required number is n + 2.

I. INTRODUCTION

Superposition formulas for ordinary differential equa-
tions {ODE’s) are based on the following theorem, due to
Lie and Scheffers.’

The general solution x(#) of the system of equations

dxt _ .. .
—= = (X,t), == 1;-":’19
” f Iz
can be expressed as a function of m particular solutions and n
significant constants
x(1) =5(x,{1),....X,, (£),C15..5C,, ) (1.2)

if and only if the right-hand side of (1.1} has the form

(L1)

fAxn =3 Z(EHx), (1.3)
=1
and the differential operators
= a
X = Bx)—, J=1,.,r (1.4)
’ ,4;1 gl 0 axt /

generate a Lie algebra of finite dimensions 7 under commuta-
tion.

We shall call expression (1.2) a “superposition formu-
1a” and the solutions X, (?),...,X,, (#) a “fundamental set of
solutions.” Their number m and the independence condi-
tions which they must satisfy have to be established in each
specific case.

Given an arbitrary Lie group G and a Lie subgroup
G, C G, we can always, at least in principle, construct the
homogeneous space M ~ G /G,. The infinjtesimal action of G
on M (in some coordinates) will give us the vector fields X
of (1.4) and from these we can read off the ODE’s (1.1). It
has recently been shown? that if the Lie algebras L and L,
corresponding to the Lie groups G and G, respectively, form
a transitive primitive Lie algebra®>* then the corresponding
system of ODE’s with a superposition formula will be inde-
composable. We recall here that “indecomposable” in this
context means that it is not possible to decouple a proper
subsystem of equations from (1.1) that will have its own
superposition formula.

» On leave of absence from Departamento de Fisica Tedrica, Facultad de
Ciencias, Universidad de Valladolid, Valladolid, Spain.

® Present address: Departamento de Métodos Matematicos de la Fisica,
Facultad de Fisicas, Universidad Complutense, Madrid, Spain.
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Restricting ourselves to the indecomposable case, when
(L,L;) do form a transitive primitive Lie algebra, we note
that the following possibilities occur?.

(1) L is not semisimple. The ODE’s in this case are
linear (in general inhomogeneous).

(2) L is semisimple, but not simple. The equations are, @
priori, linear, but the dependent variables are subject to non-
linear constraints.

(3) L is simple and L, is 2 maximal reductive subalge-
bra. Examples of such ODE’s have recently been studied,’
corresponding to the pairs sl(n,C) Do(n,C) and sl{2n,C)
Dsp(2n,C). The equations have rational but nonpolynomial
nonlinearities.

(4) L is simple and L, is a maximal parabolic subalge-
bra.5* The equations in this case have polynomial nonlin-
earities.

This paper is devoted to the last of the above cases. In
particular, the Lie algebra L of Lie’s theorem is chosen to be
s1(N,C) and the subalgebra L, of vector fields vanishing at
the origin is a maximal parabolic subalgebra p(k) of
sl(V,C). The corresponding maximal parabolic subgroup
P(k)CSL(N,C) leaves a k-dimensional vector space invar-
fant (1<k<[N/2]).

It has already been shown that this case leads to interest-
ing ODE’s, namely rectangular matrix Riccati equations
(MRE’s) for a nXk-dimensional real or complex matrix
W(r).

MRE’s occur in many applications; e.g., as Béacklund
transformations in the study of integrable systems, as special
cases of Volterra—-Lotke equations in population dynamics,
in optimal control theory and elsewhere.'®

Explicit superposition formulas have so far been ob-
tained in two special cases only. The first is the case
k = 1,when the matrix reduces to a single column. The equa-
tions were called projective Riccati equations®’ and the su-
perposition formula involves » + 2 particular solutions. The
other case is k = n, i.e., square MRE’s. The superposition
formula requires just five particular solutions (for any
n>2).8

It is convenient to relate the dimensions » and k of Wby
the formula
(1.5)

n=rk+1 O0O<i<k-—1, n,rkileN.
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In this paper we concentrate on the simplest case, when/ = 0
in (1.5), i.e., n = rk. We take r>2, k>2 since r = 1 corre-
sponds to square MRE’s and k£ = 1 to projective Riccati
equations, both of which have already been treated.>® The
case / #0 is more complicated and has so far not been treat-
ed.

The general form of the MRE and of its solution is pre-
sented in Sec. II. The properties of a fundamental set of solu-
tions are established in Sec. III, where we also present a
“standard” form of the initial conditions. In Sec. IV we ob-
tain the superposition formula and also show how r particu-
lar solutions can be used to linearize the MRE and to partly
decouple it.

Il. THE RECTANGULAR MATRIX RICCATI EQUATIONS

By definition, a maximal parabolic subalgebra p of a
complex simple Lie algebra L is a subalgebra pCL that is
maximally contained in L and contains the Borel subalge-
bra.!'! A maximal parabolic subalgebra p(k) of sl(n + k,C)
can be characterized by the fact that it is the largest subalge-
bra that leaves a k-dimensional subspace of CV invariant
(N=n+k 1<k<N—1).22

We have

SL(n + k,C)/P(k) =G, (C"+F), 2.1)

where G, (C" * *) is the Grassmannian'> of k planesin C" * *,
Homogeneous coordinates on this space are given by the
matrix elements of the matrix

X X
(Y)’ XeCr=k = yeCk*k rank(Y)=k.

Two matrices of the form (2.2) describe the same point if
they satisfy

5)-G
Y/ \yG/
for some nonsingular matrix G. In these (redundant) co-

ordinates the action of SL(n 4 k,C) is linear and the asso-
ciated ODE’s are

(-5 20)
¥/ \—=bD —B/\Y/
For points satisfying det ¥ 0 we can introduce affine co-
ordinates on G, (C***), thus removing the redundancy
(2.3),

W=XY L. (2.5)

The action of SL(n + k,C) in affine coordinates is a matrix
fractional linear one; the vector fields representing the infini-
tesimal action are

(2.2)

GeGL(k,0C), (2.3)

24)

A a ~ s 8

, = , B, = w,, »

g aw#v " le g aw;w'
k d
Cow = 2 Wyrv E
=t e 5 (2.6)

Dv = w,,w, ’

& ﬁzl ue dw,,
I<up'<n, 1<vv'<k,

where w,,, are the matrix elements of W.
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The corresponding system of ODE’s are the rectangular
MRE’s mentioned in the Introduction®:

W=A+ WB+ CW+ WDW,
W,AGC" X k, BECk X k, CEC" X n’ DECk X n’

where A,...,D are given matrix functions of time 7.

The right-hand side of (2.7) represents a curve in the
Lie algebrasl(n + k,C). The general solution of (2.7) is giv-
en by the corresponding action of SL(n + k,C),

2.7

W(t) =[G (U + G(D][Gay (1)U + G ()17,
2.8)

where UeC"** is a constant matrix, specifying the initial
conditions for W(t) and

G () G12(t))

29
G (1) Gp(8) (2:9)

G(1) =(

is a curve in SL(n + £,C), to be determined in terms of a
sufficient number of particular solutions W, () of (2.7).

With no loss of generality we can assume n>k, since the
case n < k can be reduced to the considered one by transpos-
ing the MRE. It is convenient to put # = rk + / as in (1.5).
Here we restrict ourselves to / = 0. Moreover, r = 1 corre-
sponds to the square MRE, & = 1 to the projective Riccati
equations. Both have been treated earlier.®®

lIl. A FUNDAMENTAL SET OF SOLUTIONS

Let us assume that m solutions of the MRE (2.7) are
known. They provide m-n-k equations for the matrix ele-
ments of G(¢), when substituted into (2.8). This provides a
lower limit on m, namely,

mnk>(n+ k) —1, 3.1

since (n + k) — 1 is the number of independent matrix ele-
ments in G(¢)eSL(n + k,C). According to the general the-
ory,”® a set of solutions W,(#),...,W,, (¢) of the considered
MRE will suffice, at least locally, to determine G(¢) if any
subgroup of SL(n + k,C) leaving the m initial values W, (¢,)
on the product of m copies of the Grassmannian G, (C"**)
invariant is contained in the center of SL(n + k,C). We shall
construct such a fundamental set of solutions explicitly and
then show that a generically chosen set of m solutions can be
transformed into this “standard set.”

Let us now restrict to the case (1.5) with/ =0, i.e,, put

n=rk, r»2, k>2. (3.2)
A point on G, (C"* k) can be given as
X
! W,
§= . or W=| : |, X,-,Y,l‘V,-ECka,
X, W (3.3)
Y r
i=1,..,r,

in homogeneous or affine coordinates, respectively. Corre-
spondingly, we shall write the elements of GeSL(n + &,C)
of (2.9) as
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Mll""’er Nl
G, = : y Gp=| 11|,
M,,..M, N,

G21 - (Pl,u.,Pr), G22 = Q, (3.4)
M,

o NoPnQeCH <k, i j=1,..,r.

Theorem 1: The following standard set of » + 3 initial
conditions for solutions of the MRE (2.7), given in homo-
geneous coordinates, has only the center of SL(n + k,C) as
its isotropy group:

I, 0 0
0 I, 0
{§f’"-r f+ 3} = ’ IR i B
0 0 I,
0 0 0,
0 Ik Al
0 1, A,
B i B : . (3.5)
0 I, A,
I, 1o, I,

The blocks A,eC* ** are such that one of them, say A, satis-
fies A, = diag(4,,A,,....4; ), with 4,€C, 4, #4,; for i#j and

J
u, - U, _ U. U, U,
(ii) da(‘ A T
I, -- I, I, I, I,
( d t(Ul e U,- Ur+3)9é0' (3 9)
iii) de L - 1, I, ; .
(iv) the matrices
T‘i =SiRi(Sr+er+l)_1€Cka1 l= 1;2’ (3'10)

have no common nontrivial irreducible eigenspaces and one
of them, say T, has & distinct eigenvalues, where S; and R,
are defined by

UEC]’ }“), (3.11)
k k
(5! R
1: =U_1(Ur+2) :] =U_1(Ur+3)
- -_ b 3 - I .
(S, T 77 \w,,, ‘
(3.12)

Then, there exists a transformation GeSL(n + k,C) trans-
forming the set

r={("), it

into the standard set £ ¥ of (3.5).

(3.13)

Proof: Put
T,
G=TU"!, T'= )
L,
I';eGL(k,C), 1<i<r+1,
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another one, say A,, has no irreducible invariant subspaces
in common with A,.

Proof: A simple calculation shows that the conditions
GEF~ETfori=1,.,r + 1, imply M, = O for ij, N, =0,
P, =0in (3.4). Further, imposing G£5, , ~£5, , we ob-
tain

M,=Mpy=-=M,=0, detQ #0.
The last condition G, 5 ~£7%, ; implies
OAQ '=A, i=1,.r,

and in view of the conditions on A, and A, we find Q = AJ,

Artk=1, Q.E.D.
Notice that for n = rk relation (3.1) yields
m>r+3—[1—(1/r)(1 = 1/k?)],

so that the relation
m=r+3 (3.6)

actually saturates (3.1).

Theorem 2: Given a set of » + 3 initial conditions for
solutions of the MRE (2.7) in affine coordinates
{U,,...,U, , ;}CC™** satisfying the conditions

. Ul Ur Ur+l)
det .
(i) de (Ik 1 #0; (3.7
)#Q Jj=2,..r (3.8)

r
where U ' exists in view of (3.7). By construction, we have

Gt =TEé7~E7, i=1,.r+1.

Moreover
rs r.., I,
G§r+2 = E = S -~ E ’
F,+]S,.—+11 l-‘r+2 Ik

where I', =T, ,S;. The existence of S;eGL(k,C) and
I, ,eGL(k,C) follows from (3.8). Finally we have

A
Rl F,+2S1R1 :1
G§r+3 = E = : -~ /\.r
Rr+1 Fr+2Sr+1Rr+l I
k

with
Ai = Fr+ 2 [SiRiR rjrllsr_+]1 ]rr_+12

=T, ,I,\T,, i=1.r+1

The condition det R, , | #0 is assured by (3.9). Condition
(iv) finally assures that A, and A, have the properties re-
quired in Theorem 1. Q.E.D.

Notice that sets of 7 + 3 initial conditions not satisfying
conditions (i)~(iv) form a set of measure zero in all (r + 3)
tuplets of matrices in C7* + 1%k,
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IV. THE SUPERPOSITION FORMULA AND
LINEARIZATION OF THE MRE

A. Reconstruction of the group element

Let us now turn formula (2.8) into a superposition for-
mula by reconstructing the group element G(¢) in (2.9) in
terms of r + 3 particular solutions. In view of Theorem 2 we
can restrict ourselves to the case when the initial conditions
for our solutions are given, in homogeneous coordinates, by
the standard set £ ¥ of (3.5).

We parametrize the group element G(¢) asin (2.9) and
(3.4). Writing (2.8) for the first » + 1 standard solutions
W, (t) we obtain

M;,=W,P, N =W, Q0 ij=1.,r 4.1)
where we put
W, (1)
W (1) = , j=1,.r+3. (4.2)
W, (1)

Using W, __ , (¢) we obtain a system of inhomogeneous linear
equations for P; in terms of the known solutions W;(¢)
(j = 1,...,r + 2) and the still unknown matrix Q(¢)eC* **:
P,
W E =(Wr+l_Wr+2)Q7
P,
g . , 4.3)
Wr+ 2,1 — Wll""’ Wr+ 2,1 — er
W= :
Wr+ 2,r T er""’Wr+ 2,r Wrr
The solution exists and is unique as long as
det W #0. (4.4)

Finally, to determine Q we use the remaining solution
W, (t):

Using (4.5) and
H,
= ﬁ/ B l( Wr+ 1
H,
we can write the following equations:
QAQ "= (F)'H, i=1,.r, (4.6)

which determine Q. Note that the matrices F;~ ‘l;l ; are con-
jugated to constant matrices. The existence of W ~! is as-
sured by the conditions imposed in Theorem 2. For the same
reasons F ! exists, i = 1,...,» [Theorem 2, (ii})].

- Wr+3)’

B. Linearization of the matrix Riccati equation

An alternative approach to the solution of MRE (2.7) is
that of using 7 + 2 particular solutions (belonging to a fun-
damental set of solutions) to transform this equation into a
decoupled system of r identical linear homogeneous matrix
equations, expressed in the form of commutators. The
(r 4 3)1d solution can then be used to express the general
solution of this decoupled linear system explicitly.

To obtain this system we perform a series of invertible
transformations of the dependent variables. Most of our deli-
berations will make use of homogeneous coordinates. Thus
the MRE (2.7) will, at least temporarily, be replaced by the
associated linear equations (2.4), which we rewrite as

Cu Ci 4,
H=o) o=l - ¢ 4
-D, -+ —-D, -—B

4.7
Each block in ® belongs to C* <,
We first use a particular solution W,, of the MRE
(2.7) to define an invertible transformation

o (3)-2(5)
wl : =W, —-W,.)0 (4.5) vy = \y) (4.8)
F.QA, with
where 0 0 0 I
F, 6. — I 0O 0 - VV(I)1 0 "
. =W—1(Wr+l—Wr+2)’ 1= S '.. E ’ det 1=(—1) ‘
F, 0 0 I —Ww,,
_ Wr+ 3,1 Wll Wr+ 3,1 — er (49)
W= : : , The transformed variables satisfy a simpler equation, name-
Wr+ 3,r = er T Wr+ 3, Wrr ly’
X! X!
and (Y‘) — (D“)(Yl)’ (4.10)
Ay
. with
A, P =[6,0+6,10". (4.11)
is defined in Theorem 1. L More explicitly, we have
—B—ED‘,W(,),, — D, —D,
(p(l): 0 C11+ W“”DI C1,+ W““D,_ (412)
0 Crl + W(l)rDl Crr + W(l)rDr
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In affine coordinates we denote
Wl — ol(W) =X1(Y1)—1
I

Wl - W(l)l

- : (W, — W,,,)~', (4.13)

Wr—l - W(l)r—l

and the transformation exists for all W such that det
(W, — W,,,) #0. The transformed quantity W ' satisfies a
MRE of the form (2.7) with coefficients determined by the
entries in &, To simplify further we use a second solution,
say W,,,, transform it into W{,, = 6,(W,,) as in (4.13)
and define

J

(1) (1) 1
r+lr+1+z¢r+1aW(2)a 0 *

a=2
2 — 0 i *
0 0 =
0 0 =

(the stars denote quantities that are, in general, nonvanish-
ing).

In a similar manner we use the first » + 1 particular
solutions to construct the transformation

W'+l=0r+1[gr["'[gl(W)]"']]’ (4.16)
with
0 O 0 I
o — I 0 0 Wi
N : : ’
o - I _ W.I(;)rl
J=hoar+1, (4.17)
and ¢+’ diagonal |
0 W?:r+12)1 |:1'V:r++12)2]_l 0
0 0 W::llz)l [w
0r+2 = .
0 0 0
I 0 0

The transformed quantities W72 = X"+2(Y"*?) ™ satis-

fy

Wit =[CW*?], i=1l..n (4.22)
i.e., each component satisfies the same equation (4.22) (the
known matrix C does not depend on the label i) and the
right-hand side has the form of a commutator. Given one
more solution, W, , ;,, we use all the previous ones to trans-
formitinto W2, , satisfying (4.22). The general solution

of (4.22) can be written as
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o 0 --- 0 I (4.14)
I 0 0 —-w!
e .
o - I —wh,
The transformed quantity

w?= ez(Wl) = QZ[GI(W)]

will satisfy a MRE with coefficients determined by the ma-
trix

(4.15)

(r)
r+lir4+1
(r)
11
PU+h - (4.18)

¢(r)
rr

If W satisfies the MRE (2.7) then the transformed quantity

W+ 1 satisfies the linear decoupled system

Wit =Wt B4+ C, W+, i=1,.,r (4.19)

So far, each component W *! satisfies a different equation.

To simplify further we use one more solution, W..,.,and
construct a different transformation, namely,

XYr+2 Xr+1
(Y’“) - 9’”(1/’“)’ (4.20)
with
0
(r+2)3]_1
(r+2)1 |:;'V€r+-0—12)r]__l 0
0 W?r++12)
0
(4.21)
Wit2=GUG~\(r), i=1,.,r, (4.23)

where U,eC*** is a constant matrix. Choosing the initial
conditions for W, ,, such that we have
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where A, and A, have no common nontrivial irreducible
eigenspaces and A, is diagonalizable with all eigenvalues dif-
ferent, we can completely reconstruct G(¢).

Without proof we state that if the » + 3 solutions used
above satisfy the conditions of Theorem 2, then all the trans-
formations 4, (i = 1,...,r 4 2) exist and are invertible. For a
general r the explicit formulas are quite complicated and it is
best to follow the described procedure as a recursive algo-
rithm.

V. CONCLUSIONS

The problem posed in the Introduction, namely that of
obtaining the general solution of a rectangular MRE for a
matrix WeC"** with n = rk (r>2, k>2) in terms of r + 3
particular solutions has been solved. If 7 + 3 particular solu-
tions, satisfying the conditions discussed in Sec. III, are
known analytically, then the superposition formula of Sec.
IV amounts to a general analytical solution. If the required
particular solutions are not available, then the superposition
formula, or the linearization technique, can be viewed as a
numerical method. Thus, a fundamental set of 7 + 3 particu-
lar solutions can be obtained numerically, starting from well
chosen initial conditions, such that the solutions have no
singularities in the considered region of z. Further solutions,
corresponding to other initial conditions, can then be ob-
tained via the superposition formula.

Such a procedure has so far been implemented for
square MRE’s only.'*'" 1t is particularly efficient when
large matrices are involved, when we are interested in solu-
tions that have singularities for real values of ¢, or when a
large number of solutions, corresponding to different initial
values is required.

Let us mention that the results of Sec. IV provide insight
into the properties of the solution set of rectangular MRE. In
particular they imply that the MRE (2.7) has the Painlevé
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property: the only moving singularities that can develop in
the solutions are poles.

The reason why we restricted ourselves to the case
n = rk in this paper is that this allowed us to present all
formulas and arguments in terms of the matrices W, () of
(3.3). More generally, for n = rk + I, 1<I<r — 1, we have
found it necessary to proceed differently and to argue in
terms of the matrix elements of W (¢) directly.
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On a property of a classical solution of the nonlinear mass transport equation
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A mechanism of smoothing due to evaporation condensation of the roughly perturbed surface
of solid is formulated by Mullins [W. W. Mullins, J. Appl. Phys. 28, 333 (1957); 30, 77
(1959)] as a certain Cauchy problem for a nonlinear parabolic equation which describes the
evolution of the profile of the surface. In the preceding paper [ A. Kitada, J. Math. Phys. 27,
1391 (1986) ], through the careful investigations of the Cauchy problem, it was demonstrated
that each peak in the initial surface did not increase in height with time. In the present paper,
by slightly limiting the set of functions to which the classical solutions of the Cauchy problem
belong, it is demonstrated that each peak height decreases with time in the strict sense.

I. INTRODUCTION
In the preceding paper,' we proposed the relation
u(x’t) <a(-x0)’ (x’t)ec— {(XO’O)}’ (1)

which estimates the variation with time, due to evaporation
condensation, in height of a peak in a roughly perturbed
surface of solid. Here, u(x,?) is a classical solution® of the
Cauchy problem (P) (Mullins’ model®) in the real line R’,

(x,0)eR' X (0,00),

xeR’,

describing the evolution of the profile of the surface of solid;
and the subset C of the real plane R?, which is a graph of a
differentiable function g(¢) defined on some closed interval
[0 ] in R!, forms a part of a trajectory in the x,t plane
drawn by the migration with time of a peak top initially
located at the point (x,,0). That is, the curve C'is character-
ized by

C={(x); x=g(t) (xo=g(0)), [0, ]}, (2a)
u, (x’t) = O, Usx (x9t) <O9 (x’t)ec- (2b)

In the present paper, by slightly limiting the set of func-
tion to which the classical solutions of the Cauchy problem
(P) belong, we show that the relation (1) holds without sign
of equality, that is, the peak height decreases with time in the
strict sense. It is what the Mullins model has desired for the
estimate without sign of equality to hold.

f =U/1+ uxz’
“ (P)

u(X,O) "'_"a(x)’

Il. AN ESTIMATE DESCRIBING THE STRICTLY
MONOTONE DECREASE OF THE PEAK HEIGHT

By demonstrating the more general estimate
u(xyty) <u(xpty), (x,t)eC (i= 1,2), ti<t, (3)

we will show the validities of the relation (1) without sign of
equality.

The following theorem guarantees this strictly mono-
tone decrease with time of the peak height.

Theorem: Consider a Cauchy problem (P*)
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u, =F(ug,u,,), (xt)eR'X(0,0), (P*)
u(x,0) =a(x), x<R.

Let the conditions
FeC?*(R?) (Ref. 4),
F,(p.g) >0 (Ref. 5), ©
F(0,0)=0

hold for the right-hand side F(p,q) of the nonlinear equation
in (P*). Suppose, for such a classical solution u (x,t) of (P*)
that ueC }(R" X (0, 0 )), there exists a set C characterized by
(2a) and (2b). Then the relation (3) holds for such a solu-
tion of (P*).

First of all, from our discussions in the preceding pa-
per,’! it is evident® that at least the relation (3'), i.e., the
relation (3) with sign of equality,

u(x2,t2)<u(x1,t1) (x,'yti)ec (i=12), <ty 3"

must hold even for the ordinary classical solution of (P*).
In order to demonstrate the above theorem, we prepare
a well-known lemma due to Nirenberg’ for a linear parabolic
equation.
Lemma: Let D be a bounded connected open set in
R!X (0,20 ) and let the coefficients a(x,t) and b(x,t) of a
linear equation

a(x,thu,, +bx,t)u, —u, =0, (x)eR'X(0,0) (4)
obey the conditions (5) in D
|a(x,2),b(x,t)}| < 0, a(x,t)>u, (5

where u is some positive constant. If there exists a constant
M such that

u(x,0)<M, (x,zt)eD,
and there exists a point £eD such that
u(§) <M,

then the relation
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u(y) <M

holds. Here, ¥ is a horizontal line segment (line segment
which is parallel to the x axis) containing the point £ as an
internal point and is itself contained in D.

Proof of Theorem: As is pointed out in our preceding
paper,’ the solution of (P*) satisfies the following homogen-
ous linear equation under the conditions (C):

1
Uy, f F,(hu, (x,t),hu,, (x,t))dh
(4]

1
+u, f F,(hu, (x,t),hu,, (x,t))dh — u, =0. (6)
(1]

If the coefficients in (6) are continuous in R’ X (0, « ), the
first condition in (5) is well satisfied in any bounded open
connected set D whose closure is contained in the set
R!X (0, 0 ) because of the compactness of the closure of D.
Then the second condition in (5) is also satisfied in any com-
pactsetin R' X (0, o ) because the function F, is everywhere
positive as is indicated in (C). As the solution u(x,?) is as-
sumed to belong to the set of function C3*(R' X (0, )), the
difference between the value of the function a(x,f) at the
point (x*,z *) and the value at any point (x,?) which is close
enough to the point (x*,z *) is estimated as follows with some
positive constant L, under the first condition in (C):

|a(x,2) —a(x*t*)|

1
<f |F, (hu, (x,t),hu,, (x,t))
(V]
- Fq (hux (x*lt *)9huxx (x"t *)Hdh

1
= [ HIE ) (0 —x)
0

+u, (05 —1t*)}
+ F(r(h)p(B)H (8,6 ') (x — x*)
+ U (0.8 (t—t*)}|dh

SL(|x —x*| + [t —t*]),
where 7(A) is some value between Au, (x,t) and hu, (x*,t*),
7(h) between hu, (x,t) and hu, (x*t*), 6, 0' between x
and x*,and £, £ ' betweenrand t *. As the same is true for the
coefficient b(x,t), all the coefficients in (6) are continuous
at any point in consideration. Since all the requirements for
the coefficients of linear equation are satisfied, we can apply
the Lemma to the solution of the linear equation (6), that is,
to the solution in C3(R! X (0, 0 )) of the problem (P*).

Let (x,,t;) and (x,,t,) (¢, <?,) be two arbitrary points
in the set C — ({(x4,0)}U{(g(z, )¢, )}). Since u, (x,¢) and
u,, (x,t) are continuous and the relations u, (x,,£,) = 0and
u,, (x,%,) <0 hold, we can define a continuous implicit
function f (¢) such that u (f (¢),¢) = 0 on some interval in
the 7 axis which contains the point ¢, as an internal point. It is
clear from the elementary proof of the implicit function
theorem that there exists an open rectangle

= (x",x") X (¢',;t ") such thatu, (x,t) >Oat any point of the
set
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{x0); x'<x< f(1), te(t',t")}
and u, (x,t) <0 at any point of the set
{x0); f()<x<x”, te(t’t")}.

Here, we may takes’and ¢ " as ¢, <t' <1, <t"”. Then, in the
open set (), the estimate

u(x,t)<(§gp) u(f(2),1)

holds. Now, since the implicit function is uniquely deter-
mined in € as is well known in the elementary differential
calculus, the function f(¢) must be equal to the function
g(¢) givenin (2a) on the open interval (z',¢ ”).8 Thus taking
the estimate (3’) into account, we obtain

u(x,t)< sup u(g(e),t)<u(x,t), (xt)e.
(tt")

If we take the open set {2 as the set D and the value u(x,,¢,) as
the constant M in the Lemma, we obtain the fact that the
function u(x,t) cannot have the value u(x,,,) at the point
(X5,t,). Therefore we get the following relation:

u(x2,tz) <u(x1;tl)’
(x;,,)6C — ({(x,0)}U{(g(2),2,)})
(i= 1’2)’ tl<t2'

The relation (3') guarantees that #(x,,0) is not less than the
value of u(x,t) at any point in C — {(x,,0) } and the relation
u(g(t, ),t; )<u(x,t) must be valid at any point (x,t) in
C — {{g (¢ ),t; )}. Therefore we can concludingly obtain the
desired estimate (3) on the whole trajectory C. O

Since the right-hand side F(p,g) = g/1 + p* of the non-
linear mass transport equation satisfies all the conditions
required in (C), the relation (3), that is, the relation (1)
without sign of equality, holds for the classical solution
u(x,t) in C3R'X (0, )) of the problem (P).

'A. Kitada, J. Math. Phys. 27, 1391 (1986).

20. A. Ladyzenskaja, V. A. Solonikov, and N. N. Ural’ceva, Linear and
Quasilinear Equations of Parabolic Type (Am. Math. Soc., Providence, R],
1968), p. 12.

3W. W. Mullins, J. Appl. Phys. 28, 333 (1957); 30, 77 (1959).

“The symbol C™({}) denotes the set of all functions defined on 2 whose
partial derivatives of order <m are all continuous.

The partial derivative dF /dq is abbreviated as F,. In the same manner, for
example, we write d /dp(F,) as F,.

SFor the point (x,,t,)€C — {(g(t, ).¢, )}, the estimate (5)in the preceding
paper,' can be easily generalized to

u(x*t ')<max{c sup }[f(x,t)exp A(t* =1/,
: >

—{txat

u(x, t)expA(t* —t)},
where C' = {(x,1)eC; 1<t} and (x*2*)eC’ — {(x,,1,)}.
L. Nirenberg, Commun. Pure Appl. Math. 6, 167 (1956).
#Therefore no crossing of the two different trajectories takes place.
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The evolution equation u, = u,,, + 3(u,, 4> + 3uiu) + 3u,u*, u = u(x,t), is integrable; it can
be (exactly) linearized by an appropriate change of (dependent) variable. Hence several
explicit solutions of this partial differential equation can be exhibited; some of them display a

remarkable solitronic phenomenology.

i. INTRODUCTION

This paper is devoted to a study of the evolution partial
differential equation (PDE)

U, =y, + 3(uu?+ 3utu) + 3u,u’. (1.1)

Here, and throughout this paper, #=u(x,t). This equation
can be linearized by an appropriate change of dependent
variable; hence it is integrable, and indeed several of its solu-
tions can be explicitly exhibited.

Many other nonlinear PDE’s that can also be linearized
by appropriate changes of variables are known. A classic
example is Burger’s equation,’

U, =u,, +uu, (1.2)
together with a few of its variants, for instance,

u, =u uw+1, (1.29)

u, = u, u’ + u?, (1.2")

u, =u, u’+ul. (1.3")

These are all second-order PDE’s of parabolic type (with
one dependent, and two independent, variables, as are all the
PDE’s mentioned in this paper).

Another integrable PDE of second order and of para-
bolic type reads

u, = (u, /u)f,(u) + u, fr(u) + fi(u). (1.3)

Here, as in all the equations of this section, the functions £,
are arbitrary (they could generally depend on ¢, in addition
to the argument shown explicitly, without spoiling the inte-
grability). A detailed analysis of this equation, and of some
of those listed above and below, shall perhaps be published
elsewhere.

A second-order PDE of hyperbolic type that is also inte-
grable by quadratures reads®

Uy = U, u+flu). (1.4)
It is a special case of the following equation of third order,
which is also integrable:

e = (g /U1 (1) + U fo(t )0

+ g fi(u,) + filuy,). (1.5)

Many other evolution equations that are also integrable
by quadratures can be manufactured, such as the following
ones:

) For the academic years 1983—1984, 19841985 and 1985-1986.
® Permanent address.
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ut = (uxxx/uix)fl(ux) + (l/uxx ).fZ(ux)

+ () u + fu(u, ), (1.6)
U, = [ (Upre /1Y) — 3l /uz) 1f1 (1)
+ (U /12) o (0) + f3(u), (1.7)
U, = [ (Uex/13) — (U5 /03) |1(10)
+ Y /U1 () + fo(u), (1.8)
U, = U U+ cuuu?, c=3orc=3 (1.9)
Note that, for ¢ = 3, the last equation can be recast, via the
change of variable # = — (2)!/*v~!, into the form
v, = (073 o (1.9")

while for ¢ = 0 the PDE (1.9), which in this case cannot, of
course, be integrated by quadratures, can be transformed,
via the change of variable v = — (2)"/?x~?, into the Harry
Dym equation,

v, = @2 (1.9")

As is well known (see, for instance, Ref. 3, p. 290ff), this
PDE can be reduced, by a nontrivial change of dependent
and independent variables, to the Korteweg—de Vries equa-
tion.

The motivation to focus in this paper on the evolution
equation (1.1) rests on its resemblance to the Korteweg—de
Vries and modified Korteweg—de Vries equations, on the
simplicity of the linearizing transformation (see Sec. III),
and on the remarkable solitronic (rather than solitonic; for
this terminology see Ref. 3, p. 132ff) phenomenology dis-
played by some of its solutions (see Sec. V); indeed (1.1)
supports kinklike solitrons of three different kinds, as well as
a periodic traveling wave solution and semi-infinite traveling
wave solutions; and explicit solutions can be exhibited that
display inelastic collisions of these objects.

xxx*

Il. PRELIMINARIES

The nonlinear evolution equation (1.1) is clearly invar-
iant under translations of the time variable ¢ and the space
variable x; moreover, a term cu,, could be added in the rhs by
the (Galileian) change of variable x»x’ = x + ct. Under
the rescaling transformation

u(x,t) =au'(x',t’), x'=bx, t' =ct, 2.1)
the PDE (1.1) goes into
© 1987 American Institute of Physics 538



u,=Au, ., +3Bu, w?+3ulu)

+ 3B u*, A=bc, B=d/b; 2.2)

in particular it is invariant under the transformation
u(x,t) =au'(x',t"), x' =a’x, t’ =ast (2.3)
Two special cases of this transformation are worth noticing:
ulx,t) = —u'(xt) (a= —1), (2.3
u(xt)=iu'(—x,—1t) (a=i). (2.3")

In this paper, however, attention will be generally confined
to real (and nonsingular) solutions; note that, in such a con-
text, (1.1) is not invariant under time and/or space reversal.
Other avatars of the PDE (1.1) may be obtained by
changes of variables (see also Sec. III). For instance

w(x,t) = u*(x,1), (2.4a)

w, = (w,, — W2/w+ 3w,w+w),, (2.4b)
and

U, (x,t) = w(x,t) = u?(x,t), (2.5a)

U,=U,, —3U%/U, +3U, U, +U3.  (2.5b)

Clearly the PDE (1.1) possesses traveling wave solu-
tions
u(x,t) =g(x— Ve, (2.6a)
—Vg'=g" +3(g"g + 3¢"g) + 38", (2.6b)
This ordinary differential equation (ODE) can be easily in-
tegrated once, after multiplication by g. The fact that it can
be explicitly integrated two more times is less obvious (see
Appendix A). The solutions of type (2.6) of (1.1) that rep-
resent kinklike solitrons or periodic traveling waves are dis-
cussed below (see Sec. V and Appendix A).

The nonlinear PDE (1.1) also possesses similarity solu-
tions of the following type:

u(x,t) =a(t) fb()x], (2.7a)
a(t) = [(t—ty)/c]1 Ve, (2.7b)
b(2) =a?(t) = [(t —ty)/c] 13, (2.7¢)

W +f+6elf"+30f" P37 +3f f]=0.
(2.7d)

Again, it is clear that the ODE (2.7d) can be integrated
once; less trivial is the possibility to integrate it two more
times (see Appendix B).

I1l. SOLUTION BY LINEARIZATION
Let v(x,t) satisfy the linear PDE

U (X)) = Uy (X,0), 3.1
and set

u(x,t) = v(x,t)/[2V(x,t)]"? (3.2)
with

Ve(xt) = [v(x,0)]? (3.3a)
and

V,(x,8) =20, (x,1)v(x,t) — [v,(x,0)]% (3.3b)

It is then easily seen that u(x,?) satisfies the nonlinear PDE
(1.1). Note the consistency of (3.3a) and (3.3b) with (3.1).
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Note that (3.3a) and (3.3b) imply that V(x,?) satisfies
the nonlinear PDE

Vi=Vex = V%'V (3.4)
while (3.2) and (3.3a) yield
u(x,t) = [V, (x,1)/2V(x1) "2 (3.5)

Hence the nonlinear PDE (3.4) can be seen as another ava-
tar of (1.1), obtained by the “change of variable” (3.5);
indeed, the linear PDE (3.1) could itself be interpreted as an
avatar of (1.1), generated by the nonlinear transformation
(3.2) with (3.3).

Consider the class of real solutions of (3.1) such that
v(x,t) vanishes as x— — oo faster than ( — x) /2 and is
regular for real x. It is then convenient to write

Vi) = f ] + - C (3.6)
so that (3.2) yields
u(x,t) = v(x1) (3.72)

{C?+25% dx'lu(x' )P}/
This equation can be inverted, via (3.2), (3.3a), and (3.5),
and one finds

vix,t) = Cu(x,t)exp{fx dx’[u(x’,t)]2] . (3.7b)

These two formulas, (3.7a) and (3.7b) (with, say,
C = 1), provide the basis for solving the Cauchy problem for
(1.1): given u(x,0) one computes v(x,0) from (3.7b), then
v(x,t) following the linear evolution (3.1), and finally one
obtains u(x,t) from v(x,t) via (3.7a). Note that this tech-
nique of solution implies that, if u(x,0) belongs to the class
of real functions that vanish faster than ( —x)~ "2 as
Xx— — oo and are regular for real x, then u(x,¢) belongs to
the same class for all values of ¢. If moreover u(x,0) is Four-
ier expandable [ for which it is required that it vanish at both
ends, #( + ,0) = 0], then u(x,t) is also Fourier expanda-
ble; as well of course as v(x,t),

+ oo
u(x,t) = (217)“[ dk exp(ikx)D(k,t), (3.82)

+
b(k,t) =f dx exp( — ikx)v(x,t). (3.8b)

And of course in this “localized” case the time evolution of
the Fourier transform d(k,t) of v(x,t) is quite trivial,

b(k,t) = b(k,0)exp( — ik >t); (3.9)

and this fact, together with the direct and inverse Fourier
transform formulas (3.8b) and (3.8a), yield in the standard
manner the solution of the Cauchy problem for the linear
evolution equation (3.1).

It is moreover plain how to obtain, via (3.7a) and
(3.7b), from the linear superposition formula [according to
which, if v,(x,?) and v,(x,t) are solutions of (3.1), their
linear superposition,

v(x,t) = C,(x,t) + Cu,(x,1) (3.10)

also satisfies (3.1)], the following nonlinear superposition
JSormula according to which, if #,(x,?) and u,(x,t) are two
solutions of the nonlinear PDE (1.1), then
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u(x,t) = {Clul(x:t)exp[Ul('x’t)] + Czuz(x:t)exp[Uz(x,t)]}[Ca + C% exp[2U;(x,0)] + C% exp[2U,(x,1)]

X - 1/2
-+ 4C,C2f dx’ u, (x")u, (x' Hexp[ U, (x',t) + U,(x',1) 1}

is a third solution of (3.1). Here C,,C, and C;=C?
— C?% — (3 are three arbitrary constants and we have used
the convenient notation [see (2.5a)]

Lg@,x):f dx' [, (x5 =12 (3.12)

IV. CONSERVED QUANTITIES

The possibility to linearize the nonlinear PDE (1.1)
(see preceding section) implies that an infinity of conserva-
tion laws can be associated with this evolution equation. To
present these results in the simplest setting, let us limit our
consideration, in this section, to localized solutions, namely
regular solutions that vanish asymptotically (x » + oo ) suf-
ficiently fast to guarantee the convergence of all the integrals
written below, We moreover restrict our treatment to the
exhibition of space integrals of #(x,?) that remain constant,
or evolve simply with time, as u(x,?) evolves according to
{1.1). The formulation of these results in terms of local con-
servation laws is an easy task that is left for the diligent read-
er; of course such a formulation has a broader validity than
the results reported below, since it is applicable also to solu-
tions which do not vanish asymptotically or are not regular
for some real value of the space variable x.

All these results obtain easily, via (3.7b), from the anal-
ogous results for the solutions v(x,?) of the linear evolution
equation {3.1). Let us therefore begin with a terse review of
these elementary results, whose proof'is, for the sake of com-
pleteness, outlined in Appendix C.

Of course, if v(x,t) is Fourier expandable, see (3.8a)
and (3.8b), then, for all values of the Fourier parameter k,
the modulus of the Fourier component H(k,?) is time inde-
pendent,

I8k = [5(K,0)] 4.1

[see (3.9)]. But it is more convenient to focus attention on
the following infinite but denumerable set of conserved (i.e.,
time-independent) quantities:

+ o
C, =f dx[v'(x,6)]%, m=0,12,... (4.2)
Here and below we use the shorthand notation
v (x,t) E(—?—B(—xﬁ . (4.3)
ax™

Indeed, it is also of interest to introduce the more general set

+ w
X, ()= (n!)"f dx x"[v'™ (x,0) 1%,

== 01112’"') m = 0,1,2,..., (4,4)

and to note that X, ,, (#) evolves in time as a polynomial of
degree n,
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(3.11)

r

X, =3 [X;fz,, ii] . (4.5)

§m= 0 S !
The constant coefficients X |, satisfy the recursion relations

Xer=3x% 1 —X25.,, s=01..,n—1.
(4.6)
Here we use the convention
X&) =0, if n<0 or s>n, 4.7)
while of course
X0 =X,,, =C, (4.8)
[see (4.4) and (4.2)]. Hence
Xim () =X, (0)+3C, ¢ (4.9a2)
X, (1) =X,,,(0)+3X,, ., (00t +3C,.  ,t% (49b)
X, () =X,,,(0) +3X,,,,,(0) - C,t¢
+ X s 2 (02 +3C,, , 527, (4.9¢)

and so on.
Another interesting set of moments is given by the defi-
nition
+
Y, () =(— )"(n!)“‘f dx x"v(x,t), n=0,12,..,
B (4.10)
for it is easily shown (see Appendix C) that ¥, (¢) evolves

in time as a polynomial of degree ((n/3)) [here and below
{(n/3)} indicates the integral part of n/3]:

((nr3)) 25
v,n="3 [Yf," _] .

50

(4.11)

Moreover the constant coefficients ¥ { satisfy the recursion
relation

Yerv oy, (4.12)
where we assume of course that

Y =0, if n<0 or s>((n/3)). (4.13)
Hence
Y, ()=Y,(0)=Y, n=0,1,2, (4.14a)
Y, (1) =Y,(0)+ Y, _,t, n=345, (4.14b)

Y, ()=Y,(0)+Y,_,(0)+1Y,_.t% n=678,
(4.14¢)

and so on.

Let us note that these results imply that there exist, in
addition to the set (4.2), many other constants of the mo-
tion, such as the first three elements of the set (4.10) [see
(4.14a) ], or appropriate combinations of the quantitites de-
fined above, for instance Y, ¥, — Y,Y, [see (4.14a) and
(4.14b)] or the set Y X, —3C, .Y, [see (4.9a),
(4.14a), and (4.14b) ]; and of course many more.

It is now easy to obtain analogous results for the nonlin-
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ear evolution Eq. (1.1), since they are obtained directly by
replacing in the preceding formulas the field v(x,?) by its
expression in terms of the solution u(x,?) of (1.1),

v(x,t) = u(x,t)exp{U(x,2))] (4.15a)

[see (3.7b)]. Here and below we use the convenient nota-
tion

Ux,t) = fx dx'[u(x',t)]?

[see (2.5a) and (3.12)]. Let us emphasize that, by redefin-
ing in this manner [via (4.15)] the quantities C,,,X,, . (¢),
and Y, () in terms of the solution #(x,t) of (1.1), rather
than the solution v(x,?) of (3.1), one does not modify their
(simple) time evolution, which has been detailed above.

For instance the first three conserved quantities C,, , see
(4.2), may be written in terms of u(x,?) as follows:

(4.15b)

Co=Hexp[2U(w,t) — 11}, (4.16a)
+ o
c, =f dx[u, (x.1)]? exp[2U(x0) ], (4.16b)
+ o
C, _—=f dx{[u (x,0)]% — 8[u, (x,8) [Pu(x,0)
— 2[u, (x,0)]*[u(x,2)1*} exp[2U(x,1) ). (4.16¢)

Note that the first of these formulas implies that the quantity
- + oo
C=f dx[u(x,t)]> = U(oo,t) = U(w,0) (4.17)

is a constant of the motion for the nonlinear evolution (1.1)
[a finding that can also be read directly from (2.4b) ]; while
to obtain the last two formulas we have integrated by parts,
to simplify the expression of the integrand.

We end this section displaying a convenient expression
of the moments X, , (), see (4.4). It reads

Xn+ l,O(t)

=(n)! [Jm dx x{exp[U(o0,t)] — exp[U(x,) ]}
0

+f dxx"{l—exp[U(x,t)]}], n=0,12,..,
(4.18)

and it follows, after one integration by parts, from (4.4) via
(4.15).

V. EXPLICIT SOLUTIONS

In this section we exhibit and discuss some explicit solu-
tions of the nonlinear evolution equation (1.1).

The standard technique to obtain such solutions is to
start from some simple solution v(x,¢) of the linear equation
(3.1) and to evaluate the corresponding solution «(x,t) of
(1.1), as given by (3.2) with (3.3) or by (3.7a).

Hereafter we focus on solutions u (x,?) that are real and
regular for all real x. This generally requires that the func-
tion V(x,t), see (3.2) and (3.3), be positive definite for all
real (finite) values of x. Hence solutions v(x,?) of (3.1) that
are polynomials in x [of which the simpler one is
v(x,t) = Ay + Ax + A,x* with A, 4,, and 4, arbitrary con-
stants] are excluded from consideration, since the corre-
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sponding V'(x,t) cannot be positive definite, being a polyno-
mial in x of odd degree [see (3.3a)].

A. Solitron of the first kind
Let

v(x,t) = Aexp[p(x +p°t)], p>0, A=A* (5.1)
Then (3.7a) yields
u(x,t) = sgn(4)p'*h[2p(x — x, — V1)1, (5.2)
h(p) =[1+2exp(—yp)]~"? (5.3)
xo= (2p) ' In[pC?/(24%)], (5.4)

V= —p (5.5)

Note that this kinklike solution depends [apart from the
trivial parameter x,,, whose arbitrariness reflects the transla-
tion invariance of (1.1)] on the single (positive) parameter
D, that characterizes both its shape and the (negative) speed
with which it travels [see (5.5), and Appendix A]. For fu-
ture reference, it is convenient to introduce the notation

u, (x,t) =sgn(4)S,(x — xp,t;p)

= sgn(A)p*>S[p(x — x, + p*t) 1, (5.6)

so that

S(y) =2[exp(§») +2exp( —3»)] >, (5.7)

and to refer to this function as representing a “solitron of the
first kind”; it is preferable in this context to focus on u,
rather than u, since the fact that «, is localized while u is
kinklike will prove advantageous to discuss solutions with
several solitrons present, see below. A graph of the function
S(y) is given in Fig. 1.

B. Solitrons of the second and third kind
Let

v(x,t) = A, exp[p;(x + pit) ] + 4, exp[p,(x +pit) ],
P2>pi>0, A =AT#0, A,=A%$#£0. (5.8)
Then (3.7a) with C = 0 yields
u(x,1) = sgn(4,)p;°H, [ (p, — p1) (x — % — V1); p1/p, ],
(5.9)

FIG. 1. Graph of the function S(p), see (5.7), representing a solitron of first
kind. Note that the profile is not symmetrical.
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where (see Appendix A),
H (y;a) = [s + exp(»)1/[a~ ' +4(1 +a) " 'sexp(y)

+ exp(2p)]'2, (5.10)
X=(p,—p) " In|d,/4,|, (5.11)
s=sgn(4,/4,), (5.12)
V= — (i +0} +pp2). (5.13)

Note that each of these kinklike solutions depends on two
positive parameters, p, and p, (or, equivalently, on p = p,
and a = p,/p,), in addition to the trivial constant X that ac-
counts for the translation invariance of (1.1). For future
reference, it is expedient to introduce the notation
Uy (x,) = sgn(4,)S, (x — X,t;p1,p;),
so that (see Appendix A)
S, (01, p2) = (p1P2) (02 — p1)*/ (P2 + P ]
X [SP1Z 1/2 +P2/Z 1/2] [P]Z

+py/Z + 4sp, p,/ (p, + pr) 172
(5.15a)

(5.14)

with

Z=exp{(p,—p) [y + @} +0} +p.ip)t ]} (5.15b)
We will refer to S, (,4;p,,0,) as representing a “solitron of
second kind” and to S_(y.5;p,,p,) as representing a ‘“‘soli-
tron of third kind”’; we display these functions in Figs. 2 and
3, having set for this purpose

S, 0,t;p1, P2) = p°F, (x,a), (5.16a)
with

x=p,[y+ @3 +p1 +pp)t ], (5.16b)
a=p,/p,, O<a<], (5.16¢)
F,(x,a) =a'?[(1 —a)*/(1+a)](s + aZ)

¥{Z =3 4 qZ*/?

+ [4sa/(1 +a)1Z '3} 32 (5.16d)
Z =exp[(1 —a)x]. (5.16¢)

For an analytic analysis of the behavior of the function
F,(x,a), see (A24c) and the discussion preceding it.

Note that the treatment of Appendix A implies that
there are no other solitrons beside the three types obtained so
far (and of course the three corresponding “antisolitrons,”
that obtain by changing the overall sign of each solution).
This conclusion is of course based on the convention to re-
serve the term “solitron” (or “antisolitron”) for solutions of
(1.1) that are real and regular for all (real) values of x,
whose time evolution consists of a mere translation with con-
stant speed [that turns always out to be negative; see (5.5)
and (5.13)], and that are “localized” at least in the sense
that u, (x,?) vanishes asymptotically (x - 4 o).

Note finally that the relation (3.7b) is not applicable to
the solution (5.9); indeed u( — «,¢) does not vanish [see
(A23a)]. This is of course a feature of all solutions of (1.1)
obtained from solutions of (3.1) via (3.7a) with C = 0 (see
below).
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FIG. 2. Graphs of the function F (x,a), see (5.16d), representing a soli-
tron of the second kind.

C. Periodic traveling wave

Let
v(x) =A, exp[p,(x +pit) ] + A, exp[p(x + p31) ]
(5.17a)
with
p=r+ig, p,=r—ig, r>0, g>0, (3.17b)
A, =Aexp(ib), A,=Aexp(—1ib),
b=0b* A=A%*#0. (5.17¢)

Then (3.7a) with C = 0 yields
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FIG. 3. Graphs of the function F_ (x,a), see (5.16d), representing a soli-

tron of the third kind.

u(x,t) =sgn(4)(2r)'? cos(y)

X [1 +sin(a)sin(2y +a)] V2, (5.18)
y=b+qx—"rn, (5.19)
V=gq*—3r, (5.20)
tan(a) =r/q. (5.21)

Note that this periodic traveling wave depends on two pa-
rameters,  and ¢ {in addition to b, that accounts trivially for
the translation invariance of (1.1) ]; and that in this case the
speed with which it translates may be positive or negative, or
it may vanish [see (5.20)].

For future reference, let us introduce the notation
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T(x,5n,g;b) = (2r)!* cos(y)/[1 + sin(a)sin(2y + a) ]2,
(5.22)

with y and a defined by (5.19)—(5.21), as the function repre-
senting a periodic traveling wave. Note that here, in contrast
to the case of the solitrons treated in the preceding two sub-
sections (V A and V B), the notation refers directly to the
solution u (x,t) of the evolution PDE (1.1), rather than its x
derivative. To display its shape, we also introduce the func-
tion F(x,a),

F(x,a) = cos(x)/[1 + sin(a)sin(2x + a)]/?, (5.23)

and exhibit some graphs of it in Fig. 4. Note that, for all
values of the parameter a (in the range 0<a < 7/2), the peri-
odic function F(x,a) oscillates between the values — 1 and
+ 1 (see the end of Appendix A).

The results described so far have merely reproduced the
findings reported in Appendix A; note that the treatment
given there implies that no other real and regular solution
exists, besides those described above, whose time evolution
reduces merely to a translation with constant speed (without
change of shape).

1 T
tg(a)=1
0 }
(a)
-1 1
0 % 2rc
1 T
tg(a)=3_"‘2
0 i
=1 1 )
0 T 2
1 T
tg(a)=1/3
0 }
» ©
0 P 2

FIG. 4. Graphs of the function F(x,a) see (5.23): (a)tan (a) =1, (¢ =7,
V= —2r <0); see (5.20); (b) tan (a) =3""2 (¢ =34 V'=0); (c)
tan (a) =§ (g=3r, V=6750).
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Let us now consider some other solutions, that are more
complex but are nevertheless susceptible of explicit display.
We exhibit and discuss firstly some simpler cases, and we
consider subsequently more general instances.

D. Semi-infinite traveling wave

Let v(x,t) be again given by (5.17a) with (5.17b) and
(5.17¢) and use (3.7a), but now with C2> 0. We obtain

u(x,t) = sgn(4)(2r)"/? cos(y)
X [1 + sin(a)sin(2y + a) + exp( — 22)] V2,

(5.24)
with [see (5.19 — 5.21)]
y=b+gq(x— V1), (5.25)
V=gq*—3r, (5.26)
tan(a) =r/q, (5.27)
and
z=r(x—Xx— W), (5.28)
W=23¢-"7r, (5.29)
¥=(2r) ' In(rC%/A43?). (5.30)

Clearly u(x,t) is exponentially small for x €X + Wt and it
reduces to a periodic traveling wave (see Sec. V C) for
x>X + Wt Note that the two speeds ¥ and W can have any
sign (or one of them could vanish); on the other hand the
difference W — V is positive,

W—V=2(g+r)>0. (5.31)

E. Inelastic collision of a solitron of the first kind with
one of the second or third kind

Let v(x,t) be again given by (5.8) and use (3.7a), but
now with C?> 0. We obtain

u(x,t) = sgn(4,)py[s + exp(y,) ]
x{a '+ 4(1 4+ a) " 'sexp(p,) + exp(2y,)

+exp[ —2(y; — 7)1} (5.32)
Y= (P, —p))(x —X — W), (5.33)
X =(p,—pi) "' In|4,/4,], (5.34)
W= — (p} + D5 +p1D2)> (5.35)
¥ =pi(x — V1), (5.36)
V= —pi, (5.37)
jl=%ln(P2C2/A§), (5.38)
s =sgn(4,/4,). (5.39)

To interpret this solution of (1.1) it is expedient to in-
vestigate the behavior of u, (x,t),

u, (x,t) = Sgn(Az)(Plpz)llz
X{ [y —P2)/ Py + PV (P ZY? + P Z 5 2
+Z,(pZ Y +spZ 7V}

X [p1Zy + P/ Z, + dspp,/ (P + p2) + Z) -3/,
(5.40a)
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Z, = |4,/4,|exp{(p, — p) [x + (B} +P3 + PPt 14
(5.40b)
Z, =p,p,(C?*/14,4,|)exp{ — (p, + p,)

X[x+ @ +p5 —pip)t ]l (5.40c)

in the remote past (- — « ) and future (t— + » ). Todo
thisweset,in (5.40a),x = x’ + V't, we consider the limits as
t— — o and ast—~ + « withx’' and V' fixed, and we write
the nonvanishing contributions that obtain for all (appropri-
ately chosen) V. In this manner we find, as 1~ — oo,

u, (x,t) =sgn(4,)S,(x — x;p,) + sgn(4,)8,(x — X;p,,p,)

(5.41a)
with
x,=(2p)) 'In[p,C?¥/(24%)], (5.41b)
X=(p,—py) 'In|d,/4,|, (5.41c)
while for r— + oo we find
u, (x,t) =~sgn(A4,)S,(x — x,;p,) (5.42a)
with
x,=(2p,) 'In[p,C?*/(24})]. (5.42b)

In these formulas the two functions S, and S, are defined of
course by (5.6) with (5.7) and by (5.15a) with (5.15b).

The interpretation of these findings is clear. The solu-
tion (5.32) describes in the remote past a solitron (if 4, > 0)
or an antisolitron (if 4, <0) of the first kind and parameter
P, localized at x=~x, — p?t, and a solitron (if 4,>0) or
antisolitron (if A, <0) of the second kind (if 4,/4,>0) or
the third kind (if 4,/4, <0) and parameters p, and p, (with
P2>p1), localized at x =X — (p? + p2 + p, p,)t. Both ob-
jects move of course towards the left; the solitron or antisoli-
tron of the second or third kind moves faster (indeed, more
than three times faster) and is therefore, in the remote past,
farther to the right. As time goes by, the faster solitron or
antisolitron of the second or third kind approaches the
slower solitron or antisolitron of the first kind, and eventual-
ly the two coalesce into a single solitron or antisolitron of
first kind and parameter p,, that emerges alone in the remote
future, moving with its characteristic speed that is interme-
diate between those of the two initial objects, since clearly
Pt <p; <Pl +P; + 1o

Note that (5.41b), (5.41c), and (5.42b) imply the fol-
lowing relation between the parameters x;, X and x, that
characterize the asymptotic location of these objects [see
(5.41a) and (5.42a)):

PxXy =px,+ (P —p)X + L In(py/py). (5.43)

Let us also point out that the solution discussed in this
subsection does not describe the most general collision
between a solitron (or an antisolitron) of the first kind and
one of the second or third kind, but only one between a (gen-
eric) solitron (or antisolitron) of the first kind with param-
eter p and a solitron (or antisolitron) of the second or third
kind characterized by parameters p, and p,, with p, > p, and

by=p.
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F. Inelastic collision of two solitrons of the second or
third kind

Let

3
v(x,f) =Y [4,exp(y.)],

n=1

(5.44)

with the three constants 4, real (and nonvanishing), the
three parameters p, positive and different, say

0<p1<p2<pP3 (5.45)
and
Vn =D, (X +pib). (5.46)
Then use (3.7a) with C = 0. We obtain
3[4
ey = 3 [An XPOW) ] (5.47a)

A0 [g(x,)]?

gxy=23% ¥

. + ,,,)]. (5.47b)
n—‘IM"'l[(pn +pm) P ¢

To analyze the significance of this solution of the evolu-
tion PDE (1.1), it is again convenient to focus on the deriva-
tive 4, (x,#) and to look at its behavior in the remote past and
future. One finds, for t-> — oo,

u, (x,t) =sgn(A4,)S; (x — X,5;p1,p;)

+ sgn(A43)S,, (X — X5, 5,0205), (5.48a)
=sgn(4,/4,,.,), n=1.2, (5.48b)
X, =0y1—pPn) 'Inj4,/4, .|, n=12, (5.48¢)
and for t— + «
U, (x,t) =sgn(A4;)S; (x — X,t;,p,,ps), (5.492a)
with
s=sgn(A4,/4;), (5.49b)
X=(p;—p,) 'In|d,/4,]. (5.49¢)

Here of course the function S (y,#;p,p’) is defined by (5.15).

The interpretation of these findings is clear. The solu-
tion (5.44) describes in the remote past two solitrons or anti-
solitrons [as the case may be; see (5.48a) ] of the second or
third kind [as the case may be; see (5.48b)], and in the
remote future a single solitron or antisolitron of the second
or third kind [as the case may be; the diligent reader may
figure out the “‘selection rules” implied by (5.48a), (5.48b),
and (5.49a)]. Note that (5.45) implies that the speed,
V,= — (p5 +p} + P, P3), of the final object is intermedi-
ate between the speeds, V= — (p3 +pi +p,p;) and ¥,

— (p* + p2 + p, p3), of the two initial ones; while the
parameters that characterize their asymptotic positions are
related by the formula

(s —p)X = (p3 —P)%2 + (P2

Let us, however, again emphasize that the solution
(5.44) does not describe the most general collision between
two solitrons or antisolitrons of second or third kind, but
only a collision among two such solitrons or antisolitrons
characterized by two pairs of parameters, say p,,p, (with
P2>py) and pi, p; (with p; > p1), such that, say, p, = p;

— )%, (5.50)
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G. Inelastic collision of N solitrons of the second and
third kind

Let

N

v(xt) = Y [4,exp(y,)]

n=

(5.51)

with the N + 1 parameters A4, real and nonvanishing, the
N + 1 parameters p, positive and different, say

O<po<pi< " <Pn (5.52)
and

VY, =p.(x, +P31). (5.53)
Then use (3.7a) with C = 0. We obtain

N A, exp(y,)
ux) = 3 ——py—ﬂ, (5.542)
n="0 [g(x t)]
g(xt) =2 2 E exp(yn+y,,,)]. (5.54b)
n=0m=0 m

The significance of thlS solution of the evolution equa-
tion (1.1) is apparent from the following findings (proved in
Appendix D): as t—> — oo,

u, (x,t)= g: [sgn(A,, IS, (X — X, 50, _ 1 3Pn) ] , (5.55a)
n=1
with
X, = Dy ~Pn_1) "' In|d,_,/4,], (5.55b)
s, =sgn(4,_,/4,); (5.55¢)
asft— + oo,
u, (x,t) =sgn(A4y)S; (x — X,t;poPn ) (5.56a)
with
X=(py — Do) " "In|dy/Ay], (5.56b)
s=sgn(Ay/Ay). (5.56¢)
Note that (5.55b) and (5.56b) yield
(Py ~Po)X = il[(p,, ~Pa_1)%,]. (5.57)

These findings include of course those of the preceding
subsection, to which we also refer for their interpretation;
that should be sufficiently obvious not to warrant any addi-
tional comment here.

H. Inelastic collision of one solitron of the first kind and
N solitrons of the second or third kind

Let v(x,t) be again given by (5.51) with (5.52) and
(5.53), but now use (3.7a) with C?> 0. We obtain

N
uGnn) = 3 TN
n=20 [C +g(x)t)]
with g(x,t) defined by (5.54b).
The significance of this solution of the evolution equa-
tion (1.1) is apparent from the following results (proved in
Appendix D): as t—» — o0,

U, (x,t) =sgn(Ay)S,(x — xp,t;00)

(5.58)

N
+ 3 [sen(4,)S, (x —

n=1

xmt;pn—l’pn)]’
(5.59a)
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with X, and s, defined by (5.55b) and (5.55¢) and

Xo= (2py) "' In[p,C3/(24%)]; (5.59b)
ast— + oo,

u, (x,t) =sgn(Ay)S,(x — x5, t;p5), (5.60a)
with

xy = (2py) 'In[pyC¥ (245 ] (5.60b)

Note that these results imply the relation

< = 1 PN
DnXy = PoXo + z [Pn —Pn_1)%,] +?ln —].
n=1 DPo

(5.61)

These findings include those of Sec. V E, to which we
also refer for their interpretation, which should be sufficient-
ly obvious not to warrant any additional comment here.

I. Traveling wave and kink

Let v(x,t) be given again by (5.44) with (5.46), but
assume now

p1=p>0, p,=r+iq, py=r—ig,
r>0, ¢>0,
A, =A¥=A4+#0, A,=Bexp(ib),
A;=Bexp(—ib), B=B*#0, b=>b*
Then use (3.7a) with C = 0. We obtain
u(x,t) = sgn(A)p"*[1 +sZ cos(») 1/[ fix,t)]"%
(5.64a)

(5.62)

(5.63)

Sfxt)=1+4s(p/Q)Zsin(y +a’)
+ 1(p/r)Z?[1 + sin(a)sin(2y + a) ],

(5.64b)

Z=2|B/A|exp[(r —p)(x — Wt)]
=exp[(r—p)(x —x,— W1)], (5.65)
xo=(p—r)"'In|2B/A4|, (5.66)
W= —[p*+7r+pr+3rg®/(p—r)], (5.67)
y=qx—Vt) +b, (5.68)
V=gq*—3r, (5.69)
tan(a’) = (p +7r)/q, (5.70)
tan(a) = r/g, (5.71)
Q=[@+n*+41'% (5.72)
s =sgn(B/A). (5.73)

If p>r, clearly for x>x, + Wt the solution u(x,?) is
constant,

u(x,t) ~sgn(4)p*’?, (5.74)
while for x €x, + Wt it approximates the periodic traveling
wave of Sec. VC,

u(x,t) =sgn(B)T(x — xp,t;7,9;b) (5.75)
[see (5.22)]. Note that in this case the speed W, with which

moves the boundary layer between the two zones, is negative
[see (5.67)].
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If p < r, the situation is reversed, namely for x €x, + Wt
the solution u(x,t) is constant, see (5.74), while for
x> X, + Wit approximates the periodic traveling wave, see
(5.75). Note that in this case, in contrast to the preceding
one, the speed W, with which moves the boundary between
the two zones, may have either sign, or it may vanish [see
(5.67)].

Finally, in the marginal case p = r, u(x,t) is a periodic
function of x (with period 27/¢), since in this special case
the quantity Z, see (5.65) and (5.67), becomes independent
of x

Z =2|B /A |exp( — 3pg*t). (5.76)

Hence this case provides another instance of periodic solu-
tion of the evolution PDE (1.1); but it has a more complicat-
ed time dependence than the periodic traveling wave of Sec.
V C. Note, however, that, as t— — o, this solution goes in-
deed over into the traveling wave solution of Sec. V C [see
(5.64) and (5.76)],

u(x,t) =sgn(B) T (x — xo,t;7,q;b), (5.77)
while as 1 — + oo it becomes constant,
u(x,t) =~sgn(4)p'/?. (5.78)

J. Traveling wave that becomes a solitron of the first
kind ,

Let v(x,?) be again given by (5.44) with (5.46), (5.62),
and (5.63), and use (3.7a), but now with C?> 0, to evaluate
u(x,t). We obtain

u(x0) = sgn(A)p"2[1 + sZ cos) /[ fox) + 23172,

(5.79)
with
Z,=exp[ —p(x—x, — Vy1)], (5.80)
x, = (2p) "' In(pC¥/4?), (5.81)
Vi= —p% (5.82)

and the remaining notation as in the preceding subsection,
see (5.64b)—(5.73).

To analyze the shape, at any given (fixed) time, of this
solution of the evolution PDE (1.1), let us consider first the
case

p>r>0. (5.83)
It is then easily seen that

u( — o0,2) =0, (5.84a)

u( + o,t) =sgn(4)p'’?, (5.84b)
implying

u, (4 «,t) =0. (5.84c)

It is also clear that u,(x,t) vanishes proportionally to
exp(rx) (times an oscillatory factor) as x—» — « and pro-
portionally to exp[ ( — p)x] (times another oscillatory fac-
tor) as x— + o ). Hence this solution is “localized,” in the
sense used above.

If instead

r>p>0 (5.85)
the solution u(x,t), while still vanishing as x—» — o, see
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(5.84a), approximates the solution discussed in Sec. VI
as x— + oo; and in particular, if 7>p, as x— + « it ap-
proximates the periodic traveling wave of Sec. V C,

(5.85')

Let us now discuss the behavior over time of the solution
(5.79). The analysis here is limited to the “localized” case
characterized by the inequality (5.83); the treatment of the
case (5.85) is left as an exercise for the diligent reader.

Clearly the behavior of u(x,?) depends on whether the
(positive) quantities Z and Z,, see (5.65) and (5.80), are
much larger or much smaller than unity and, moreover, if
they are much larger than unity, on their relative magnitude.
Thus three speeds play an important role, namely W [see
(5.67)], V, [see (5.82)], and

u(x,t) =~sgn(B)T(x — xo,t;r,q;b).

V,=3¢*—r. (5.86)
Note that, as a consequence of (5.83), the inequality

W<Vi<V, (5.87)
holds, since both differences,

V,-V,=3¢+p*—1r (5.88a)
and

Vi—-W=~r+pr+3rg®/(p—r), (5.88b)

are clearly positive. Note moreover that W and ¥, are nega-
tive, while ¥, may have any sign, or it might even vanish.
It is then easily seen that, as - — oo,

u(x,t) =0, x<X(1), (5.89a)
u(x,t) =sgn(B)T(x — xp,t;r,q;b),
X, (1) €x <X, (1), (5.89b)
u(x,t) =sgn(4)p'’?, X,(t)<x, (5.89¢)
where
X, () =x0+ (p/r)(x, — X0) + Vo, (5.90a)
X, (1) =x, + W1, (5.90b)

and of course x, and x, are defined by (5.67) and (5.81).
Note that these “boundary layers,” X,(¢) and X,(¢), move

The behavior of the solution u (x,#), or rather its x deriv-
ative, as — + o [in the case (5.83) to which our attention
is confined] is instead very simple:

u, (x,t) =sgn(A)S,(x — x,t;p), (5.91)

with S, defined by (5.6) with (5.7), and x; defined by
(5.81).
These findings justify the title of this subsection.

K. Inelastic collision of several solitrons and wave
trains

Let us finally consider a solution u (x,#) of the evolution
equation (1.1) that includes all those considered above (in
this section). It obtains via (3.7a) from the following solu-
tion v(x,?) of (3.1):

N
v(xt) = 3 [A, exp(p,x +p1)]
n=0

M
+ X {B, exp[ib,, + (r,, +ig,,)%
m=1

+ (7 +1g,,)% ] +cc} (5.92a)

or equivalently

N
v(x,t) = Y [4, exp (,)]
n=0

M
+2 Z_I[Bm exp(z,,)cos(w,, )],  (5.92b)

with
Vn =P, (x +pi1), (5.93)
Zy =T, [x+ (72, —3¢2)2], (5.94)
Wy, =by + g, [x+ (375, — gt ]. (5.95)

We assume of course that the quantities A, are real and non-
vanishing, that the quantities &,, are non-negative, and that
the quantities B,,, p,, 7., and ¢,, are positive. We moreover
assume, without loss of generality, that the inequalities

with constant speed, and that, as t— — o0, X,(#) > + o O<po<pi< " <DPwn> (5.96a)
and.Xz(t) ——X,(t)'—> + oo.Thl.ls,aSt—> — o0, the region oc- O<ri<ry <y, (5.96b)
cupied by the periodic traveling wave [see (5.89b) and
(5.22) 1] becomes infinitely extended. Note however that, as hold. . .
t— — o0, X, () may diverge to positive or to negative infin- The corresponding expression of u(x,f) reads
ity, or remain constant, depending on the value of V. u(x,t) =v(x,2)/[g(x,t)]"?, (5.97)
—J
No[4: M [B],
glxt) =C*+ P exp(2y, )] +2 z [ . exp(2z,,)[1 + sin(a,,) sin(2w,, + a,,,)]]
n=0 n m=1 m
N N A,,An: N M Aan 2
+2 > [;——exp(y,. +y,,')} +4 3y 3 { exp(y, +z,,)sin(w, +a,'.,m)]
n=on=olp, +Pn n=ome1l Qum
n#n
M M (B B,
+4 z Z [r m+ = exp(z,, + Z,» )sin(a,,, ., )sin(w,, + w,, + a,, . )}, (5.98)
m =ml;é"r:|'= 1 m m
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Qo = [(Pa + 1) + 51" (5.99)
tan(ae,,) =7r,/qm, (5.100)
tan(a, ) = 0, + 7))/ Qs (5.101)
tan(@,, ) = (Fp + P )/ (@p +qm). (5.102)

Let us discuss first of all the shape of this solution, name-
1y its x profile for fixed (finite) . In particular let us note that
the two conditions

DPn>Tws (5.103)

Po<ry if C=0, (5.104)
are necessary and sufficient in order that u(x,?) be “local-
ized,” namely

u,(+ o0,t) =0. (5.105)
Indeed (5.103) implies

u( + oo,t) =sgn(4y)py> (5.106)
while clearly, if C2> 0,

u( — ,t) =0, (5.107a)

and if C = 0 but (5.104) holds,

u( — o,t) =sgn(d,)p"% (5.107b)

Let us then discuss tersely the behavior of u(x,f) over
time, limiting our consideration to the “localized” case char-
acterized by the conditions (5.103) and (5.104) [together of
course with (5.106) ]. Here we only outline the results since
their detailed derivation and analysis would take too much
space, and it is in any case somewhat analogous to the discus-
sion in Appendix D.

In the remote future (— + oo ), the solution (5.97) be-
comes quite simple: if C?> 0, it describes a kink of the first
tYPey

u, (x,0) =sgn{Ay)S (x — xy,tpx), (5.108)

xy = (2py) 'In[pyC*/ (245 ]; (5.109)
if C =0, it describes a kink of the second or third type,

u, (x,1) =sgn(Ay)S, (x — X Lpodn) » (5.110)
X = (py —Po) "' In|dy/Ay], (5.111)
s=sgn{d,/4y). (5.112)

In the remote past (¢~ — oo ), the situation may be con-
siderably more complicated; to describe it, let us consider
separately the two cases, C = 0, and C?> 0.

Let us deal first with the C =0 case. It is expedient,
given the values of the 14+ N-+2M parameters
Pn» Tm» and g,,, todraw as a function of ¥ the N + 1straight
lines p® + Vp, (in black) and the M straight lines
r., —3r,.q% + Vr,, (in red). Then focus attention on the
segmented continuous line that obtains by following the bo¢-
tom segments for each value of V. This line may have some
black and some red segments; the leftmost and rightmost
semi-infinite components are black, due to (5.103) and
(5.104). Now move along this line from left to right and
denote with W, W,, etc. the values (if any) of V at which
there is a change of slope from a black segment to another
black segment; it is easily seen (as in Appendix D) that a
necessary condition for this to happen is that the parameters,
say p,, and Pns that characterize the two contiguous black
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segments, be themselves contiguous [see (5.96a) ], namely
n; = n; — 1, implying

W= — (pij +Pi,_1 + P Pryr)s J= L,2,... (5.113)
Note that the number of W; ’s may vary between 0 and &, and
of course by definition W; < W, , <0. Denote moreover

with W{ =, W=, etc. the values (if any) of V at which
there occurs a change from a black to a red segment, so that

(—) __ 2
Wj = “'[P,,j(—)'f‘rf"}-»)"f’p,,j(—)rm;f)

+ 3rm}g_>qfn}_>/(pnj,) —ra-)]s J=12m
{5.114a)
where Py is the parameter that characterizes the black
segment on the left and GREN q,.c-> are the parameters that
characterize the red segment on the right; and denote with

W), WS, etc. the values (if any) of V at which there
occurs a change from a red to a black segment, so that

+) 2
W]( Y= - {P,,}M'f"fnlgw

-+ 3rm]g+)qf,,lg+>/(p,,}+> —rm}‘”)]’ _]= 1,2,..,

(5.114b)
where p ., is now the parameter that characterizes the
)

black segment on the right and Tong 9 Qg+ BTE the param-
eters that characterize the red segment on the left. Note that
there are as many W | * s as W~ ”’s (possibly none), and
that the inequalities
Wg—)<W;+)<W;;l)<W§+)

7 F+ 1

J=12.,
(5.114c¢)

hold. Finally let us also denote, for completeness, with W,
W, etc. the values of V (if any) at which there is a change of
slope from a red segment to another red segment. Note that
we are, for simplicity, assuming that there occurs no “multi-
ple point” at which more than two of the original straight
lines cross simultaneously.

The behavior of u(x,t) in the remote past may then be
characterized as follows. Let

x () =%+ Wz j=12,., (5.115)
with
%= Py =Py )" lA, /A, =12,
(5.116)

where p, _, and p, characterize the two black segments to
the left and right of ¥’ = W, [see (5.113)]. Let moreover

xXENO =x{0)+ W1, j=12,., (5117)
where
x;£2(0) = [2(p,,j<t>—r,,,}t>)]“
X ln[zpn}g:»B,z"jg;w/(?'m}iA i;x))],
j=12,.,
(5.118)

again with the parameters p (., andr ., (as well as 4 nf )
J J
and Bm} +») associated, respectively, to the black and red

segments that join at W%’ [see (5.114a) and (5.114b)].
Then for the values of x that are well inside the intervals from
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x{7(8) tox{ T (1),
x{ () «x<x{ (), j=12,., (5.119)

u(x,t) is an oscillating wave train [ possibly fairly complicat-
ed, especially if the interval ( W} Wit )y contains some
W, or several equal values of r,, with different g,,’s], while
for the values of x that are well outside the intervals (5.119),
u(x,t) is constant [and therefore u, (x,t) vanishes}], except
in the neighborhood of the points x; (¢), see (5.115), where it
behaves as a kink of second or third kind, namely, away from
the intervals (5.119),

u, (x’t) = Z [sgn(Anj)Ssj ('x - ij’t;Pnj— t ’pnj) ] ’
’ (5.120)

where of course
(5.121)

It is thus seen that, in the remote past, u(x,t) [see
(5.97) ] with C = 0 describes a collection of solitrons of the
second or third kind (whose number may vary between O
and N) and of separate finite wave trains (whose number
may vary between 0 and M; of course there must be at least
one solitron or one wave train); while, as we have seen above,
in this case with C = 0 in the remote future it yields a single
solitron of the second or third kind, see (5.110).

Let us finally discuss, quite tersely, the behavior of
u(x,t), see (597), with C*>0, in the remote past
(t— — o). The treatment given above remains applicable,
with the addition of one more straight line to be drawn (in
blue) along the ¥ axis. Then the curve obtained from the
union of the bottom lines has the rightmost semi-infinite
component that is blue (and shields away part of the curve of
the previous case). The previous analysis remains applicable
to the part of the curve that has not been shielded away, and
it may account for a number of solitrons of the second and
third kind (possibly none) and of finite wave trains (possi-
bly none). There remains to consider the contribution corre-
sponding to the last part of the curve. There are two possibi-
lities, depending whether the last finite segment, contiguous
to the rightmost semi-infinite blue component, is red or
black.

It is easily seen that, if

s; =sgn(d, _,/4,).

—pi>3qh -1, m=12..M, (5.122)
that segment is black. In this case, in addition to the contri-
butions predicted by the preceding analysis, there is in the
remote past a solitron of the first kind, namely for

X=X, — p*t,

u, (x,t) =sgn(Ay)S(x — x0,t;p0)s (5.123)
with

x = (2py) "' In[p,C%/(242)]. (5.124)

If instead

—-pi< Ma}xM(3qfn —r2)=w), (5.125)

then the rightmost (finite) segment is red; and (in contrast
to the previous case) the largest of the W |~ does not now
have a corresponding W | *’. Let us indicate this largest
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W{~’ (defined according to the procedure described
above) as W § . It is then easily seen that

W < W (5.126)

and that, in addition to the contributions predicted by the
previous analysis (ignoring W (=), there is in this case an
additional wave train in the interval from x{~’(¢) to
x{*(2), with x§~(¢) defined according to (5.117) and

x(HN() =xCH(0) + Wy, (5.127)
xT0) = (2r) ! ln[rCZ/(ZBz)]. (5.128)

The value of » appearing in the last formula coincides with
the r,, which realizes the maximum in the rhs of (5.125).

It is thus seen that, in the remote past, u(x,t) [see
(5.97) with C %> 0] describes a collection of solitrons of sec-
ond and third kind and of separate finite wave trains, and in
addition, provided the inequality (5.122) holds, a single soli-
tron of first kind; while, as we have seen above, in this case
with C?> 0 in the remote future it yields a single solitron of
first kind, see (5.108).

Let us end by noting that these findings suggest the fol-
lowing general result, applicable to any real and regular solu-
tion of the evolution PDE (1.1). Let #(x,0) have finite limits
as x— + oo, with the value at the right larger in modulus
than that at the left; then, as#— + 0, ¥(x,?) approximates a
single kink. More precisely, if u(— «,0) =s,p}?
u( + »,0) =s, py*withp,>p,>0ands, = + ors, = —
(likewise for s,), then, as - + oo,

u, (x,t) =5,S,(x — X, t;p1,02), (5.129)

with s = 5,5, and X some appropriate value; if #( — 00,0)
=0 and u( + «,0) =sp'’?, with p>0 and s= + or
s= —,then,as - + oo, '

u, (x,t) =sS,(x — xo,t;p), (5.130)

for some appropriate value of x,,.

VI. FINAL COMMENTS

The results of the preceding section have displayed a
remarkably explicit and complex phenomenology; of course
the inelastic nature of the collisions among solitrons and
antisolitrons motivates the use of this terminology (instead
of “solitons” and “antisolitons”; see Ref. 3, p. 132ff).

Other explicit solutions of the evolution PDE (1.1)
could be exhibited; but their display and analysis is left as an
exercise for the diligent reader.

On the other hand, it should be emphasized that the
solutions given above do not include the description of such
elementary phenomena as the collision of two solitrons (or
antisolitrons) of the first kind, or of one solitron (or antisoli-
tron) of the first kind with a generic solitron (or antisoli-
tron) of the second or third kind, or of two generic solitrons
(or antisolitrons) of the second or third kind. The results
given above suggest that such solutions do not exist. Let us
note in this connection that, while the evolution character of
the nonlinear PDE (1.1) implies the possibility to determine
a solution u(x,?) by assigning arbitrarily (within appropri-
ate functional classes; see Sec. III) its “initial” value u (x,,)
at any chosen finite time t,, this freedom of choice need not
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apply without limitations in the asymptotic limit as 7, tends,
say, to negative infinity. A more detailed analysis of this
problem, as well as the study of singular solutions of (1.1),
will perhaps be presented in a subsequent paper.

It is well known that a large class of nonlinear evolution
equations yield, after an appropriate multiscale asymptotic
expansion (see, for instance, Ref. 4), the nonlinear Schré-
dinger equation. It is amusing to apply this procedure® to the
nonlinear evolution equation (1.1). What one finds is that
the method is indeed applicable, and one seems to get the
nonlinear Schrodinger equation; but with a vanishing nu-
merical coefficient in front of the nonlinear term! This is of
course consistent with the need to use a more sophisticated
method than just a change of variables (namely, the spectral
transform technique) in order to solve the nonlinear Schré-
dinger equation.

Addendum

(i) The exceptional nature of the PDE (1.1) was pre-
viously discovered by Ibragimov and Shabat,’ who pointed
out that it belongs to the class of equations possessing an
infinite Lie-Bicklund algebra. Subsequently Kaptsov® not-
ed that this equation possesses only one Jocal conservation
law. The linearizing transformation (3.7b) was moreover
given by Sokolov and Shabat.”

These results have come to my attention after my paper
was submitted for publication. I am not aware of any pre-
vious analysis of the detailed behavior of the solutions of the
PDE (1.1).

(i1) Wiktor Eckhaus has noted that the remark at the
end of Sec. VI implies the possibility of applying the limiting
procedure one step further, obtaining thereby a novel non-
linear evolution equation in place of the Schrddinger equa-
tion. This remark has opened a line of research whose results
serve to explain what had hitherto appeared a puzzling mira-
cle, namely the fact that certain evolution equations turn up
in many applicative contexts and are integrable. These find-
ings shall be reported elsewhere.®
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APPENDIX A

In this appendix we obtain and discuss the general solu-
tion of the ODE

— Vg =g" +3(g"¢" + 3¢"’8) + 3g¢* (A1)
where Vis a given constant.
A trivial solution of this equation is
g(y) = arbitrary constant. (A2)

Hereafter this trivial solution will be ignored, as well as the
trivial possibility to consider, in addition to any solution g,
the solution — g.

The ODE (A1) can be directly integrated once, after
multiplication by g. We obtain

— Ve =28"g— g%+ 6g'g° +g°+ 2B, (A3)
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where B is an arbitrary (integration) constant.

Now set

gW) =f)/[2F() ]2 (A4)
with

F'(y) =f*(»). (AS)
We obtain

— Vf?=2f"f—f" +2BF, (A6)

and after differentiation [using (A5)] this yields the linear
ODE

S"+Vf +Bf=0. (A7)
The general solution of this equation reads
SOy = 2 [4; exp(pi») ], (A8)

=
where the three parameters p; are the three roots of the cubic
equation

P'+Vp+B=0, (A9)
so that they satisfy the following relations:
Pr+p+ps=0, (A10a)
PiP2+ PP+ pspy =V, (A10b)
P1P2P3= — B. (A10c)
From (A5) and (A8) we moreover obtain
F(y)=A43 + 2 Z { exp[ (p; +pu )y]},
ji=1k=1 k
(Alla)
F(_V) AZ _2 E [ J+ 1 ]+2 exp( _P}y)]
j=1 b;
A 2
_ z —-—-exp(2p,y)] (Allb)
J“l pj

To write (A11b), we have used (A 10a) and the cyclic con-
vention 4; , ; =A4,. We are moreover assuming that none of
the quantities p; vanishes [a necessary and sufficient condi-
tion for this is that B 0; see (A10c)]. If one or more of
these quantities do vanish, the corresponding formula can be
obtained by an appropriate limiting process (see below).

Insertion of this expression of F(y), and of the corre-
sponding expression (A8) of f(y), in (A6), yields, using
(A9), the condition

BAZ=0. (A12)
There are therefore two distinct classes of solutions of (A1),
those characterized by B = 0 and A, an arbitrary nonvanish-
ing constant, and those characterized by 4, == 0 and B an
arbitrary constant.

In the first case (B = 0, 4,7 0) one of the p;’s vanishes
and the other two are easily computed, say

p=0, py=—p,=p,

— ( _ V)lf2.
Hence the solution of (A1) reads
g(y) = [B, exp(py) + B, exp( — py) + B;1/[2F,(»)]'*
(Alda)

(Al3a)
(A13b)
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with
Fi(y) =1+ (B} +2B\B,)y
+ (2p) ~'{B} exp(2py) — B} exp( — 2py)
+ 4B,[B, exp(py) — B, exp( —py)1}. (Al4b)

Note that this solution depends on the three arbitrary con-
stants B;,

Bj =Aj/A0, ]= 1’2,3,

and on the parameter p related to ¥ by (A13b).

In the second case (A4, = 0) it is preferable not to solve
explicitly the cubic equation (A9), and to write the solution
of (A1) in the form

3
g =3 [4;exp(p)]

j=1

x{zi 23: A

J=1K=1 Py + D

(Al4c)

exp[ (p; + Pi )y]]—”z-

(A15)

Here of course the three parameters p; are the three roots of
the cubic equation (A9). Note that also this solution de-
pends, for any given V, on three arbitrary constants, namely
B [see (A9)] and the two ratios of any two of the three 4,’s
to the third one.

Let us now identify and analyze, for given real V, the
solutions g(y) of (A1) that are real and regular for all real
values of y.

Consider first solutions of the first type, given by
(Al4a) with (A14b) and (A13b).

For V = 0, g(») reduces to the trivial solution (A2).

For positive V, p is imaginary [see (A13b)]; it is then
clear that a necessary condition in order that g(y) be real for
all y is that B, be real and B, = B ¥. It is moreover necessary
that F,(y) be positive for all y, and this requires
B?= —2B,B, [see (Al4b)], namely B3 = —2|B,|%
which is inconsistent with the reality of B, [unless all the
constants B; vanish, in which case g(y) becomes the ultratri-
vial solution g(y) = 0]. Hence for positive ¥, thereis no real
solution of (A1) in the first class.

For negative V, p is real [see (A13b) ], and without loss
of generality we assume it is positive,

p=(—MN'">0 (A16)
It is then clear that a necessary condition in order that g(y),
see (Al4a) with (A 14b), be real, is that the three constants
B; beall real. It is moreover necessary that F, () be positive,
and in order that this be true for large negative y, it is re-
quired that B, and B, both vanish [see (A14b)]. Hence the
only real and regular solution of (A1) belonging to the first
type reads

g =p'*h(2p(y — )] (A17a)
with

h(z) =[1+2exp(—2z)] V2 (A17b)
Here p is related to ¥'by (A16), and y,

y= —(2p)"'In(B1/p), (Al7c)

is an arbitrary real constant.
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The following features of the function 4(z) and of its
derivative are worth noting [see (5.7) and Fig. 1]:

O0=h(— w)<h(z)<h(+ o) =1, (Al18a)
h'(z) = [exp(3) +2exp( —{2)] >*=145(2/2) >0,

(A18b)
h'(£ ) =0, (Al8c)
Max [h'(2)] =h'(0) =3732 (Al18d)

—w<Z< + o

Let us now proceed to identify and study all the solu-
tions of the second type, see (A 15), that are real and regular
for all real values of y (for real V).

It is first of all plain that a necessary condition, in order
that g(y) be real, is that the arbitrary constant B, see (A9),
also be real, so that the three parameters p; are either all
three real or one real and two complex conjugates.

Consider first the case of three real p;’s. Is is then clear
that, in order that g(y), see (A15), be real, all three con-
stants 4; must also be real (up to a common arbitrary factor,
that may be chosen real without loss of generality). More-
over, if p; is not positive, the corresponding 4; must vanish,
in order that g(y) remain real when y becomes large and
negative. But (A10a) implies that at least one of the p;’s is
not positive; and if two of the three constants 4; vanish, g(y)
reduces to the trivial solution (A2). Hence the only case to
be considered obtains when two of the p;’s are positive [and
different; otherwise g(y) reduces to the trivial solution
(A2)], say

0<py<p;
and
A4,=0.

(A19a)

(A19b)

Note that (A19a) implies, via (A10a) and (A 10b), that Vis
negative,

V= — (sl + P +p1P,) <O0. (A19c)
The corresponding solution reads
80 =p"*H,[(1 —a)p(y —¥)al, (A20)
where we have set (for definiteness)
p2=p,py=ap,0<a<l, (A2la)
so that
V= —p*(l+a+a® (A21b)
and
H (z;a) =[1 +sexp(z)]
X[a '+ 4(1 +a) 'sexp(z)
+exp(2z2)] V3, (A22a)
y=[(1—a)p]~'In|d4,/4,|, (A22b)
s=sgn(A4,/4,). (A22¢)

Note that this solution depends, for a given (negative) ¥, on
two parameters, namely ¥ and either p or a [see (A21b)]; it
depends moreover on the sign s.

The following properties of g(y) are plain:

g( — ) = (ap)'*=p\?, (A23a)
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g+ ) =sp'? =537, (A23b)

g =2 a(l +a)/(1+6a+a>)])"? if s=+,
(A23c)

g(y) =0, (A23d)

It is also of interest to analyze the behavior of the deriva-
tive of g(y),

g =p*0—-a)¥(1+a)1Z(a ' +2)

if s=—.

X[a '+ 4(1+a)"'Z+2Z%17%% (A24a)
Here we have set for convenience
Z=sexpl(1—a)ply—-p)]. (A24b)

Note that, for s = + , Z varies from 0 to + « as y ranges
from — o to + oo, while for s = —, Z ranges from 0 to
— oo as y ranges from — oo to + . Accordingly, the be-
havior of g’(y) is rather different depending on s, s = +.
Let us discuss separately the two cases.
Fors = +,g'(y) vanishes as y— + oo, it is positive for
all values of y, and it has a single local (and absolute) maxi-
mum aty = y,,

y3=7+[(1=a)p]~'In(z3), (A235)
where z, is the (only) positive solution of the cubic equation

(1 +a)2® +2az2 — 2a°2 — (1 +a) =0. (A26)
For instance, fora = §, z; = }(33'/? — 3) =1.37,and g’ (y5)
= (2/27)p*2

Fors = —,g'(y) vanishes as y—» 4+ 0, and it also van-
ishes at

y=yo=y+ [(1—a)p]~'In(1/a). (A27)
In the interval — oo <y <J,, g'(y) is negative, and it has a
single local (and absolute) minimum at y = y,,

y»=y+ [(1 —a)p] "' In( —2,), (A28a)

where z, is the middle solution of the cubic equation (A26)
(it is easily seen that —a~'<z,<0). In the interval
Yo<y< + 0, g (y) is positive, and it has a single local (and
absolute) maximum at y = y,,

yi=y+[(1—-a)p]~'In( —2z), (A28b)
where z, is the smallest solution of the cubic equation
(A26) (it is easily seen that z, < —a~"). For instance, for
a=}, z,=—3% and g'(y,) = — @)"?p*? while z,
= —1(33"2 4+ 3)= —4.37and g'(y;) = (2/27)p*"%.

These analytic results may be compared with the graphs
displayed in Figs. 2 and 3, via the relation

g W) =p*’F,[p(y —y).a] . (A28c)

Let us finally consider a solution of the second type, see
(A15), with one real and two complex conjugate p;’s, say

pL=r+ig, p,=r—iq, p;= —2r, (A29a)

with 7 and g real; note that we have already used (A10a),
while (A10b) yields
V=qg*—3r. (A29b)

It is then easy to ascertain that, in order that the solution
g(y), see (A15), be real and regular for all real values of y
{and not reduce to the trivial solution (A2)], it is necessary
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and sufficient that » be positive, 4, and A, be complex conju-
gate (up to a common factor), and 4, vanish:

r>0, A, =Aexp(ib), A,=Aexp(—ib),

A, =0, b=b* (A30)
Then (A15) yields the periodic solution
g) = (2r)'2 cos(gy + b)
X {1 + sin(a)sin[2(gy + b) +a]}~'/?
(A3la)
with
tan(a) =r/q. (A31lb)

Note that in this case ¥V may have either sign, or it may
vanish; and that this solution contains, for given ¥, two arbi-
trary real constants, namely b and either » or ¢ [see (A29b)
and (A31b)].

Let us end this appendix reporting some properties of
the periodic function

F(x,a) = cos(x)/[1 + sin(a)sin(2x +a)]V? (A32)
[see (A31a)]. They read

F, (x,a) = — cos(a)sin(x + a)

X [1 +sin(a)sin(2x +a)]1~*%  (A33)
Max [F(x,a)] =1, (A34a)
O<x <27
Min [F(x,a)] = — 1. (A34b)

O<x <27

Graphs of this function are displayed in Fig. 4.

APPENDIX B
In this appendix we indicate how the ODE
2f" +f+6elf" + 302+ 3%) + 31 =0,
f=f), (B1)
can be integrated.

A first integration, after multiplication by £, can be per-
formed directly, yielding

W24 32" —f?+ 61>+ %) =B, (B2)
where B is an integration constant.

Now set

f») =g»)/[26(» 1" (B3)
with

G'y) =gW). (B4)
We obtain

yg* +3c(2g"g — g”*) = BG, (BS)

and after differentiation [using (B4)] this yields the linear
ODE

6cg” +2yg’ + (1 —B)g=0. (B6)

This equation can be solved by introducing the Fourier
or Laplace transform of g(y). The general solution shall de-
pend on three integration constants, in addition to B; but one
of these is a multiplicative constant, and therefore may be
factored away when computing f(y), see (B3) and (B4).
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On the other hand the evaluation of G(y) from g(y), see

(B4), yields an additional integration constant. Hence (),

when computed from (B3), (B4), and (B6), contains four

integration constants (including B). But a relation among

these four constants is implied by the requirement that f(y)

satisfy (B2) (see the analogous treatment in Appendix A).
Note that, in the special case B =1,

g =hl—(3c/2)""¥y], (B7)

with 2 (z) an Airy function satisfying the second-order linear
ODE

h"(z) =zh(z). (B8)

In the special case B = 0t is convenient to solve directly
(B5), setting

g) ={r[—(6c)yI¥
and getting again for #(z) the Airy equation (B8).

(B9)

APPENDIX C

In this appendix we outline the derivation of the results
reported in Sec. IV.
Let v(x,t) satisfy the linear evolution equation (3.1),

namely
U (,2) = Uy (X,0), (C1)

and assume that v(x,?) is regular for real x and vanishes
asymptotically (x— + oo ) sufficiently fast to guarantee the
existence of all the integrals written below.

Now define
X, ()= (n!)"erw dx x"[v™ (x,£) ]2, (C2)
where a
v (x,1) Em. (C3)
ax™

Time differentiation of (C2) yields, using (C1) and in-
tegrating by parts,

X () =3X, i1 (1) =Xy 5 (1) — X, 5, (2).
(C4)

This formula holds for m =0,1,2,... and n = 0,1,2,... [with
the provision that, by definition, X,, ,, (¢) = 0ifn <0]; and it
is plain to verify its consistency with (4.5), and the fact that,
via (4.5), it yields (4.6). Q.E.D.

In an analogous manner it is easily seen that the mo-

ments
+

Y, (5)=(— )"(n!)“f dx x"v(x,t) (C5)
evolve according to the formula

Y, (=Y, (@), (C6)
and that this formula implies (4.11) and (4.12). Q.E.D.

APPENDIX D

In this appendix we analyze the behavior in the remote
past (- — o) and future (— + ) of the solution
N A'l exp (y" )

u(x,t) = z

—_— (D1)
<o [g(xn]1"?
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of the nonlinear evolution PDE (1.1). Here

S [pA"’A" O + )]
CXpVm +Vn) s
mn=20 m+P,. P
(D2a)

gxt)=C*+2

N T42
gxt)=C*+ ¥ [ “ exp(2y,,)]

n=20 n

Y A4,
+ 2nm=20n#m +P exp(ym +yn) ’
(D2b)

o =PuX+ P m=12,.N. (D3)

Our attention is limited to the case when all the parameters
P, and A, are real; without loss of generality one can then
assume

A, =A*#0, n=0,1,..N, (D4)

Po<Pi<pP2<''" <Py (D5)
It is moreover clear that, in order that u(x,r) be real and
regular for all (real) values of x and ¢, it is necessary and
sufficient that all the parameters p, be positive, or equiv-
alently

p0>09 (D6)

since clearly this condition is necessary and sufficient to
guaranteee that g(x,t), see (D2b), be positive definite for all
real values of x and ¢ (we are of course assuming that C be
real, so that C? is a non-negative constant).

In order to discuss the behavior in the remote past and
future it is convenient to focus attention on the derivative of
u(x,t) rather than on u(x,t) itself,

Uy (x’t) =f(x,t)/[g(x)t)]3/2’ (D7)
N
fx)=C*3 [AnPm eXp(Vn)]
n="0
N AA,A,(2p, —p,, — D)
3 [ ; (2p; —pm —P
Lmn=0 Pm +P,,
Xexp(y; + Vm +y,,)]' (D8)
The analysis can now be performed setting
x=Vt+x' (D9)

with x’ a fixed parameter, and then investigating for which
values of V' the function , (x,?), see (D7), (D8),and (D2),
has a nonvanishing limit as - — o« orz— + oo. It is more-
over convenient to introduce the cubic polynomial

c(p)=p’+ Vp, (D10)
and to note that (D3) and (D9) yield
Yo =Ppx" +c(p,)t. (D11)

Note that the term with / = m = n in the last sum in the rhs
of (D8) is missing (i.e., it is multiplied by a vanishing fac-
tor).
Let us begin by discussing the remote future, - + oo.
For any non-negative ¥, all the coefficients c¢(p, ) are
positive, and the largest of them is c(py) [see (D10)].
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FIG. 5. Graph of ¢(p) = p* + Vp with ¥ <0; see (D10).

Hence as t— + « g grows proportionally to exp[2c(px)? ]
[see (D2b) and (D11)], while f grows proportionally to
exp{[2c(py) +c(py_1)]t} [see (D8) and (D11)].
Hence u, vanishes asymptotically [proportionally to
exp{[c(py_1) — c(py)]t}; see (DT)].

To analyze the situation for negative ¥V it is useful to
refer to the graph of the function ¢(p) [see (D10)], as dis-
played in Fig. 5. It is moreover expedient to consider sepa-
rately two alternative cases: (i) values of ¥ such that the
N + 1 quantities c(p,, ) are all different; (ii) values of ¥ such
that (at least) two of the N + 1 quantities ¢(p,, ) coincide,
say ¢(p,) = ¢(p,, ) for some specific values of / and m [note
that we are discussing the behavior of u, (x,¢) for a given set
ofthe N + 1 parametersp,, consistent with (D5) and (D6);
as it is clear from Fig. 5, it is therefore excluded that three or
more ¢(p, ) coincide].

To analyze the first alternative, let us focus attention on
the value of the parameter c(py ) [see (DS5)]. If this param-
eter is positive, c(py ) > 0, it is clear, from the same argument
given above for positive ¥, that ¥, -0 as 1~ + « (indeed,
again proportionally to exp {[c(py_,) —c(py)]t}; note
that, if c(py) >0, thenalsoc(py) >c(py_, ), see Fig. 5). If
instead the parameter c(py, ) is negative, c(p, ) <0, then nec-
essarily all the quantities c(p, ) are also negative, ¢(p, ) <0,
n=0,1,..,N (see Fig. 5). Hence in this case f vanishes as
t— + o [see (D8) and (D11)] while, if C #0,g—C? [see
(D2) and (D11)], and therefore u#, again vanishes as
t— + o [see (D7)]. This conclusion hinges on the condi-
tion C #0; but the same outcome obtains, by an argument
analogous to that given above, if C = 0, since in such a case
f  vanishes, as ¢— + «, proportionally to
exp [ (2¢, + ¢,)t], where ¢, is the least negative of the N + 1
quantities ¢(p, ) and ¢, is the second least negative of these
N + 1 quantities, while g vanishes proportionally to
exp(2¢c,t).

Let us finally assume that ¢(p, ) vanishes, namely [see
D10) and (D5)]

V= —pk; (D12)

note that in such a case all the other N quantities c(p, ) are
negative, see Fig. 5 and (D5), (D6). It is then again clear
that, if C = 0, u, vanishesas?— + oo, sinceinsucha case, in
this limit, g tends to a finite (nonvanishing) value while f
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vanishes. On the other hand if C 20 both f andgtendtoa
finite limit as #— + 0, and indeed one finds, as t— + «

U, (x,) =sgn(Ay)S,(x — Xy, t;pn ), (D13)

xy = (2py) " 'In[pyC*/(24%)]. (D14)
Here the function S, (,;p) is of course defined by (5.6) and
(5.7).

Let us now complete the analysis of the behavior of u, as
t— + oo by considering the other alternative, namely values
of ¥ such that two of the quantities ¢(p, ) coincide, say

c(p)) =c(p,) =c. (D15)

A glance at Fig. 5 shows that the value ¢ is necessarily nega-
tive. On the other hand it is easily seen, by an analysis analo-
gous to those above, that in order that u, remain finite as
t— + oo itis necessary and sufficient that the terms with the
two exponents (D15) be the dominant onesasf— + < both
in f and g [see (D11), (D8), (D2), and (D7)]. For this to
happen two conditions must hold: the constant C must van-
ish [see (D2)], and all the other ¢(p, )’s [with n£!, n£m;
see (D15) ] must be less than the common valuec, see (D15)

C=0, (D16)

c(p,)<c, n#Fm, n#l (D17)
The last condition implies (see Fig. 5) that the two param-
eters p, and p,, be the extreme ones of the sequence p, [see
(D3)]; say,

Pi1=Po Pm =Pn- (D18)

This condition, together with (D15) and (D10), deter-
mines the value of V,

V= — (pk +P5 + PnPo); (D19)

and it is then easily seen that u, has, as - + o, the finite
limit

u, (x,t) =sgn(Ay)S,;(x — X,t;p0,0n)» (D20)
with S, (,1;p,.pn ) defined by (5.15) and

X = (py —Po)—lln |4o/AN|, (D21)

s=sgn(A4y/Ay). (D22)

We may therefore conclude that, as t —+ + oo, the behav-
ior of u, (x,t) is given by (D13) with (D14) if C 0 and by
(D20) with (D21) and (D22) if C=0.

Let us proceed next to consider the behavior of u, (x,t)
ast— — 0.

First of all, it is easily seen that, if ¥ is non-negative,
u, (x,t) [see (D7)] vanishes as - — o, since all the coeffi-
cients c(p, ) are positive [see (D10), (D5), and (D6)], so
that, if C #0, in the limit f vanishes and g tends to the finite
value C? [see (D11), (D8), and (D2) ], while if C = 0 both
f and g vanish in the limit, but so does u, [see (D7)].

For negative ¥, it is again expedient to consider sepa-
rately two alternative possibilities: (i) values of ¥ such that
the N 4 1 parameters c(p,) [see (D10)] are all different;
and (ii) values of V'such that there exist (at least) one pair of
¢(p,) that coincide [see (D15)].

In the first case, let us focus attention on the value of the
parameter c(p,) [see (D15), (D5), and (D6)]. If this pa-
rameter is positive, c(p,) >0, then all the other c(p,, )’s are

F. Calogero 554



also positive, ¢(p,) >0, for n =1,2,...N (see Fig. 5). It is
then clear that, as t— — «, f vanishes [see (D8) and
(D11)]; as for g, if C 50 it tends to the finite value C? [see
(D2) and (D11)], while if C=0 it also vanishes as
t— — oo; butinany case,asf— — o, theratiou, , see (D7),
vanishes, And it is easily seen that the same conclusion,
u, »0ast— — oo, obtains if the parameter c(p,) is negative,
c(p,) <0, as a consequence of the divergence of g and f (g
proportionally to exp(2cyt), f proportionally to
exp|[ (2¢cy + ¢’)t ], where c,, is the most negative one of the
N + 1quantities ¢(p, ) and ¢’ is the next to most negative one
of these N + 1 quantities). On the other hand if the param-
eter c(p,) vanishes, namely for

(D23)

then all the other ¢(p, )’s are positive [see Fig. 5 and recall
(D5) and (D6) ]; in this case g has a finite limit as f—» —
[see (D2) and (D11)], and so does f [see (D8) and
(D11)] provided C does not vanish, C #0. And it is easily
seen that in such a case, as t— — oo,

u, (x,t) =sgn(A4,)S(x — Xo,t;p0)
with

Xo=(2p0) "' In[p,C?/(243)]. (D25)
Here of course the function S, (,;p) is defined by (5.6) and
(5.7).

Let us finally consider the second alternative, see
(D15). It is then clear that a necessary and sufficient condi-
tion in order that u, not vanish as 1~ — oo is that, in this
limit, the two terms corresponding to (D15) provide the
dominant (divergent) contributions both in the asymptotic
behavior of f[see (D8)] and g [see (D2)]. In order for this
to happen the following conditions must hold:

c=c(p) =c(p,) <cp,), n#l (D26)

A glance at Fig. 5 implies that, for this condition to hold, it is
necessary and sufficient that the two parameters p, and p,,
for which (D15) holds be contiguous, say

Pr=Pmy1s M =0,1,.,N—1;

note that the corresponding values of ¥ are

V= -P%’

(D24)

n#Em.

(D27)
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V= — @k +Pmi1 +PmPmir) (D28)

And in such a case it is easily seen that, as 7 — — oo,

u, (x,t) =sgn(d,, , )8, (X —XsliPsPm+1)» (D29)
with S, (»,t;p,,,,P., .. 1 ) defined by (5.15) and
X = Pmot —Pm) ‘In|4,,/4,, 1] (D30)
S, =5gn(4,, /4, . ,). (D31)

We may therefore conclude that, ast— — «, the behav-
ior of u, (x,?) is described by the formula

u, (x,t) =sgn(A4y)S(x — xo:t;00)

N-—1

+ Z sgn(Am+l)Ssm ('x -im’thl’pmﬁ-l )’
m=0

(D32)

with S, and S, defined by (5.6), (5.7), and (5.15) and with
Xy X, and s, defined by (D25), (D30), and (D31); the
first term in the rhs of (D31) is however present only if C #0
[this is automatically guaranteed, since if C vanishes, x, di-
verges, see (D25), hence that term disappears, see (5.6) and
(5.7}
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A simple approach employing properties of solutions of differential equations is adopted to
derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are
commonly in use are unified, whereby the general approximate solution to a second-order
homogeneous linear differential equation is presented in a standard form (SF) that is valid for
all orders. In comparison to other methods, the present one is shown to be leading in the order
of iteration, and thus possibly has the ability of accelerating the convergence of the solution.

1. INTRODUCTION

The WKBJ method has wide application in quantum
mechanics where it is used to find the asymptotic form of the
solution of a Sturm-Liouville equation for a large value of
the eigenvalue, e.g., in Kreiger er al.” It is also widely applied
in the vast field of ionospheric radio propagation where a
wide list of references may be found in Ratchiffe.? A general
survey of the WK BJ theory and some of its applications may
be found in Bender and Orszag,® Froman and Froman,*
Heading,>® and Hecht and Mayer.”

The purpose of this work is to present a new formulation
for the generalized version (SF) of the WKBJ approxima-
tion. In their pioneering work Hecht and Mayer’ extended
the WK BJ method using the Schwarzian derivative formal-
ism to obtain solutions to the time-independent Schrodinger
equation. They claim that under certain conditions, their
method gives results to any degree of accuracy. Unfortunate-
ly, they use several transformations, which lead to an indi-
rect iteration scheme, besides the fact that the calculations
quickly become unwieldy. Again Fréman and Froman,* us-
ing complex variable theory, obtained equations similar to
the ones here (SF). They then embarked on a series of map-
pings and integrals in order to derive an exact formuia for the
general solution of the Schrodinger equation.

The present treatment gives a simple derivation for the
generalized WKBJ method (SF) employing basic properties
of the theory of solutions of differential equations. Also the
iteration scheme adopted is simple, explicit, and a refine-
ment of earlier ones.

It often happens that the results provided by the first-
order theory are not sufficiently accurate. In such cases it
becomes necessary to consider second- and higher-order
corrections. For instance, Kesarwani and Varshni®® used
higher-order corrections to the WKBJ method to improve
the results. They have shown that the inclusion of these cor-
rections improve the accuracy of the results. This is certainly
in favor of the present method (SF); since when comparing
it with the normal approximative methods used, one finds
that its second-order approximation is equivalent to the
fourth-order approximation of these methods.

. FUNDAMENTAL EQUATIONS

The WKBJ method is a useful tool for obtaining a global
approximation to the solution of a linear differential equa-
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tion whose highest derivative is multiplied by a small param-
eter, say €. The present treatment is merely concerned with
linear second-order homogeneous differential equations.
Any such equation may be transformed to

V' +fx)y=0, xe(ab), 2.0

which is a form most convenient for our discussion. The
function f(x) is taken real, with continuous higher deriva-
tives, and does not vanish in (@,5).

The essence of the WKBJ method is to obtain a general
approximate solution to (2.1) subject to f(x) being a slowly
varying function. If f(x) were a constant, say & 2, then one
should immediately have solutions of the form

y* =A™  Be— i,
where 4 and B are arbitrary constants.
In the case when f(x) is no longer constant, but instead a
slowly varying function, it might be reasonable to assume
that the solution would not be markedly different. Therefore

the normal procedure adopted is to assume a solution to
(2.1) of the form

(2.2)

y =™, (2.3)
thus transforming it into
—¢7 +ig" + f(x) =0, (2.4)

which is a Ricatti equation for ¢'. A standard approach to
find approximate solutions to it is to use an iterative method.
Let us write Eq. (2.4) in the form

2 =f+id?, n=0,12,., (2.5)

where ¢, is assumed to be small in relation to the other
quantities. The iterative process is started with the initial
value

7 (x) = 0. (2.6)

It is profitable at this stage to compute the first four terms in
this iteration. These lead to, after integration,

$o(x) =T+ T, +T,+ T, 2.7)
where
T, = ff“z dt, T,= -i—lnf,
N (2.8)
. 132 8
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For future reference, let us denote this method by (AM). In
the literature however, the (AM) method is seldom used to
calculate terms beyond the first order. The tendency is to use
the method of formal asymptotic series expansion (FE), for
example. This might be attributed to the fact that it leads to
explicit results (Bender and Orszag,® p. 487), unlike the
{AM) method where more care is required in the order of
terms to be retained in the expansion involved, as well as in
their signs.

lll. THE WKBJ APPROXIMATION

In this section the standard form (SF) for the general-
ized WKBJ approximation is derived. If y, and y, are two
linearly independent solutions to (2.1) then its general solu-
tion y* is known to be

y*(x) = Ay, + By,, (3.1)
where

ya(x) =y1(x)f yitat (3.2)
On choosing y, to be of the form

yi(x) =g(x)~"% g#0, (3.3)

Egs. (3.1) and (3.2) lead to

y*(x) = Ag(x)~"? + Bg(x)~ ”zf g(r)dt, g#0.
(3.4)
Now as y, is a solution to (2.1), Egs. (2.1) and (3.3) lead to
flx)=1g"g" "' —3g%% g#0. (3.5)
This equation cannot be solved exactly for g(x), except for
very special choices of f(x). On the other hand once g(x) is
prescribed, both f(x) and the general solution to (2.1) are
completely determined. It is this latter case that is utilized as

a basis for the subsequent part of this work.
Let us take g(x) to be of the form

g(x) =g¢'e?, (3.6)

where ¢(x) is an arbitrary function of x. This is a very con-
venient representation for g(x) as an integrand. Now substi-
tuting for it into Eq. (3.4) leads to

y*(x) =¢' " V?[de~* 4 Be™] 3.7)

as the general solution to Eq. (2.1). Another motive for the
choice of the form (3.6) for g(x) is the fact that when
¢ = kx, Eq. (3.7) reduces to (2.2) in which case it is an
exact solution to (2.1), with f(x) = k&? from (3.5) and
(3.6).

From Eqgs. (3.5) and (3.6) one may write

¢12 __f(x) =%¢I’2¢I—2_%¢Iﬂ¢l——l. (3.8)
This equation may now be solved by the iterative process
where ¢” and ¢ are assumed to be small in comparison to

the other quantities, which they will be for a slowly varying
¢'. Thus as initial values of the iteration one may take

6 =¢5 =0, ¢#0, (3.9)
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so that, on retaining the positive sign only, Eq. (3.8) leads to
¢'(x) =¢; =2 (3.10)
To pursue this iteration let us write Eq. (3.8) in the form

¢l =flx) + 3974, 7°

—ipré.~t, n=0,1.2,.. (3.11)
The second term in this iteration is then found to be
& () =f12[1+ 3% =4 f 7], (3.12)
or on integration one gets
o(x)=T,+T,. (3.13)
Equations (3.7) and (3.13) lead to
Y*(x) =¢; *[de = % + Be'*], (3.14)

as the general solution to Eq. (2.1). This emphasizes the fact
that (3.7) represents the general solution of (2.1) for all
orders, apart from the order of approximation of ¢. It thus
forms a standard form (SF) for the generalized WKBJ ap-
proximation of exact approximate solutions to Eq. (2.1).

IV. COMPARISON OF THE RESULTS

Let us compare the results of the previous section, the
(SF) method, with those of the (AM) and (FE) methods.
To do so it is beneficial to quote the results for the formal
expansion (FE) method in Bender and Orszag® (p. 486),
rewriting them in a slightly modified form to suit the present
notation. Thus the function ¢ (x) in Eq. (2.3) is expressed in
the form

#(x) = Zf"_lsn(x)- (4.1)
n=1
The first four terms in this expansion are
Si=xT, =T, S=+T, S;=T, (42)

Now since € is a parameter, on taking it to be unity, one finds
the expressions (2.7) and (4.1), for ¢, to be identical up to
the fourth order. This shows full agreement between the re-
sults obtained by the (AM) and (FE) methods up to the
order taken.

Considering next Eqgs. (2.3), (4.1), and (4.2) one may
write

Y"‘(x) = T+ T.)[Ae— T, + Ty) + Bei(h + Ta)]. (4.3)

Comparison of the terms in square brackets in Egs. (3.14)
and (4.3), after substituting from (3.13), shows that they
are identical. It remains to consider the other terms. On ex-
panding the expresions below, appearing in (3.14) and
(4.3), respectively, one finds

¢£— 172 _ Gi(T; + T =f—1/4[1 + 'Ilaf” -2 __ &fﬂ]’ (4.4)
to the same order. Substituting from (4.4) into (3.14) and
(4.3), one finds that the two results are equivalent. This
proves the equivalence of the three methods, (AM), (FE),
and (SF), the only difference being that the present method
(SF) has the privilege of leading in the order of iteration in
the sense that the second-order result of the (SF) method is
the same as the fourth-order result of the (AM) and (FE)
methods.
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V. CONCLUDING REMARKS

The WKBJ method, despite its evident utility, suffers
from lack of completeness regarding the convergence of the
series solution (Kesarwani and Varshni®), and that these
solutions fail at the turning points (Heading’), but still in
many cases where exact solutions are not possible they are
very valuable. Here one hopes that the present method (SF)
might close this gap by accelerating convergence, and thus
reduce calculations necessary to obtain higher-order ap-
proximations. It is also expected that the iteration scheme
will converge more rapidly since it is started with a more
accurate representation of the exact solution. The method
has also the merit of obtaining higher approximations in a
simple and direct manner and leads to explicit, linearly inde-
pendent solutions unified in a single equation. It has also
been demonstrated that the solutions it gives agree with
those obtained by other established methods, except for the
fact that it is leading in the order of iteration.

It is necessary here to throw light on some of the draw-
backs of the present method. It is seen that in order to identi-
fy a more accurate representation of the solution, one must
still work out the first few terms in the simpler (AM) iter-
ation scheme. Another drawback of the method is that, since
the iteration proceeds twice as fast as in the simpler (AM)
method, each stage requires more differentiability on f than
in the simple scheme. Despite these criticisms, the substitu-
tion (3.6) does provide a rather neat method.
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Finally, one must be encouraged by the attempts that
have been made more recently by Taylor'® to assess the de-
gree of accuracy of the WKBJ method for solutions of Eq.
(2.1), where the function f(x) is real and twice continuously
differentiable and does not vanish.
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It is shown that the indefinite metric structures of degenerate systems as given by Strocchi and
Wightman [F. Strocchi and A. S. Wightman, J. Math. Phys. 15, 2198 (1974); 17, 1930
(1976)] arise in a natural fashion from the algebraic structure of such systems, where the
latter has been developed in a C *-context by Grundling and Hurst [H. B. G. S Grundling and
C. A. Hurst, Commun. Math. Phys. 98, 369 (1985) ]. Auxiliary concepts like gauge
equivalence are examined, and the preceding general theory is specialized to the situation of
linear boson fields with linear Hermitian constraints. Two examples of this situation are
given—a one-dimensional scalar boson in a periodic universe and Landau gauge

electromagnetism.

1. INTRODUCTION

The central problem that we address is the following:
indefinite metric space methods are only employed in the
analysis of degenerate systems. Qualitatively this is because
degenerate systems contain nonphysical objects, and this
creates the freedom to define nonstandard structures on
such objects, if convenience dictates. Now the general alge-
braic structure of degenerate systems has been developed in
Ref. 1, and the indefinite metric space structures necessary
for gauge theories has been developed in Refs. 2—4. The ques-
tion therefore arises what the connection is between these
two, if any.

In early physical models it was found that nonpositive
definite canonical commutation relations naturally lead to
an indefinite inner product for the Fock representation. For
electromagnetism, the Gupta—Bleuler approach, which is lo-
cal and covariant, uses an indefinite inner product space
(IIP space), while other approaches, e.g., the Coulomb
gauge, represented on a Hibert space, are nonlocal and non-
covariant. It would therefore appear that while the physical
theory of electromagnetism can be represented on a Hilbert
space, the physics is expressed in a more convenient form
when represented on an IIP space.”’

More recently, in the framework of the Wightman for-
mulation of field theory, Strocchi® showed that all theories
with local gauge transformations of the second kind (e.g.,
Yang-Mills field) must be represented on an IIP space for
those transformations to be nontrivially represented. The
fact that these gauge theories have such physical desirable
properties such as confinement, infrared singularities, etc.,*
leads one to regard the mathematical structures involved
with IIP representations more seriously.

The most important gauge theories—electromagne-
tism, Yang-Mills, gravitation—are all degenerate theories
in the sense of Dirac, i.e., the Hessian of the Lagrangian
vanishes, hence constraints or supplementary conditions ap-
pear in these theories.® This means that there are nonphysi-
cal objects present in these theories, which is the situation in
IIP representations. By a “‘degenerate theory,” here we will
mean simply a theory containing a degree of freedom that
has no physical counterpart, so that in this situation the task
of the physicist is to extract the physical subtheory. Such a
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physical subtheory should have the usual structure of a regu-
lar theory. There may be several different methods for ob-
taining the same physical subtheory, and our aim here is in
showing the relation between two such methods, viz., the
adaptation of the Strocchi-Wightman approach? to C *-alge-
bras, and the method developed in Ref. 1.

The structure of IIP theories has been extensively treat-
ed in the Wightman formalism by various authors,>*’ and
the algebraic aspects of these theories—still in the Wight-
man formalism—were considered in Ref. 8. The path inte-
gral approach was developed for IIP theories in Ref. 9. A
construction similar to the Fock-Cook construction was de-
veloped by Mintchev'° to obtain a Fock-type representation
with IIP. Dadashyan and Khoruzhii'! developed the quasi-
local theory for IIP theories in the Wightman formalism.
These authors also started a more general study of unbound-
ed operator algebras on IIP spaces, a subject further devel-
oped by Jakobczyk in Ref. 12. The theory of IIP spaces is
well presented in the book by Bognar.!® To the best of our
knowledge, there is only one study of IIP representations
from the purely algebraic field theoretic point of view, and
that is a recent publication by Jakobczyk.'* A publication by
Araki'® considers the specific problem of group representa-
tions on an IIP space with additional structure, such as is
found in the situation of Gupta—Bleuler electromagnetism,
and this theory would become applicable to algebraic field
theory, once the latter has been fully developed in the IIP
context.

In practice, degenerate systems are always character-
ized by supplementary conditions that may be ad hoc, or be
canonical constraints in the sense of Dirac,® or be the genera-
tors of nonphysical transformations. The imposition of the
supplementary conditions is meant to select the physical the-
ory, and one may enquire into the abstract algebraic process
that results from this requirement.’

Quantized systems consist of an algebra of operators
acting on a Hilbert space (or rigged Hilbert space), hence
there are two ways of imposing supplementary conditions,
i.e., first via conditions on the operators, called algebraic
conditions, and second via conditions on the state vectors,
called state conditions. These are written as 4 =0 and
A |¢) = 0, respectively. In order to avoid the complications
associated with unbounded operators, we consider hence-
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forth instead the object U, : = exp(il4), and write the con-
ditions as U, =1 and U, |¢) = |¢), respectively. If 4 is
Hermitian, U, is unitary, and hence it may be possible to
define abstract elements in a C *-algebra corresponding to
these, e.g., in Segal’s method for the algebraic quantization
of linear fields.'® If 4 is non-Hermitian but 4 * satisfy the
same conditions as 4, the unitary groups can be defined in
terms of the Hermitian combinations 4 +A4* and
i(4 — A *). When A4 is non-Hermitian and 4 * does not satis-
fy the same conditions as 4, the Hermitian product 4 *4 can
be used to generate the unitary group U, , but in linear field
theories'® it may not be possible to define an element in the
abstract algebra corresponding to exp(il4 *4), and so diffi-
culties may arise. In the sections to follow, we assume that
the U, has been defined as an element of the field algebra.

Il. BASIC STRUCTURE OF DEGENERATE SYSTEMS

In this section we collect the basic algebraic structures
associated with systems with state conditions, as developed
in Refs. 1 and 17, which is where the interested reader can
find the proofs of the statements below. As in Ref. 18 assume
the following.

Assumption 2.1: All physical information of a specified
system is contained in the pair #, &, where the unital C *-
algebra ¥ is the field algebra, and & is its set of states.

Assumption 2.2: There are two specified families of one-
parameter groups {U, (1) |A€R, iel} and {V; (1)|A€R, ieJ}
in &, called state and algebraic conditions, respectively,
where the index sets I, J need not be finite. All physical
information is contained in % and the set of Dirac states
defined by

Gp: = {weB|{w|U, (1)) =1 Vild}.

Then we®, iff (w|AU, (1)) = (w|4 ) = (w|U; (A4 ) Vi,
A, Y4e%, or in terms of L;(A):=U; (1) — 1: we&,
iff {L;(A)}C Kerw iff F{L, 1)}U{L;(1)}¥ C Ker w.

Theorem 2.3: Let .« (L) be the C *-algebra generated by
{L;(A)}. Then weS, iff #(L)C Kerw iff[«/(L).F
UF o (L)]C Ker w, where [ -] denotes the closed linear
space generated by its argument.

Theorem 2.4: ©,#Qiff leo/ (L) iff 1¢[ o (L)F
U & (L)], and in this case &, contains pure states.

So our nontriviality assumption is the following.

Assumption 2.5: Henceforth assume 1¢./ (L).

For any set L C.%, define

M 5 (Q): = {FeF |FMeQ S MF YMeQ},

hence if () is a C *-algebra, then .# & (1) is the largest C *-
algebra in # for which () is a two-sided ideal.

Theorem 2.6;: Let A= [F o/ (L)], &: =N NON*,
then & is the largest C *-algebra annihilated by all the Dirac
states, ie., & is the unique maximal C *-algebra in
F = N{Ker o|weSy }.

Theorem 2.7: ¢:={Fe¥| [FHleY VHeZ}

=M 5 (). Then 167, and & is a proper two-sided ideal

for Z. In Ref. 6, Dirac defines his observables as “first-class
variables” in an analogous way to the way that ¢ is here
defined. The observables in quantum theories are tradition-
ally taken to be .o/ (L)',
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Define ¥ to be the largest set such that &/ (L).%
Cl{F A (L)). Then le/ (LY CFNIF*.

Theorem 2.8: & = F*o (L) and & = L NF*.
Hence &/ (L)' C &, and so we could choose ¢ even as the set
of observable quantities. ¢ can be considered to be the lar-
gest C *-algebra on which we can impose the constraints.
Define the maximal C *-algebra of physical observables as

R:=0/D .

The factoring procedure is the actual step of imposing the
constraints. Now it is possible that Z may not be simple, and
this would not be acceptable for a physical algebra. So, using
physical arguments, one would in practice choose a C *-sub-
algebra & . C & containing .o/ (L)' such that

Ro=0,/(DNE,)CR

is simple, and then %, is the right physical algebra. The
distinction between & and &, was not made in Ref. 1. The
procedure of obtaining the objects above is called the T pro-
cedure.

Theorem 2.9: we€;, iff 7, (Z )N, =0, where 7, and
Q,, are the Gel’fand—Naimark-Segal (GNS) representation
of w and its cyclic vector, respectively.

This corresponds to the heuristic y|#) = 0 method for
imposing constraints. Define

Y: = {ecAut F|Z =al[2D]},

thensince & = # 5 (), a also preserves & and so defines
canonically an automorphism @’ on %. Define the group
homomorphism T: Y- Aut #Z by T(a) = ', then we ex-
pect Ker T to consist of gauge transformations.

Theorem  2.10: Ker 7= {acAut ¥ |{w|[4]F)

= (w|AF) VA, Fe® and YweS, } CY.

Theorem 2.11; e€lnn ¥ N'Y = a’elnn Z#. The physical
admissible automorphisms of % denoted by Y, are those
which are definable on #,, ie, a(f.)=¢,., and
a(D)NVCY.:=DNPO,. Clearly, if a€Y, it is sufficient
that it satisfies a(Z,) C &, for it to be physically admissi-
ble. Similarly to T, we define the group homomorphism T, :
Y. —~Aut %, and then in this context the gauge transfor-
mations will be Ker T,. The proof of Theorem 2.10 which
was given before! easily adapts to the new situation to give
the statement:

aeKer T, = {(w|a[4 |F) = (0|AF)
VA,Fef, and VweS, .

This will be used later.

The construction above has been shown to lead to re-
sults isomorphic to the usual Hilbert space method of impos-
ing supplementary conditions, and moreover that it can ful-
fill reasonable physical requirements.!” Moreover, Dirac
electromagnetism has been developed as an example of a
model which possesses the structure of the general theory
above.”""”

Next consider the algebraic conditions {V; (1)}. Define
N;(A):=V;(A) — 1. It is hard to find an abstract interpre-
tation of the heuristic condition &; (1) = 0. We interpreted
it previously'” to mean either that by construction of ¥ the
abstract object that would have corresponded to N; (4) is
identically zero (cf. Ref. 19 for an example of this ap-

H. Grundling and C. A. Hurst 560



proach), or to mean that there is some *-homomorphism I':
P CF—R, onto, with {N, (1)} CKer I'. Clearly in this
case #, = #/Ker I'. Now if T is not the T procedure
above, there are ordering problems in systems where both
types of constraints need to be imposed, and so the natural
conclusion is that the two best options for dealing with alge-
braic conditions are (i) construct % in such a way that the
objects in it which correspond to the heuristic constraints are
identically zero, or (ii) treat all constraints on the same foot-
ing, i.e., impose them according to the T procedure.

lll. SYSTEMS WITH INDEFINITE INNER PRODUCT
REPRESENTATIONS

In order to set up the problem of IIP theories, one needs
to decide whether the problem is abstract algebraic or repre-
sentational or both. To this end, consider a typical situation
in which the problem arises. In Manuceau’s version®® of Se-
gal’s method of algebraic quantization,'s we start from a
manifold which is usually a space of test functions, denoted
M, and with a nondegenerate symplectic form B(,*) on M.
Then with the method given in Ref. 20 one constructs the
C*-algebra of the canonical commutation relations

(CCR’s), A(M,B), and this can be taken as the field alge-
bra for the theory. In some approaches, e.g., Ref. 21, B(*,*)
is the right-hand side of the smeared CCR’s, while in other
approaches, ¢ it is more indirectly derived from this. Thus
the non-positive-definiteness of the CCR’s, which is the
source of the IIP, in some cases may be reflected in the alge-
braic structure of the theory. However, in general, it is not
clear that this should be the case, for the following reasons.
In the process of constructing a Fock representation for the
theory, the test function space M is given an inner product so
that it becomes a Hilbert space 5#°. The Fock—Cook con-
struction then creates the Fock—Hilbert space .# (#°) from
& as the representation space. If M is given an IIP so that
¥ is just an IIP space, then by Mintchev’s construction'
F () is also an IIP space. Conversely, given an inner
product on #°, B(-,) is the imaginary part of it, and this is
antisymmetric. The positive-definiteness of an inner product
is a property pertaining purely to its real part. However, only
itsimaginary part B(-,-) enters the algebraic structure of the
theory. There is a connection between B(-,-) and the real
part of the inner product (:,*) of &, given by the complex
structure J defined by

J is a real operator on M satisfying J2= — 1 ;

B(zJz) =0iffz=0;

B(JzJZ') = B(z,2') Vz,zeM.
Then J defines an inner product on M by {(z|z')
:=B(z2,Jz') +iB(z,z"). For quadratic Hamiltonians, this
complex structure was extensively examined by Broad-
bridge,?? who found that in the positive-definite case, there is
a unique complex structure for each dynamic action C(z) on
M which renders C(¢) unitarily implementable in the resul-
tant Hilbert space. He found, however, that if the complex
structure induces an IIP, then its existence is highly nonuni-
que for each C(¢). Hence for each B(-,-) we can define with-
in physical acceptability a wide variety of IIP’s. (This again
expresses the arbitrariness of structures that include non-
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physical objects.) Thus the connection between the algebra-

ic structure of A(M,B) and the positive-definiteness of the
metric becomes quite vague. Moreover some important
gauge theories, e.g., the Yang-Mills field, have not as yet
been castintoa C *-algebra formulation due to the nonlinear-
ities involved. Therefore it does not seem wise to put too
many restrictions on the form of the field algebra on the basis
of analogy with present theories. For these reasons, while we
are aware that IIP theories may have a slightly different
structure in their field algebras, we intend to examine the
problem of IIP theories as a purely representational prob-
lem, i.e., the problem of the representation of some specified
field algebra on a IIP space.

Algebraic field theory is based on the axiom that all
physical information of a system is contained in a pair as in
Assumption 2.1. If a theory contains nonphysical quantities,
we need not necessarily start from such a pair {#,8}, as
long as the final theory constructed from the degenerate the-
ory satisfies the axiom. The axiom is justified by Hilbert
space quantum mechanics, as a C *-algebra is the abstract
version of closed *-algebras of bounded operators on a Hil-
bert space, and the states can be thought of as expectation
values of the observables of the algebra. So in facing an alge-
bra of operators on an IIP space, one may legitimately doubt
whether this axiom will still be justified. If we reject the axi-
om for the total degenerate theory, but still adhere to it for
the physical subtheory, the question will arise as to what
abstract type of algebra one should take for the field algebra,
and here one is faced with the fact that the theory of operator
algebras on IIP space is still very rudimentary.'"'? There are
not many hints forthcoming from physics either, due to the
presence of nonphysical entities in the theory. We leave the
development of these algebras to the mathematicians of the
future. In what follows we follow the easier alternative of
accepting the structure of Sec. Il and the axiom that all phys-
ical information is contained in it.

Now having decided to approach the problem as repre-
sentational, i.e, some unital C *-algebra 7, taken as the field
algebra, is represented on an IIP space'? 57, there are two
possible problems to consider.

(i) Given a positive subspace #” as the physical sub-
space (e.g., selected by imposition of a supplementary condi-
tion), what algebraic structure does this imply for &?

(ii) Given the algebraic structure of a degenerate sys-
temin .# (as summarized in Sec. II), how do we obtain IIP
representations possessing the structure set out in Ref. 2?
(Cf. Definitions 3.3 and 3.6 below.)

In the following we will first consider (ii) in detail be-
fore returning to (i).

Only ordinary Hilbert space representations can arise
via GNS construction from the states we®, so in order to
obtain IIP representations we assume the following.

Assumption 3.1: Given a C *-algebra & as a field algebra
with its set of states &, all physical information is contained
in {#,&}. There may also exist some nonpositive functional

feF * which can contain the physical information with %

(and may more conveniently express it). There exists a set of
constraints {U; (1)}, and for all physical states @ we must
have (0|U; (1)) = 1.
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The last sentence expresses the fact that % is a degener-
ate system, and from this assumption the theory presented in
Sec. II will be applicable, i.e., there is the structure:

R, =0,/D,

is simple. Henceforth such a structure will be called a C *-
degenerate system. A C *-degenerate system may be denoted
simply by & C.¥ and & .. Henceforth we only use the ideal
structure & .7 ., and the simplicity of % ., and so omit the
subscript c.

Lemma 3.2: Given a linear space X with a degenerate non-
negative inner product (-,) on it, any bounded operator 4
with adjoint 4* maps X,: = {xeX |(x,x) =0} into itself.
Hence the definition of 4 mod X, on X /X, makes sense.

This is easily seen via the equation

|(Ax,4x)|* = | (x,4 *Ax)|*< (x,x) (Bx,Bx) = 0

for xeX,, Ac#(X), B:=A*A4.

Now we adapt some of the structures developed by
Strocchi and Wightman®™ in the Wightman formalism to
C *-degenerate systems. In what follows we will not address
the problem of the representation of C *-algebras as opera-
tors on IIP spaces directly; this has been done in detail in
Ref. 12 for general *-algebras with norm.

Definition 3.3: A pre-Strocchi-Wightman structure, de-
noted PSW structure, consists of an IIP space {#,(*,")}, a
unital C *-algebra (the field algebra) ¥ 4 C .7 (F#°) within
which is specified a C*-degenerate system & 5.<& 5
C.# 5 such that there exists a positive semidefinite sub-
space #” C# and a cyclic vector P %", F 5 Py =H
(closure only if a topology is specified on 7°) satisfying (i)
O 5" CF7, and (ii) & 5" CH", where F#" is the
neutral space of #” with respect to (-,-). The physical Hil-
bert space is defined as ¥, := # '/ ". Then by
Lemma 3.2 the definition of (4 |#”)mod 7#°” makes sense
for all Ae& 4. Then the unique closure of this operator de-
fines an operator on &# y,,, and the physical algebra is de-
fined as # i = (& 5 |2 )mod .

In order of decreasing generality, 7% can be chosen to be
(i) a general IIP space; (ii) a Hilbert space with an inner prod-
uct (|-), connected to (-,) by a bounded linear Hermitian
operator G, called a Gram operator, such that
(4,B) = (4 |GB )V A, B/ [then (-,) is jointly continuous
in the Hilbert space topology and 57 is decomposable'*]; and
(iii) a Krein space, ie., G is completely invertible. Then
G2 = 1, and the components of # in any fundamental decom-
position are intrinsically complete.

Other choices of 77 are possible, but we concentrate on
these as the more interesting ones. In what follows, the pre-
fixes general, Hilbert, and Krein will be used to indicate the
nature of #° in the PSW structures.

To keep the discussion as general as possible, consider
some left # module X as a way of realizing ¥ as operators
on a space. In addition assume that X has some IIP (-,*)
such that (A4*xy) = (x,dy) VAe¥, VxyeX, and
AxeX such that Fx, = X.

Theorem 3.4: The collection of objects {X,(,"), F,
{L;(A)})} defines a general PSW structure for each xeX which
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satisfies (i) x,ex, (ii) (Ax,Ax)>0 VAed, and (iii)
(Dx,Dx) =0VDeZ . Conversely, given a PSW structure for
F,H is given as such a left F module with cyclic element $,,
and any Wes7” will satisfy (i)-(iii) above. Moreover, the
A onys derived from any PSW structure is isomorphic to % (cf.
Sec. II), and this means that the PSW structure induces a rep-
resentation of % . If the set of xeX satisfying (i)—(iii) is denoted
by &, we find that .# #{0} = x,&#". The PSW structure asso-
ciated with xe.#" defines a cyclic representation of 2, on
P phys

Proof: From {%, {L;(1)}} obtain the chain of objects
{L, M ICHULYCIGLOCTF, R = £/% where # must
be simple. Make identifications # =X, &,=x,,
K =Ox, " =X,NEx. Then we find x,€Fx is cyclic,
O =", DX =DOxCDxCIH" by (iii), ie., we
have a PSW structure and hence # ., = Zx/(X,NOx).
The converse part follows from 3.3. Now

Aeld - (A |Ox)mod(X,N O x)

defines a canonical *-homomorphism of & onto Z . From
D (Ox) CX,N & x we see that & is in the kernel of this homo-
morphism. As # is simple, & is maximal in &, hence the
kernel is &, and so &% Z . The representation obtained
for # is

T (€)= (7(A)| P )mod®” VAel .

This makes sense because 7( % )F#” C#"". Assume that
& #{0}. Thus x50 such that x,€fx, i.e., IBe# such
that x, = Bx. Then

(Axy,Ax,) = (ABx,ABx) >0

and
(Dxy,Dx,) = (DBx,DBx) =0 VAel, DeZ ,

since ABe VYAcl and DBeY VDeZ . By definitions it is
easy to see that for an xe.#, the equivalence class of x is a cyclic
element for 7 . [ ]

Remark: At no stage do we require that the IIP on 5%
be nondegenerate, because by the Cauchy-Schwartz in-
equality, the neutral part of 7#” is contained in its degenerate
part, and hence " = {0} if (,) is to be nondegenerate,
and this is not desirable.

Corollary 3.5: Let X be a left ¥ module with cyclic ele-
ment x,, and # be a C *-degenerate system. Moreover, let X be
a Hilbert space with inner product (:|-). Then every pair
{Gx}, GeZ, (X), xeX satisfying

(i) (4*|Gz) = (y|GAz) VyzeXV4eF;

(i) x,0x;

(iil) (x|GA*4x)>0 VdAed;

(iv) (x|GD*Dx) =0 VDeZ;
defines a Hilbert PSW structure, and if G 2 = 1, it is Krein PSW
structure.

Proof: This follows from (4,B) = (4 |GB ) and Theorem
34, |

Let & be the physical symmetry group of the field alge-
bra, i.e., there is an action a: ¥—Aut ¥ 4,ay5 CY,. [By
acAut F 5, we mean that a(n(F)) = #(@(F)), where
aeAut ¥, ¥ 5 = 7(F ), and ris the IIP representation of
& on 77.] Then inspired by Refs. 2—4, we define the follow-
ing.

Definition 3.6: A strict Strocchi-Wightman structure

phys =
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(henceforth denoted SW structure) is a PSW structure as in
3.3, such that (i) there is a homomorphism U: 9.7 (#°)
for which U,=I and (PAY)—{U,Pa,(4)U,Y)
VAES 4,89 ; ¥, ¥ and f(g): = (V,U, P) is a contin-
uwous function f FCVOVe¥; (i) U,H"'CH
Vge¥; and (iii) P, is the only cyclic vector such that
U, Dy =P, Vge.

A weak Strocchi~Wightman structure is defined below.
These correspond to what is called a “gauge” in Ref. 3. In the
specific case of the Gupta—Bleuler triplet, there are additional
structures and results available.'* We verify that Definition 3.6
makes sense, ie., that U, preserves the PSW structure of
{#°,% 4} and does not transform it into a different PSW
structure. As ¥ is a group, U a homomorphism,
l]; L/é—l = l]; =I= l]g—IIY;, ie., L,é_l = l];—l, hence
Ker U, ={0} Vge¥.Thus U, 7 =25 Vg. Now U, 7"
(::J%é”::> l};—l( l/éé%‘”) C l];_,é%‘wzz>¢;¥‘”(: l};_-é%‘”. But éﬁEEﬁ
is arbitrary, hence U,-.5#" C 5, and so U, %" = #"VgeJ.
By (iii), U, ®, = &% = U, 7", and this is still cyclic for
F % . Nowa, ()=, and so

a (OVU,H =07 CH,

and by
(U, 0,0, ¥) = (P,¥) [letd =1in (i)],
we see that %7 = (U, "), 50
K" =K NH = U, (F)YN (U H)g s
i.e, " is unchanged under U,, and so is 77 . Then
(D3 U, =D 35 CH" .
This verifies the consistency of Definition 3.6. The addi-
tional structure can be easily added to Theorem 3.4 and Cor-
ollary 3.5.
Theorem 3.7;: Given an SW structure as in 3.6, the auto-
morphisms a, and Ad U, induce the same automorphism

on % ., and under the canonical isomorphism between
R onys and Z, these map into a;cAut %#.

phys
Proof: (9,4¥) = (U, ®,a, (4)U,¥) = (U, d,U,A¥)
VAeF 5; ge9; OVe¥. Thus (U, da,(4)U,

— U, A¥) = 0,butas P, ¥ are arbitrary, they can be replaced

by &—U,; '®, WU, 'V, s0

(PJa, (4) — U AU 'W) =0 VOYe#,
and hence (a,(4) — U AU Wi, VV¥e¥, AcT 4,
ge¥. %o

(ag(4) — (Ad U AV CH™
ie.,

(ag (4) |27 mod 7" = (U, AU ;| # " )mod " .
It is easily seen that the procedure (@, (4)|#”) mod #” de-
fines an automorphism on % ..., for @, €Y, and so the first part
of the theorem is proven. The canonical map

(4 |#)mod #"€R g —{A + D} = £,€R VA
takes (a, (4)|#")mod 77" to

{o, () + DY =€, 1 =a}(&4) . |

Remark: From the above proof, one sees that in order to
get the statement of the theorem to hold, it is sufficient to
require that
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(@, (4) — (Ad U, )4 )" CH" VA€l 4
This will be the alteration to 3.6 which defines a weak Strocchi~
Wightman structure. We return to this concept after develop-
ing the theory for SW structures. The essential difference is that
in SW structures, we have a quasicovariant representation of
the full algebra .# on 57, but in weak Strocchi-Wightman
structures we have only a quasicovariant representation of &
on 7. Asbefore, the prefixes Krein, general, and Hilbert refer
to the structure of the IIP space.

Corollary 3.8: Let {X,(+,"), F,{L,(A)}} beasin 3.4, and
U 9—2(X) be a homomorphism such that U, =1,
(24y) = (Upz, g (A) U,y) VAeF, ge¥, 2yeX; (2,U,y) is a
continuous function in g for fixed z,y, and x, is the only cyclic
U, -invariant element of X. Then for each xeX which satisfies

(i) x,€x,

(ii) (Ax,A4x)>0 Vded,
(iii) (Dx,Dx) =0 VDeZ ,
(iv) U (Ix)COx Vge¥,

we have a general SW structure, and apart from % g, ~%
we find that Ad U, maps to an a'cAut # under this isomor-
phism. Conversely, given a SW structure for &, any Y%,
will satisfy (i)~(iv), and moreover, the representation of #
obtained from the SW structure (cf. 3.4) is a covariant rep-
resentation, and it will be cyclic if 3Pe#” such that
()P + 7" = #”. Henceforth we assume this to be the
case. Note that we allow the possibility that ¢~ P,

Proof: This is a straightforward application of the preced-
ing theorems and definitions. 0O

We also add the new structure to Corollary 3.5.

Corollary 3.9: Let X, .7, x5, {*]') be as in 3.5. Let U:
&% (7¢) be a homomorphism such that U, = I. Then ev-
ery pair {G,x}eZ ;, (X) X X satisfying

(i) (4*2|Gy) = (z|GAy) VAeF, VzyeX;
(ii) (Gz|dy) =(Gz|U[ 'a,(4)U,y) VAeF
VzyeX, geY;

(iii) (z|GU,y) is continuous in g for the other quan-

tities fixed,;

(iv) x,€fx;

(v) (z|GA *4x)>0 VAed;

(vi) (x|GD*Dx) =0 VDeZ,

(vii) x, is the only cyclic Uy -invariant element of X, de-
fines a Hilbert SW structure, and if G* = 1, it is a Krein SW
structure.

In what follows we wish to develop concrete examples of
theleft ¥ module X defined above. Amongst the class of left
% modules there are two important ones—the left ideals of
F, and the set of GNS spaces of . The second already has
a Hilbert inner product, so that in this case one looks for a
Gram operator. The left ideals of & are easily equipped with
IIP’s through the use of Hermitian functionals. By definition
each principal left ideal of F is generated by some one ele-
ment x€.% without a left inverse. This element will then be
the required cyclic element for the left module, the principal
ideal generated by it, as required. As the other left ideals of
% do not have cyclic elements, we are not interested in non-
principal ideals.

Theorem 3.10: Let there be given objects %, {L; (1)},
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a: 9—Aut F as above. Let a” denote the elements of ¥
which are a invariant. Then there is a SW structure for each
(f, %0, F) in F X a® X .F which satisfies the following con-
ditions:

(1) f(x) =fla, (x)) VxeFx, VYge¥;

(ii) xped Fxo;

(iil) da, (F)x,COFxy,

(iv) f(xgF*&  Fx,)>0;

(v) f(x3F*%  Fx,) =0,

i) & NF xo={x,},

where 7 : = {xe¥ |x; '3}.

Conversely, if there exists a SW structure on the C *-degener-
ate system above, then there is a Hermitian functional & on
Z suchthat 8(x) = 0(a, (x)) VxeF,V¥ge¥,0(F ,)>0,
and 6(Z ) =0.

Proof: Let ( f; x,, F) satisfy (i)—(vi). Then make the iden-
tifications X = F x,, (4,B): =f (4 *B) VA,Be¥ x,withthe
objects in 3.7, where % acts by left multiplication on % x,,
(4,B) is a IIP since fis Hermitian and x, is the cyclic element of
X. When x,, has no left inverse, X = % x, is a proper principal
left ideal of . Let U,: = a, |.F x,, since a, (F x,) = F X,
Then U, = £ (X),

(2,4y) = f (2*Ay) =f(a, (2*4Y))
= flag, (2)*a, (4)a, (¥))
=(U,z2, a,(4)U,y) V4T ,
and

(z,Upy) =f(z%a, (¥))

is continuous in g because all the operations involved in its
construction are continuous. Furthermore, from (vi), x, is
the only cyclic U-invariant element of # x,. Then x = Fx,
will satisfy (i)-(iv) in Corollary 3.8 by (ii)—(v), hence we
have a general SW structure. The converse is easily seen
from the identification 6(x) = (P, 7(x)D,) where xcF,
and = is the IIP representation of % on 5 as in Definition
3.3. |

Remark: Later on the functional @ will be called the
class functional of the SW structure. When we want to admit
spontaneous symmetry breaking, the requirement that x, is
the only cyclic U-invariant element should be relaxed, in
which case (vi) above, can be omitted.

Apart from the set of principal left ideals for the left
module X, one can also consider factor spaces of left ideals.
Let # bean .7 -left ideal containing the subleft ideal KC 7.
Then # /K is a left ¥ module, and we need some cyclic
element in it, i.e., there should exist an x,€ # such that
F(xo+K)=_, or Fxo+K=_F. Note that /K
=ny(fxoﬂK)

Theorem 3.11: Given the objects %, {L,(1)}, a:
Y—Aut F as above, as well as two a-invariant left ideals
KCJC¥ and an x,e/ such that Fx,+K=1J,
agy (x,) Cx, + K, there exists a SW structure for each pair
(SF)eS ¥X.F which satisfies

(i) KC{xeJ|fix*y) =0 Vyel};

(i) fix) =fla,(x)) Vge¥, xeFx,
(iil) x,edFx,+ K;
(iv) fa, (F)xoCOFx,+K;
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(v) f(x4F*& _Fx,)>0;
(vi) fx2F*SD  Fx,) =0
(vii) {F x4+ K}IN{x + K |xeJ,a(x)ex + K}

C{x,+K}.

Proof: Let £ be the canonical map Ji—~J /K, hence
& 7Y(&,) = {x + K}. From (i), the IIP defined on J /K by
(£x,6,): = f (x*y) makes sense. Then J /K is a left # mod-
ule by 4&, = &,, VAeZ, which is well-defined because
A{x + K} = {Ax + AK} C{4x + K}. Clearly £, isacyclic
element inJ /K, and as J and K are « invariant, 3o’ defined
onJ/K by oz (£, ): =&, (x)» and we define a;: = U, (cf.
3.8). Then from (ii) it is easily verified that U, =1I;
(82,4E,) = (U &, ,a, (AU, E, ) and (£,,U,¢§,) is contin-
uous in g. By (iii) we find §, €7y, , and this covers all
possibilities because £+, =J/K. From (v) we see that
(Afpy, AE 2, ) 20 VA€, and by (vi), (Dég, ,Dép,)

=0 VDeD. By (iv), U, (8, ) C &R, , and (vii) en-
sures that £, is the only U-invariant cyclic vector in J /K.
Hence with X = J /K, Corollary 3.8 ensures that there exists
a general SW structure, n

Remark: When spontaneous symmetry breaking is re-
quired, (vii) should be omitted. When x; ! exists,
Fxy=%,and J /K is a factor space of 7.

From the paragraph preceding Theorem 3.11, we note
that the construction J = % x, + K will in fact cover all pos-
sible left ideals for which §, incyclicinJ /K. Itis possible to
define Hilbert space structures on the principal left ideals,
and then to look for Gram operators from which to obtain
SW structures, but as the representations of % on these Hil-
bert spaces will be unitarily equivalent to GNS representa-
tions, we now consider the latter instead. Consider the GNS
representation of .# associated with an we$, i.e.,

Ty FRB(F,), H,:= F/N,,

N,:={4eF|w(4*4) =0}, & F—-F/N,
is the canonical map,
(alp):=w(A*B), m,(A)ég:=E4p .

The Gram operators can be chosen from the set %, (77,),
and these translate to % as

{ye® (F)|y(N,)=N,,
VA,BeF}.

There are two interesting subsets of this, i.e., where
yeAut ¥ and where Y, i.e., it acts by left multiplication
of an element Ge.% . The last subset is the one we concentrate
on (for the first, consult Ref. 14). Define
F ¢ ={GeF |w(AG*B) = w(AGB) VABe#}D.%, .

Theorem 3.12: Given %, {L, (1)}, a: ¥—Aut F as
above, there is a Hilbert SW structure for each triplet
(0,G,E)e&X.Z S X F such that

(i) @5 (N,)CN,,

(ii) w(4 [G,F1B) =0 VA,BFe¥#,

(iii) 1e{FE+N,},

(iv) w(E*G¢ L E)>0,

v) 0o(E*GY .E)=0.

When spontaneous symmetry breaking is not allowed, we
also require

o(y(A)*B) = w4 *y(B))
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(vi) ACeF \1suchthat ¥ ={¥C+N_}and
ay (CO)C{C+N,}.

When G%{1 + N, }, the SW structure is a Krein SW struc-
ture.
Proof* With the identifications X =27, x,=4¢&,,
Up£4:=§,,(4y» Which makes sense via (i), the proof is a
routine verification of 3.9, but for clarity we spell out some of
the details. Clearly U is a homomorphism, and U, = I, and
the cyclic vector £, is U invariant because Ugé, =&, 1)
= £, .Rewrite (ii): w (4 *GFB) = w(A *FGB) YA,BFe¥
to get

(m, (F)*¢, |7, (G)p) = (64 |7, (G)m,, (F)ég)
which satisfies (i) of 3.9. To verify (ii) of 3.9 consider

(T, (DV4|U G ', (ag ()U,Ep)
= <§GA |Ug_ 1§a,(F)a, (B))
= <§GA |§ag— l(as(p,,),> = (§GA |§FB)
= (7, (G, |7, (F)Es) VABFeF, Vge¥ .

To verify (iii) of 3.9, note that (&,|m,(G)U,&p)
= w(4 *Ga, (B))is continuous in g if all the other quantities
are fixed, because all the operations involved in this con-
struction are continuous. For condition (iv) of Corollary
3.9, note that with the identifications x,—&,, x> &z, (iii)
implies &, €, = 7, (& )£E. (iv) above can be rewritten

o(E*GA*AE) = (&g|m, (G, (4 *4)Ep) >0 V4ed

which verifies condition (v) of Corollary 3.9. Similarly (v)
satisfies (vi) of 3.9.

Note that the first part of (vi) says that £ is cyclic, and
the second part that it is U, invariant: U,§¢c =€, () = §c»
hence (vi) says that there are no cyclic U-invariant elements
of 5, other than £,, and this corresponds with 3.9 (vii).
For the last statement, note that G 2e{1 + N,, } implies that
7, (G): =L ]

If one can find a Dirac state which is invariant with
respect to the physical transformation group, this will cer-
tainly induce a SW structure on the C *-degenerate system,
and the construction above will be an interesting alternative
to the purely algebraic constructions of before. Both meth-
ods, as we saw, result in the same final physical algebra.
Conversely, given a SW structure as above, from the con-
verse part of Theorem 3.10, we see that on & this is the
restriction of a Dirac state, covariant on & . The interesting
case is when this Dirac state on & cannot be extended to a
covariant Dirac state on .%. This is the situation when the
real usefulness of the IIP representations arise. Hence the
purpose of using the IIP formalism is to obtain a cyclic co-
variant representation for the physical algebra & that may
not be obtainable from covariant ordinary representations
on #.

The final concept of Ref. 3, which we adapt to the C*-
algebra context, is that of a generalized gauge transforma-
tion. This arises within the following situation. Thereisa C *-
degenerate system {%,,f.} with its transformation
group a: I—Aut ¥, ay CY, and two IIP representa-
tions 7;: F—.2L (HK;), i = 1,2, and two SW structures

{%1, %1" (',')i’ ‘b,n’ 77'1(?), ”i(g)) U(i)}, i= 1a2
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Definition 3.13: A generalized gauge transformation is a
pair of SW structures as above and a bijection g:
% 1 phys'_’% 2 phys SUCh that

(i) (P (A)Y)), = (P, ()W),

Vded, VO, V5%, D,V¥,57,
such that My, =g(77\p, ), Mo, =g(7]¢| )s
where 1: 75— /7 is the canonical map,

(il) 74, =8(7s,,) -
Clearly what this is saying, is that the two SW structures
induce the same covariant cyclic representation on & up to
unitary equivalence (cf. Corollary 3.8, converse part). A
special gauge transformation is where the two SW structures
are identical except for the IIP representations #,, g is the
identity, and hence (i) is

(P,(m,(4) — 7, (AD))¥) =0 VAel, VOVe¥.

Call two SW structures gauge-equivalent if there is a
generalized gauge transformation connecting them. Given a
SW structure, define its class functional (cf. Theorem 3.10)
tobe 8(A): = (P, 7(A)P,) VYVAeF.

Theorem 3.14: If two SW structures are gauge equiva-
lent, then the restrictions of their class functionals to & are
equal. Conversely, given two SW structures with 6,|&
=0,|&, and if the J-cyclic elements of 7}, i = 1,2, de-
noted by ®° (cf. 3.8), are related to ®,, by P, em; (S)D?
+ ! for some Sed, then these two SW structures are
gauge equivalent.

Proof: From the definitions, the first part is clear. We
prove the converse. Let there be given two SW structures
according to the hypothesis above. The representation in-
duced on & by these SW structures are

mi(€y) = (7, (A)| X {)mod ! Vel, i=12.

From the cyclic property (cf. 3.8), any ¥,€%#; s can be
written as W; = 7/ (£, )7, for some 4eJ. Note that if 4,
#1740 then 3S;€2 such that 74 = 7/ (€5, )40 The hy-

pothesis above merely says that S, =5, =: 5. We can de-
fine a map g: #°| uyst>H 2 phys Y

g[n’{ (64 )774;.? ] r=m; (64 )774,(2; .

This map will be well defined, and a bijection if we can show
that

T (€4 )"7.;,? =0iff 73 (£, )"7,,,3 =0,
for each 4e&. Now

$i(E4):= <7l¢?|77;(§14 )7]¢?>i = (770,,)'77:{(5.5",45)770‘0):'

=0,(S*4S) VAdel .

So as Seg, we have 0,(S*4AS) =0,(S*4S5), ie,
#:1(£4) = ¢:(64). Then from (&, )7145? =0iff £, €N,
c={£,eR|£,. cKer ¢, },we get that g is a bijection. To
verify 3.13, note that

E[71(Es)Nee ] =8[M0,,] = 72 (Es)Ngg = T, -
Furthermore, V&®,, ¥,e7#”;, 3B,Ce such that

Mo, =7 (€5 )"Iq,?

H. Grundling and C. A. Hurst 565



and

Ny, =T (§c)7l¢g .

Then

(D1 7y (A1) = T |75 (€ pagc)Mgd1 = $1(Egaae)
= 0,(S*B*ACS)

and

(P, T (A)Y), = (g["h, 173 (6.8 1w, 1)2
= <77¢g Iﬂ-é (ggtAc )774,(21 >2
=@ (£pu,c) = 6:(S*B*ACS),
where 74, =g[7e, ], 7w, =&[7y, ]. This, together with
0, = 6,|&, verifies Definition 3.13. [ |
Corollary 3.15: In the terminology of Corollary 3.8, two
x;,i = 1,2, satisfying 3.8 (i)—(iv), give rise to gauge equiva-
lent SW structures if 3.5€£ such that

X€(S%, + (X,NOx))N(Sx, + (XoNEIxs)) -

Because the later SW structures are applications of Corol-
lary 3.8, we shall not further discuss gauge equivalence for
these.

Remark: If instead of Definition 3.13 (ii) we assumed

(i) g9 =8[7as]
then the results above simplify drastically, in that 3.14 be-
comes an if and only if statement, i.e., class functionals on &
are equal iff their SW structures are gauge equivalent, and in
3.15 we will find that all the SW structures are gauge equiva-
lent. We can argue for assuming (ii’) instead of 3.13 (ii)
(which has been taken directly from Ref. 3), on the follow-
ing grounds. The bijection g is supposed to establish a con-
nection between the two representations obtained for the
physical algebra, £, and in these representations the cyclic
elements derive from ®?, and not from the ®,’s. Now while
7¢,, isclearly invariant under the unitary transformations of
G on X, 41ys, it is not cyclic. If one requires that the speci-
fied cyclic elements of 7, ., should be invariant under
physical transformations, it would be necessary to require in
addition that U 9 ®%{®? + 5 }. Clearly, if the cyclic ele-
ments of #°; s do derive from @, then none of these
complications will arise.

As was mentioned in the remark below Theorem 3.7, in
order to obtain a covariant representation of Z, it is suffi-
cient to have the weaker condition

(@, (4) — (Ad U,)4 )% CH#"

This is equivalent to the following.

Definition 3.16: A weak Strocchi-Wightman structure
(w SW structure) is a PSW structure as in 3.3 for which (i)
there is a homomorphism U: ¥—.% (57) such that

(D,4Y) = (U, D,a, (4)U,¥)
VOVeH, VAel, Vged,

VA€l 5 .

and f (g): = (¥,U, ®) is a continuous function of g for the
other quantities fixed;

(ii) U, H"CH'VgeY ,
(iii) D, is the only cyclic vector such that U, @, = ®,Vge¥ .
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It is a straightforward matter to adapt the theorems above to
this concept, but for later use we state the following theorem.
Theorem 3.17: Relax the uniqueness of the vacuum re-
quirement. Then for each gauge transformation SeKer T,
(cf. Sec. II) and functional fe.% * such that
(i) f(Ba, (4)) =f(4) Vge¥, VAeZF,
(i) (Z)=0,"
(iii) f(Z )>0,
we have a wSW structure.
Proof: Let &: 5 —.5 /N be the canonical map, where
Ny ={4eF|f(4*B) =0 VBe%}
is a left ideal. Then F /N, is a left ¥ module by 4¢,
=§£,. VAxe¥, and it has the natural IIP f(x*y)
=:(£,,£,). The cyclic element is £,. Then %" =§£,,
H" =£5. Define Uy (8, ): = 8p, (x)- Now (Bay)eY, if
a,€Y,, because feKer T, CY,, and so U: ¥—.L (F/N;)
is 2 homomorphism. Now

BeKer T, = (0|B (4)x) = (w]|Ax) VYwe€,,VA4, xe0 .
By simple manipulations
BeKer T=(w|xB(A)y) = (w|xAy) VxpAeld VYweS, .

By (ii), (iii), f|#€©p, and Ker T, is a group, i.c.,
PeKer T. =B ~'eKer T, .
Hence
(Upbr 2o (AU, ,)
=f(Ba, (x*)a, (4)Ba, (y))
=f((Ba,)(x*)B ~'(Ba,) (4) (Ba,)(y))
=f(Ba, (x*4y)) =f (x*A4y)
= (£,,4£,) Yxp, AcO Vge¥ .

The function A(g): = (&,,U,§, ) =f(x*Ba, (y)) is contin-
uous in g for each pair x,y. Finally,

U, = Ugér =Epa, (o) CH

because (Ba, )€Y. The remaining requirements in the defi-
nition of a wSW structure is verified by the same arguments
as those found in the proof of 3.11. [ ]

The important point of this theorem is that for a strict
SW structure we needed invariance of the functional under
the specified automorphism group [cf. 3.11(ii)], but for a
wSW structure, it suffices to have invariance of the func-
tional up to a specific gauge transformation. This will be
used in the last example of Sec. IV.

We now return to problem (i), i.e., given a cyclic unital
*-algebra & of operators on a IIP space, and a supplemen-
tary condition y€% such that the physical subspace
" = {PeJ’|y® = 0} is positive semidefinite and con-
tains the cyclic vector ®,, what algebraic structures are im-
plied in #? As ¥ contains nonphysical objects, it is not
clear what physical topology to define on .#, although the
final nondegenerate physical algebra should bea C *-algebra.

Denote the null-space of #” by 5#°”. Then we define the
algebra of observables by

O ={AcF|AZ CH" DA* "}
and the constraint algebra by
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D, ={DeF DX CH"DD*¥"'}Dy.
Notethat {y}'C #,,1e0,,1¢9,;,and &, C &,. The phys-
ical algebra is defined as

R = (0|7 )mod 7",

and this is required to be a C *-algebra in the C *-norm for
bounded operators on the physical Hilbert space

Honys: = K/ . The definitions of £; and Z, preserve
sums, multiples, products, and adjoints; hence these are
*-algebras, and we also verify that &, is a two-sided ideal for
;. Hence R, ~ 0 ;/Z ;. Now using the definitions and the
fact that ®,, is cyclic and in ™, we note that 7" = &7,
and ¥ = G, 9, Then y#" = y& P, =0 will only fol-
low from y®, = 0if &, C{4eF |yde[ F x]1} = :.%,. Since
O; is a w=-algebra, £,C.%,N.* Conversely, given
Aes NF* wefind YA ClF 10, 2,C[Fx1P, =0,
i.e., A preserves 7. Similarly A * preserves 77", and hence
F,NSS* = ¢7,. This does look like the previous structure,
except that &, D */ (y).”;, but is not equal to it.
[« (y) is the *-algebra in # generated by y.] The reason
for this discrepancy is because in the usual situation we deal
only with positive functionals and hence Hilbert spaces, and
so there are no zero norm states such as in 5#°" above. The
previous structure of & would have been obtained if we
required &, =0, instead of &% C#". Moreover,
S NF*£ 4 (YD), though it is contained in it, because
Y M (D ;)DP,#0, except in special circumstances. Because
XML )DP,CIH”, the generalization of the observables
from y' to . C.#(Z,) also entails the generalization of
7 to O .P,, and this will be reasonable only if the latter
space is positive semidefinite, and if its zero norm part is 77"
exactly.

IV. EXAMPLES: LINEAR BOSON THEORIES

The discussion in this section concerns linear boson
fields with linear Hermitian constraints. In Refs. 1 and 17 we
considered the theory of electromagnetism as derived from
Dirac’s constraint theory, and this turned out to be the pro-
totype for any linear boson theory with linear Hermitian
constraints. We summarize here the structures obtained.

The field algebra % is chosen to be Manuceau’s C *-
algebra of the CCR,*® A(2), over a suitable test function
space £ with symplectic form B(-,-). To fix notation, we
define A(2) and indicate its heuristic correspondence
rules.

Given a canonical pair ¢; (x), p; (x) on a Hilbert space
77, with some internal tensor or Lie structure indicated by
the index /, and equal-time commutation relation (ETCR):
[g;(x), p; (x") ]‘xo=x6 = ig,-j63(.1_t —x'), smear over a suit-
able test function space, say @ ;. (R) to obtain the form
(*,-) and the CCR: [g, (F),p, (G)] =i(F,G). Let 2 be
the complexification of & ;. ” (R) (or equivalently, its di-
rect sum with itself) with the usual norm. Then a symplectic
form

B(F,G) =B(F, + in G + iGz)? = (Fsz) - (FZ’GI)
can be defined on it. Using
W(F) = exp(ipxo (Fl)) exp(iqxo (FZ)) exp[ - i(Fb FZ)/Z] ’
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this defines a heuristic Weyl system:
W(FYW(F') = W(F+ F')expl — iB(F,F')/2},

which expresses the canonical structure. For commutation
relations of the form {4, (x), 4, (x")] = ig,, A(x — x') we
obtain a similar Weyl system.?' Abstractly, the procedure is
as follows.?°

Definition 4.1: Given a linear topological space £ witha
sympletic form B on it, let A(2 ) be the normed *-algebra
such that the following holds.

(i) The elements of A(2) are complex-valued func-
tions on £ with support consisting of a finite subset of 2.

(ii) Let A(2) have the obvious linear structure, and
the multiplication law:

(fif)(@):= 3 fiz))f2(z —z))exp

[ — iB(z,,2) ]
72 2 )
The involution is defined by f*(2): = f( —z).

(iii) Define a normin A(2) by || fll;: =22 | f(2)].
Denote the completion of A(2) in this norm by A, (2).

The set of functions §, such that§, (z') = 1ifz =z, and
zero otherwise, forms a linear basis for A( 2 ). Then the C *-
algebra ofthe CCR, A(Z2), is defined as the enveloping C *-
algebraof A,(2), i.e., the closure of the latter in the follow-
ingC *-norm ||f||: = sup,p||7( f)||, where P denotestheset
of all nondegenerate representations of A, (2 ). Symplectic
transformations T on £ are defined as linear transforma-
tions which satisfy B(7z,72') = B(z,2')Vz,2'e2. These can
all define automorphisms on A(Z) by a[8,]: =65, De-
note the group of symplectic transformations on £ by
S(2,B).

The connection of A(2 ) with Weyl systems on {2,B}
is furnished by the result'® that there is a bijection between
the nondegenerate representations 7€P and the Weyl sys-
tems on {2,B}, and it is realized by the relation
W,_(F) =m(8;), Fe2.

Any linear Hermitian combination of p;, ¢, and their
derivatives can be specified through a particular element of
the complexified test function space 2. Thus if ¥ is such a
combination, and Ce 2 is the element which specifies it, then
we have a correspondence exp ily<8,c, A€R. So given a
subspace ¢ C 2 obtained from the heuristic constraints in
this manner, the abstract constraint set (cf. 2.2) is defined as
%:={8r{Fe¥} =64. The T procedure is then carried
through on this Ly(4): =8, — 1, Fe¥, and weS,
iff (0|64 ) = (0|4 ) = (w|A6r) VAeF, Fe¥, etc. With

s ={Fe2|B(F,C) =0 VYCe¥}

wefoundthat's, =8, N&.ClearlyC*(6,) C ./ (L)', and
below we will show that C*(8, ) = o/ (L)’. In this notation,
C *(-) means the C *-algebra generated by its argument in
the larger C *-algebra under consideration (here & ). There
may be additional elements to these in &, of the form
3,a;8;, with Fi¢ Vi, but as it is very difficult to get our
hands on these, we make the choice &, =C*(§,)
= (L) .Now &/ (L)\ &, does not affect #Z_, and hence
we might as well require &/ (L) C &7, i.e., & C 4. Inthis case
&/ (L) is commutative. Then I NI, = (L)C*(S,),
and so the chosen physical algebra is #. =& (L)"/
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o (L)< (L)'. In Ref. 1 we have not made this distinction
between & and & . Current work on a different problem
proved %, to be nontrivial, and to be simple if € is the
degenerate part of 4 with respect to B.

First we show that C*(5,) = &/ (L)’".

Theorem 4.2: &/ (L) = C*(6,).

Proof: 1t suffices to show &/ (L)'CC*(8,). Consider
Aed/ (L) NA(2). Thend = 274,86, Fie2,1,€Cn < .
Then

Aest (LY =34, [65,0c] =0 VCe&
=3,4,8¢ 4 c2sin} B(F,,C) =0.

Now as 8 is a linear basis of A(2), and F, + C=F,
+ Ciff F, = F;, we get B(F;,C) =0 VCe%, and hence
F.e. Thus 4eC*(8, ), i.e,,

(LY NA(Z)CC*(5,)CA (L) .

By Ref. 20, A(2) isdensein ¥ = A(Z), and hence any
element in % can be reached as the limit of some Cauchy
sequence in A(Z2). So in order to prove that
C*(6,) =/ (L)', we need to show that each element in
& (L)' can be reached by a Cauchy sequence in
L (LY NA(Z). Thus we wish to show that for any se-
quence {Aj ® converging to Hex/ (L), where

j=1
A;: =31 A6, €A(2) issuchthat ||7(4;) — (4, )] -0
forj,k— o« VmeP: = set of nondegenerate representations
of A,(2), there exists a similar sequence {B;}, where
B;: ==} v/6p, suchthatall F;€ 4, and this sequence con-
verges to the same element He.«/ (L)’. Assume that all the F,
of all the terms of the sequences used here are united into a
single set over which a single index ranges. Denote those F;
in by P;, and those F; notin by T;. Let {4, } be a Cauchy
sequencein A( 2 ) converging toan He.&Z (L '). Then we can
write

4; = Z’H‘SF.- = Za’;‘sa + ZB{‘ST, .

Then for weP: |28« (L), 6. 1)]| -0 as j— o, and
hence for L(C)ex/ (L), Ce¥ we have

S Bim([8ebr, D ‘ ‘

asj— oo, V7eP, and VCe% . Thus, VCe%,

2iiﬂ’}ﬂ(5c+ r,)sin} B(C,T;) ’ } -0

3 BBl sin— B(C.T,) sin — B(C,T;,)
ik 2 2

Xp. (T, — T;)exp (i/2) B(T;,T,) -0
as j— oo for all generating functionals p,,. This is seen from
|7 (A |12 = (&o|m(A *4)|&,). Since only the B °s depend onj,
consider equality for the limits 3, . Moreover, if this equation

holds for a particular Ce%, it must hold for AC, A€R. Let
n; —n be arbitrary large but finite for the moment. So

gﬁﬁkp,<rk — T)exp éB(T,»,m

Xsin—';—B(C,T,-)sin%B(C,Tk) ~0,
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VAeR, Ce% . Since 7,64, AC, €% such that B(C,,T;) #0.
Take a suitable linear combination C: = X27a;C; such that
I';: =1B(C,T;)#0 Vi Then it may not be possible to dis-
tinguish all the 7; through such elements Ce%, i.e., it may
be that there are values of i, say / and m for which T, =T,,.
This is the case if for instance T; — T,, € 4. Moreover,

A =Eiﬁkpn-(Tk —-T)
Xexp(i/2)B(T;,T,)#0 Vik<n.
So we wish to solve
2l Ay sin(AT) sin(AN, ) =0 VAeR

for A, where I'; are given nonzero numbers. Now (A) isa
positive definite n X » matrix because

YAy = Z ViV
Lk
=3 7B7iBip. (T — T;) exp %B(T,-,Tk)
ik

— &ln((S 7884 ) (S rebusn ) 1600,

VyeC". Hence A defines a positive sesquilinear form on C*
by (7,8):=¥AS. Then an application of the Cauchy—
Schwartz inequality, we find that if #Ay =0, then
5Ay =0 V5eC”. Hence we obtain

Z Apyisin(Al, ) =0 VAeR, yeC".
ik

By letting ¥ vary over the usual basis of C”, we obtain the
following system of equations:

3% _ 1A sin(AT,) =0 VAe€R,

By varying A, we can very quickly overdetermine the A,;,’s,
and except for those values of i/ corresponding to the T,
which are not different from all the other I';’s, obtain
Ay = 0. However if X is an index set for which all T';’s are
equal, then for those A, it is only possible to say T,y A,
=0 Vk. Now since it is not possible to specify with the
given information what the sets X are, in general we only say
that 2% A, = 0. This means V7eP,

S B.Bip, (T, —T,) exp %B(T,-,m
Lk

“[le(gae )

=0

and so 27B,;6,, = 0. With the necessary formal adaptations,
this argument generalizes to n = o0, and so 2867, -0 as
Jj— o, ie., {4;}2, converges to the same limit as

{Zpdls, 3, CC*(8,) .
Therefore o/ (L") = C*($,). [ ]

To conclude this general account of degenerate linear
boson fields, we remark that if G is the physical transforma-
tion group (containing the dynamics), then it is generally
represented by symplectic transformations on 2, ie., T:
G—S(2,B), and we obtain the corresponding automor-
phisms on # by @, (65 ): = 87 . Then for the constraints to
be consistent with these automorphisms, it is sufficient to
have T; € C ¢, in which case it follows that T, 4 = 4.

i<n.
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Next we wish to demonstrate the existence of SW struc-
tures and wSW structures on the degenerate linear boson
fields just described. First, consider the class of Fock repre-
sentations. These representations 7;: #+—>B(FF) are asso-
ciated to generating functionals p, on £ by

pi(F) = (&o|m:(8p)€o) = exp[ — J(FF);], (*)
where (-,);, is an inner product on £ such that
Im(:,"); = B(-,), and &, is the cyclic element of 7. Giv-
en a generating functional p,, it will through the expression
(*) define a positive functional ») on A(2). This will define
a positive functional w;, on ¥ = A(2) only if @) is contin-
uous in the C *-topology, i.e., if

pi (F) = expl — }(F,F);1<C||6f|| = CeR , .

This is only satisfied if (F,F); >0 VFe2. In this case one
finds that the GNS representation space of @; is isometrical-
ly equivalent to a Fock space constructed on the Hilbert
space obtained from the completion of £ in the (-,-) topol-
ogy. However, it also indicates that in the IIP situation, we
should expect problems in trying to execute a similar con-
struction from generating functionals of the form p,.

Starting from a IIP space, " = {2,(-,*);}, Mint-
chev'® constructed a Fock-type IIP space, on which he could
define a Weyl system such that its vacuum expectation value
is exactly p;, i.e,,

(€o| W(F)|6,) = expl — J(F.F);] =p; (F) .
Hence we expect some structure resembling the triplet 77,
K, 5" of 3.3 to be present in (" for a degenerate phys-
ical system. Now such a structure is already available in a
degenerate linear boson field, in the form 7", 4, €, and so
in what follows we will demonstrate the existence of SW
structures or wSW structures associated with ITP’s (+,*); on
2 which satisfy

(FF); >0 VFes;
and
(T F,T,H), = (F,H),YF,He2, geG.

Note that from the positivity on 4 we can apply the Cauchy—
Schwartz inequality to get an equivalent condition for the
second one: (F,C), =0 VFes, Ce%. Below we show a
natural way for obtaining an indefinite functional f; on &
fromp; [defined froma (-,-); as above], which will give the
right SW structures. The uniqueness of the vacuum require-
ment will not be enforced.

Theorem 4.3: Given an IIP space {2, (*,*), } such that
(F,F);>0 VFes and (C,C); =0 VCe%, the functional
pi (F): = exp[ — I(F,F),;] will define a state w; on C*(§,)
such that & = & (L) (L)' CKerw,. Moreover, if
(T,F,T,H), = (F,H); VF,Hes,geG,thenw;, is Ginvar-
iant. On the other hand, if the symplectic transformation §
defines a gauge transformation feKer T, and (ST, F,
ST, H), = (F,H); VF,Hes, geG, then o, is G invariant up
to this gauge transformation £.

Proof: Since w; is continuous on a generating set of
C*(8,) by

w;(6p): =p;(F) = expl[ — i(F, F) Il = "‘SF” VFes ,
we get that p; will define the continuous linear functional w;

(C,C), =0 VYCe¥;
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on C*(J, ). First, we verify that w; is positive on C*(§, ).

Now if we can show that w; is positive on a generating set of
ﬂ+ = ('Z((L)’)+ = C*(‘S/: Yis

then it will be positive on all convex combinations of those

elements and their limits. The generating set of & _ is

Fieh, 4G, Sl < oo].

Notation; 4,,: = 2}_ 4,6y, Fie4; (F,F); = :(F)?, and the
(+); is a prenorm on 4. So we wish to show that
w; (A%A4,)>0 YneZ

[A *4 ’A =3 46,

i=1

w;(434,) = zzk/lj expéB(Fk,Fj)
kJj

—1
4
VA, VF, 4. Note that this is the twisted positivity condi-
tion for p;, which is usually employed to characterize gener-
ating functions of the C *-algebra of the CCR.'® If (- ), were
an ordinary norm on 4, p; would be the generating function
of an ordinary Fock state. The argument of the exponential
in (*%) is
(i/2) B(Fy, F}) — {(F; — F,)}
= (i/2)B(F,.,F;) — \(F, — F,,F, — F});
= (i/2)B(F.,F)) — }[ (F, )+ (1’;),2 —2Re(Fy, F));]
= —WF)? = UF)! +U(F,, F)),,
since B(+,-) = Im(-,),. Hence we only need to show that

exp(F,, F;); is a positive definite kernel on /4 X 4 because 4,
is arbitrary, and so can be redefined as

A=A, exp (= D(F)7.

Now exp §(F,F;); is positive definite iff (Fy,F;); is (cf.
Ref. 23, Theorem 2.2 p. 74), and (-, ), is certainly a positive
definite kernel on £ X 4. Thus w; (£ ) >0. So it follows that
®; is a state because ®;(1l) =w,(d,) =1. To show
2 CKer w,, it suffices by the general theory of Sec. II to
show that w; (8. ) = 1VCe¥, and this follows directly from
(C,C); = 0VCe% which is given. The last two assertions of
the theorem follow from

X exp (F, — F)>0 (*)

w;(ag (6F)) =, (5T,F)
=expl - (T, F, T, F);]
= CXP[ - i(F,F),] =w,;(87),
and likewise
w;(Ba g (6p)) = w(bsr,r) = @;(6F) . n
Hence on the physically relevant part of #, C*(§,, ), we
have obtained a perfectly acceptable G-invariant Dirac state
®; from p;. The structures on the nonphysical part,
F\C*(S ), ), can be altered according to convenience with-
out affecting the physics. In what follows, we discard the
information from the irregular part of p,, i.e., p; (F)VFgx,
by extending the Dirac state w; to a G-invariant Hermitian
functional f; on % . The GNS representation of f; will define
a SW structure according to the general theorems of the

preceding section (e.g., 3.11). To do this we need the follow-
ing lemmas.
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Lemma 4.4: Given C*-algebras &/ C#, and a set
£ C 4, a continuous linear functional on &7, feo/* is ex-
tendible to a continuous linear functional f on % with
Z CKerf iff,

(i) [Z 1N CKerf, and

(ii) 3Ee/ \Ker fsuch that E¢[ LU ]

where
Hgi={4—f(A)[E/FE)]|Aca'}.

If fis Hermitian, then f can be chosen to be Hermitian too.

Proof: Assume 3fc 42 * such that f |« = : fe./* is non-
trivial and . CKer f. Now Ker fis a closed linear space,
and Ker f = Ker fN .o/, hence [ .£ 1N/ C Ker f. Since fis
nontrivial, &/ \Kerf+#@. Choose any Eco/Kerf, then
K g CKer fbecause VAe:

0=f(4) — f(4) = f(4) — fl4) [ AE)/f(E)]

=fd ~fA[E/AE)]).
Hence [.£U% ;1CKerf From f=f|« we see that
Ee¢Ker f, and so E¢[ . U¥ 1.

Conversely, assume Ifcr/*, a set L CH and an
Eco/\Kerf such that [.L )N CKerf, and E¢.L
i = [LUF ¢]. Then we wish to show that 3feZ* such
that .¥ CKerf and f|.o =f Now Ee¢.7 . implies that
£ r#%, and hence the normed linear space Z/.% is
nontrival with the norm defined by ||&,]: = inf{||4

+ L|||Le.Z 5} where £: B> /L g is the canonical map.
Then there is a bijection between the continuous linear func-
tionals on % /.7 5, and the continuous linear functionals on
% with .Z ¢ in their kernels. Since E¢.¥ ;, there are func-
tionals he( % /.Z g ) * for which A(£5) #0, and these can be
normalized to get #(£; ) =f(E). Hence there are function-
als fe#* with £ CKerf and f(E)=f(E). So
FCLyCKerf and ¥y C.L CKerf ie., VAdes:

0=F(4 —f(4)[E/f(E)])

=f(4) — L [ AEY/AE)] =f4) - f(4),
that is, f(4) =f(4) Ydeod,ie, f|o =A.

If fis Hermitian, we restrict our attention to real-valued
functionals on the real linear space corresponding to the self-
adjoint elements of the C *-algebras. The argument above
then carries over in a direct fashion. n

Remark: If fea/* is positive, it may not be possible to
get a positive extension Jfed* with . CKer f. As an exam-
ple to see this, we use Theorem 2.4. That is, specify a con-
straint setin % \ .7 such that the linear space generated by it
has only the trivial intersection {0} with .7, but which does
not satisfy the nontriviality condition of 2.4. Then there are
no states vanishing on the constraints in %.

For a C *-algebra ¥ with a group action a: G—Aut &
on it, denote

(ag —0)F:={a,(F) — F|geG,FeF}.

Then a functional f£%* is G invariant iff[ (ag —¢).F ]
CKerf.

Corollary 4.5: Assume two C *-algebras &/ C #, and an
& -preserving group action a: G—Aut &% . Then all G-invar-
iant Hermitian functional on &/ can be extended to G-invar-
iant Hermitian functionals on & if
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[(a6 —0)B|NA =[(ag —1) ] .

Proof: We wish to apply 4.4. Let f be a nontrivial G-
invariant functional on /. Then VEe.« \Ker f we have
E¢[(ag — 1)U ] CKerf, by arguments above. As-
sume also that the condition (***) of the theorem holds. In
the notation of Lemma 4.4, take . = [(@g — )% ]. Then
[N = [(ag —t)Z] CKerf, and so Lemma 4.4(i)
is satisfied. For Lemma 4.4(ii), note that ¥ C .« VEco/
\Ker f. Since .7 is a closed linear space, we can verify that
[LUF INA =[([L1NF)I)UTF ;]. Hence we see
from E¢[.C UF ] iff E¢[ . UF 1N, that it is only
necessary to show that 3Ee/ \Ker f such that E¢[(ag

— ) UX ). Butaswesaw, all Ee.o/ \ Ker f # will sat-
isfy this. ]

Now for a constrained boson theory as above, we have
#=F = AMZ2),o=C*8,),anda, (§;) = Or,rrand
T/: = 4. To apply the preceding corollary, we need to show
that

€11))

[(ag —1) A(2)]NC*S,) =[(ag —1)C*(,)] -
Since (@, — 1) is linear and continuous,

[(ag —1) A(D)] = [(ag —1)62 ]

and
[(ag —0)C*(,)]1=[(ag —1)5,].

A general element A€[ (@; — )85 ] is the limit of a Cauchy
sequence of the form: {2} ,y/(8r r, — 8¢)};2,. The in-
dex i here has taken into account all relevant elements of
2 X G. Now in the proof of Theorem 4.2, we showed that
given a Cauchy sequence {2 148,, };2, converging to an
element in C*(§, ), that of the two Cauchy sequences ob-
tained from its natural decomposition with respect to 4:

S 485, = alds + 3 Bi6r, PihST,,

the second one converges to zero: {28461 }—0 as j— 0.
Hence if de[(ag —1)6, INC*(8, ), then we decompose
its converging sequence in the same manner. Since T4 = 4,
we get that (61, — O )€A () iff Fe4. So with the decom-
position

> ¥i8r, 5, —85) = 3 @81, 5, — 8p)

n; )
+ zﬁj,-(5rgir, — 57‘,) ’

where P,c4 D T, we get that the limit of ¢, (81,5, —6p,)
isalso4. Hence [ (g — )85 INC*(8,) = [(ag —1)8, ],
and so all G-invariant Hermitian functionals on &,
=C*(6 ), ) can be extended to G-invariant Hermitian func-
tionalson ¥ = A(2).

Proposition 4.6: Given a degenerate boson field as above,
and IIP (-,-); on £ which satisfies (F,F); >0 VFct and
(C,C); =0 VCe%, it will define an SW structure if in addi-
tion (T,F, T, H), = (F,H), VF,Hes, geG, and it will de-

H. Grundling and C. A. Hurst 570



fine a wSW structure if (ST, F, ST, H), = (F.H),
VF,Hcs, geG, where the symplectic transformation S de-
fines a gauge automorphism on % .

Proof* This is simply obtained by constructing w; by 4.3,
extending it to f; by the remarks following 4.5, and applying
3.11 to f; for a SW structure. (Putxo=1,J=%,F=1.)
For a wSW structure, the extension lemma above adapts
easily, and we obtain the result on application of 3.17. K

It is possible to define IIP’s (-,*); by employing the
operators J,€S(2,B) which satisfy J; = — I. This is done
as follows: (F,H),: = B(F,J.H) 4 iB(F,H). By an exten-
sion of the usual nomenclature, J; is called a complex struc-
ture.

The first example of an application of the theory above
that we present is that of a one-dimensional scalar boson
constrained to live only in a periodic set of intervals. Hence
we make the following choices:

2 = #R), B(FG)= f (F\G, — F,G)) ,

F = A(2),

where F = (F,F,). In order to define the constraint set ¢,
define the intervals I,:=[2nb,(2n+ 1)b]CR, beR™*
fixed, neZ, I: = U,,_I, and the set

M = {fe.# (R)|3AneZ such that supp fCI,}.

Then the constraint set is defined as € = (0,.# ), so that one
finds 4 = (#*,.7 (R)), where

M= {fe (R)|supp fal, YneZ*}.

Define physical transformations as the jumps between ad-
missible intervals, but to the same relative position in the
new interval:

d F: = (F,(x + 2kb), F,(x + 2kb)), keZ.

These transformations are clearly symplectic, preserve €,
and hence are physical. In order to demonstrate the exis-
tence of an SW structure for this model, we apply Proposi-
tion 4.6, i.e., we wish to find a complex structure J which
satisfies the conditions:

B(FJG) = B(GJF) VF,Ge2; J?= —1,
B(FJC)=0VFesr VYCe%¥; B(FJF)»>0 VFes,
B(FJF) = B(d, FJd, F) VFe2 .
With the definition
1, if xel;
P(x):=
) {o, if x¢1,
the complex structure
iP P— 1)

7= (1 —P —iP
will satisfy all the requirements. As the verification is
straightforward, we leave these to the reader.

As a final example, we present electromagnetism in the
Landau gauge. Rideau® has already constructed a wSW
structure in the heuristic framework, and the algebraic part
of the theory has been cast into exact C *-algebraic language
by Carey and Hurst.'® Very little additional work is required

to fit it into the present framework, apart from identifying
the corresponding concepts. We present some of the details.
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Asin Ref. 19, the field algebra .| for the Landau gauge
is set up over momentum space. Let #: = {C*-valued, C* -
functions of fast decrease on R*}. The Fermi symplectic
form is

BUig)= %8 (D15, ~ 5],
where 5% (k?): =8(ky — |k |)/2|k]. Let
C,:={keR*k?=0, k,>0}
be the positive frequency light cone without the origin. In
order to make B nondegenerate on ., one normally factors

out the off-C, parts of the elements of .%’. The Landau sym-
plectic form is defined as

B, (f£,.f):=B(ZfZf"),
where

k, [k (k) 4 ]
Z ky:=f, (k —“—[ —— (K, (K -
(Zf), (k) f,‘()+2k0 T c?ko( 7. (k)
This corresponds to the usual heuristic expression.?* Clearly
due to the last term, B, involves more of the Cauchy data

than does B. In order to make B nondegenerate, define

@: fopl (k): = (Zf),|C. .

Then the test function space on which we choose to set up the
C *-algebraofthe CCR’sis 2 = #/Ker @,and B isnonde-
generate on & . Hence take &, : = A(2,B ) as in Manu-
ceau.”’ As smearing is done as usual, the elements
[ (k) =k, f(k)es will correspond to d* A, (x), and so
since one finds that k, f(k)eKer ¢  Vf(k), the transversa-
lity condition d# 4, (x) = 0 holds as an operator condition
on %, . This is one example of how to treat an algebraic
condition (cf. Sec. II).

In order to define a C *-degenerate system in .% ; , note
that in Ref. 2 the Maxwell equations are imposed as state
conditions. Hence we would prefer our specified constraint
set to contain these. The set of test functions

{(k b — k38,.)f, (k)| f£5}
will correspond to F,,,* (x) after smearing. Now
Z(k, k¥ —k?5,,)f, (k)|C.

= —ZK%,|C, =k, kf,|C,.

Hence, following the literature, we take as constraints all
equivalence classes of functions fe. such that Zf|C_
= @7 (k) = k,£(k), where k, = |k |. Call this set %. Then
the observables & will be generated by

fo={fE2|B (£, f)=0 Yfe¥},

B (f.f") = B(Zf, k, £(K))

d3k f =
— Kk*E(k)] =0,
c. 2] PH O]

for all functions £(k), and this will be the case if
@L (k)k* =0, ko = |k |. Take the set of equivalence classes
of such f’s to be 4. By the definition of Z, fes iff
k. f*|C, =0.Clearly ¢ C4. InRef. 2 Strocchi and Wight-
man required that F,,,€Z. Let f,,, be an antisymmetric ten-

sor function. Then 2k, f** corresponds to F*¥, ie.,
F(f)=AQk,f*"). Then (Z 2k, f**)*k, |C, = Ofollows
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easily, which verifies F, €. Through the definition of Z
one also gets that if f€¢, then f, (k) =k,y(k)|C, for a
specific y(k), related to £(k).

Now that % and 4 are specified, and contain the right
objects, the Poincaré transformations still need to be de-
fined. These are given on 2 as

(U N (k) = e“ “Af(AT k),

where g = L(A,a) is in the orthochronous Poincaré group.
These transformations translate on the ¢’s using

(U9, (k) = p P (k) 10>

o k
Uéwi(’_‘)=e“"[1\,¢ Pl (A lk)_2|1§|

of de d —1 . —1
X [A,- (——) (A7'k) + iag’ (A k) } ,
dk; —

where k, = |k|, and o (k): = k* @/ (k) = k*f, (k). One
easily checks that U, respects Ker @, hence is defined on 2,
and that it is symplectic. Moreover, if ¢/ (k) = k,£(k),
then @ J/(k) =k, e“*E(A'k), i.e., U, preserves €, i.e.,
a, €Y, where a, is the automorphism on %, defined by U,.

Now in order to find the structures according to Propo-
sition 4.6, it is simple just to adapt the existing structures in
Ref. 24 to this context. The rigorous existence of a wSW
structure for the Landau gauge will be demonstrated if we
can exhibit an indefinite inner product (-,-) on £ such that
(TeUf, TgU f'Y = £ f') VYf,f'€2,where Ty isasym-
plectic transformation defining a gauge transformation 3,
and

(fC)=0 Vfeh, Ce%; (£)>0 Vfer.

Such an inner product is given by**

n_ [d’k e (k) o (k)
(f;f)— —Vf‘—l['—f“(l_c)f U_C)'———z'l-l_(—li—— s

which is non-negative if f=f" and k*f, |C, = 0 because
spacelike photons are not admitted into the theory, and it is
zero if k*£, |C, =0and f, (k) =k, £(k). Now (,*) can
be derived from the Poincaré invariant inner product
— §(d’k /\k ) £, (k) f'*(k) by the gauge transformation
fu(R)Y £, (k) + k k*f, (k)/4k] .
As the invariant inner product is evaluated on C , this is not
required in the gauge transformation. One easily verifies that
the gauge transformation is symplectic, and its associated
automorphism on % is in Ker T,. Hence (-,-) is Poincaré
invariant up to this gauge transformation. So, on considering
the relevant expressions above, we find that we have shown
the existence of a wSW structure.
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V. CONCLUDING REMARKS

While the structure of IIP theories are modelled on the
Gupta-Bleuler version of electromagnetism, the current
theory does not as yet have enough machinery to deal with it.
The reason for this is that the constraints y used in Gupta—
Bleuler electromagnetism are non-Hermitian, and it is there-
fore not possible to define elements in the linear field algebra
corresponding to exp(idy), neither can we use the Hermi-
tian parts of y. On the other hand, the logical choice
exp(idy*y) for the constraint is nonlinear in its argument,
and hence cannot be defined as an element in the linear field
algebra. It is therefore necessary to develop a general theory
of outer constraints, i.e., the constraints imposed are not
contained in the field algebra in contrast to the situation
above. This problem has already been solved separately, and
will be submitted for publication soon. The theory above
shifted neatly into place, and provided an acceptable C *-
field theory of the Gupta—~Bleuler situation.
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In geometric quantization it is well known that, if fis an observable and F a polarization on a
symplectic manifold (M,®), then the condition “X; leaves F invariant” (where X, denotes the
Hamiltonian vector field associated to f) is sufficient to guarantee that one does not have to
compute the BKS kernel explicitly in order to know the corresponding quantum operator. It is
shown in this paper that this condition on f can be weakened to “X, leaves F + F'
invariant”and the corresponding quantum operator is then given implicitly by formula (4.8);
in particular when Fis a (positive) Kahler polarization, all observables can be quantized
“directly”” and moreover, an “explicit” formula for the corresponding quantum operator is
derived (Theorem 5.8). Applying this to the phase space R*" one obtains a quantization
prescription which resembles the normal ordering of operators in quantum field theory. When
we translate this prescription to the usual position representation of quantum mechanics, the
result is (among others) that the operator associated to a classical potential is multiplication
by a function which is essentially the convolution of the potential function with a Gaussian
function of width #, instead of multiplication by the potential itself.

I. PRELIMINARIES

In Secs. I-III we give a brief summary of geometric
quantization, mainly to fix the notation; for more details the
reader is referred to Refs. 1-3.

Suppose (M,w) is a symplectic manifold; denote by X,
the Hamiltonian vector field associated to the function f:
M- R, defined by iy.@ + df = 0. Let L » M be the prequan-
tization line bundle over M with connection V and compati-
ble Hermitian form ( , ) such that curv(V) = w/% [we
suppose that (M,w) satisfies the quantization condition].

Let F be a (positive) polarization, i.e., F is a complex
distribution of constant complex dimension 7 = 1 dim (M)
satisfying

(i) 3keN, 0<k<n: dimg (FNFY) =k

complex conjugation),

(ii) VmeM there exists a neighborhood U such that

(a) 3 2.2 U-C: X,.,....X, span Fon U, and
{Zz} =0 ({, } denotes the Poisson

(* denotes

bracket),
(b) Iw',..w" U-C: X,,....X . span FNFT
on U,

(iii) V veF,, :i-o(v,0") >0 (positivity).

If Fis a polarization then there exists by definition a real
foliation D such that D © = FNF1; it follows that there exists
another real foliation E such that E€=F+ F1,
E'=D, D' =E (orthoplement with respect to w). We
suppose that the quotient space M /D admits a manifold
structure such that the canonical projectionm: M —M /Disa
submersion. The image 7, E in M /D is a foliation of even
dimension and F induces a complex structure on the leaves
of 7, E such that the following description holds: X, eF¢>z is
a function on M /D, holomorphic on the leaves of 7, E.

Define R © to be the principal GL(#,C) bundle over M
of all F frames and suppose there exists a principal ML (n,C)
bundle R ~¥ over M and a 2-1 bundle covering pr of R =%
over R, where ML(n,C) is the metalinear group with
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projection p: ML(n,C)-GL(n,C); we denote by
A: ML(n,C) - C the well-defined map which represents the
“square root of det,” i.e., A(g) = + V/det(p(g)). Under the
assumption that R ~* exists, B ~* will denote the bundle of
( — 1)-F-forms, which is the C-line bundle over M associat-
ed with the principal bundle R ~* by the representation A.
The sections v of B ~F can be identified with functions v on
R ~F with the transformation property

v(a-g) =v(a)-A(g) ' = +v(a) (Vdetp(g))) ™,

for acR ~*, geML(n,C), p(g)eGL(n,C).
(1.1)
On B ~* there exists a partial (i.e., defined for vectors veF
only) flat connection V, and with these ingredients we define
the quantum bundle (QB) with partial connection V by

QB=LgB~F, “V=V|, +V|, "

B~F:
By an F-constant section ¥ of QB we will mean a section
which satisfies VéeF: V,¥ = 0; the same convention holds
for sections of L and B ~7,

Since the Hilbert space constructed by geometric quan-
tization consists of F-constant sections of QB, we will inves-
tigate these sections in more detail; in Sec. III the Hilbert
space and the inner product will be defined more precisely.

By using refinements of covers one can always construct
a cover {U, |aed} of M satisfying the following conditions.

(i) It trivializes the bundles, L, R ©, R ~*, B ~Fand QB
simultaneously.

(i) On U, there exists a symplectic potential
¢,: d¥, = w and the connection V on L is given by

Ves, =85, — (i/A)3,(€)s,, (1.2)
where the function s, represents a local section of L over U,
(this follows from the construction of L; the transition func-
tions of L are related to the exact one-forms 9, — dg).

(iii) There exist .. U, -R and
¥+ .z U,-C such that X. »Xx span D,
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XoyeooX js X s 150X p=X,0..X . span F and the frame
(X,,...X ) corresponds to the identity €GL(#,C) in the
local trivialization of R ¥ (the existence of these functions
follows from the definition of a polarization).
The elements of R ~ are called metaframes, so to each F
frame (§,,...£,) correspond two metaframes called
(&1,-5€, )~ (remember that pr: R ~¥—~ R Fis a 2-1 cover-
ing). Whenever we need to define exactly which metaframe
we have to use, we will specify it; in particular the metaframe
(X,:,....X ,)~ represents the identity in ML(n,C) in the
same way as pr((X,,....X .) )= (X,,....X ) represents the
identity in GL(#n,C) [see condition (iii)].

We will call a cover {U, |aed} a nice cover if it also
satisfies a final condition.

(iv) Foreach ae4 there exists a local F-constant section
¥ of QB over U, which is nowhere zero on U, .

Remark: If {U, |aeA} is a cover satisfying conditions
(i)-(iii) then the local trivializations v* of B ~¥, defined by

VAdeML (1,0)) = 1oV ((X,1,0 X)) =1, (1.3)

are F-constant sections, hence the search for F-constant lo-
cal sections of QB can be reduced to the search for F-con-
stant local sections of L.

It is well known that two F-constant sections Wand y of
QB differ locally by a function on M /D (better: a function
constant on the leaves of D) which is holomorphic on the
leaves of 7, E. Hence if F is a positive Kdhler polarization
(i.e.,D = {0}k =0)thenM /D =M, 7 _E = E,and Fin-
duces a complex structure on M turning it into a Kédhler
manifold. The existence of a nice cover with local F-constant
sections of QB tells us that QB is a holomorphic line bundle
(i.e., on U, NU, the ¥* and ¥ differ by the transition func-
tion which is holomorphic and nonvanishing since ¥ and
¥# are both F constant and nonvanishing). It follows that
the Hilbert space (which we will define in Sec. I1I) consists
of holomorphic sections of QB.

In the general case (F not Kihler) one can sometimes
construct a C-line bundle over M /D which is holomorphic
on the leaves of 7, E, but success is not guaranteed (e.g., the
circular polarization on R2\ {0}).

Il. THE BKS KERNEL

In this section we will give a heuristic definition of the
BKS kernel (named after Blattner, Kostant, and Stern-
berg); for a more thorough definition using the metaplectic
bundle we refer the reader to Ref. 2.

Suppose Fand F' are two polarizations for which there
exist two real foliations (of constant dimension) D * and
E " satisfying

(i) F'NF'=D"E

(ii) FT4+F =E"S,

(iii) M/D"” has a

m M-M /D" is a submersion.
Then E N =D ", D" = E * and one can define a pairing
(i.e., a sesquilinear form) (¥,¥’) between F-constant sec-
tions ¥ of QB = L & B ~F and F’-constant sections ¥’ of

2.1)

manifold structure and
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QB =L&B~ by

ww) = |

M/D"

(W,¥),

where (¥,¥’) is a density (i.e., a complex measure) on
M/D" defined by the following process. Suppose
¥ = 5 @ v is a local representation of ¥, s’ a section of
L, v a section of B ~¥ and v a section of B ~*". Choose vec-
tO1S & yeeslns € fop 1yl s Erseest €T, M © such that

(&1p-vEx) span D7,

(€15--€,) span F and (£y,...80 6 ko 100 L) span F',
(Ervrf i€ sl LE by e hotisnenty) span T, M€,
(2.2)

then ((£)o)=my (E1 4 s hb by trmnl fotipnty) i8S a
(complex) frame at 7(m)e M /D A and we define the den-
sity (W,9') at w(m) on the frame (({),) by

(P, (7 (m)),((£)o)
= (55) (M) W (€)'

X ‘VI((gl"--»gk:é— I’c + 1 7""§ :: )~)

X Li(E ernti) (2.3)

where Li=( — 1)""~VY72.5"/n! is the Liouville volume-
form on M.

An equivalent definition using an arbitrary frame {({))
at w(m) is given by

(W, ¥") (r(m),((D)))
= (5,5 ) (M) W(& o) )
X 'V'((§1,~--,§k,§f<+ 1 "'-’§; )~)

.....

X |Li(E by (S, (2.4)
with 7 '((£)) an arbitrary lift of the frame ((£)) to T, M ©.

Using the fact that ¥ is F” constant one can prove that
the right-hand side of (2.3) and (2.4) is independent of the
choice of m in the fiber above 7(m), and these formulas
define a density on M /D ", except for two facts: (a) we have
not specified which metaframe we have to choose (there al-
ways exist two possible choices which differ by a minus sign
when v, is applied), and (b) we do not know which branch
of the (complex) square root we have to use. In general one
needs the metaplectic bundle to answer these questions;
however, in the cases we are interested in one does not need
the metaplectic bundle (see also Refs. 4 and 5).

1ll. THE INNER PRODUCT AND THE HILBERT SPACE

If F = F' is a positive polarization then one can choose
& =¢,j=k+ 1,.,n,and sodet((ih) "'w(£],£ 1)) is posi-
tive [use that veD “<w(vh,v) = 0] hence we can choose
everywhere the positive square root without running into
trouble. Furthermore, if we choose a nice cover, then each F-
constant section ¥ of QB admits a local representation
¥ =5, v [v* defined by (1.3)] and the 2n — k vectors
Xt yeeesX josX v 15000y X iy X g4 150-.,X o satisfy the first two con-
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ditions of (2.2), so on w(U, ) we find for two F-constant
sections ¥ and ¥’ of QB, using (2.4):

(W,¥) (m(m),((5)))
= (8,55 ) (M) - v((X X)) ") v (X ,X.)7)

.....

.....

X |Li(X 1o X sy ((E))]- (3.1)

This formula defines a density for each pair of F-con-
stant sections V,¥' of QB which is positive if ¥ = V', de-
pends linearly on ¥’ and antilinearly on ¥, hence we can
define a Hilbert space H as the completion of the pre-Hilbert
space (PH) defined by

PH = [\I/: M —QB|V¥is F constant and (P,¥) < ],
M/D
with inner product (¥,¥’) =f (P, ¥). (3.2)
M/D

Of course, if we wish to obtain results it remains to show in
each case that H {0}, a fact which sometimes leads us to
consider distribution valued sections of QB, instead of C
sections (e.g., on R*\{0} with the circular polarization)
(see Refs. 2, 6, and 7).

IV. QUANTIZABLE OBSERVABLES

If fis an observable, i.e., f: M—R, then a quantization
procedure should associate to f a self-adjoint operator f on
the Hilbert space H. In geometric quantization the general
procedure is given below, although it does not guarantee that
the result is a self-adjoint operator. However, it turns out
that in almost all interesting examples the result is a self-
adjoint operator. To construct f one proceeds as follows: let
p. be the flow on M associated to the Hamiltonian vector
field X/, define the polarization F(¢) by F(¢) =p _,.F and
the bundle QB(¢) by QB(#) = L ® B ~*”. Then there exists
an associated map on sections of L (called p} by abuse of
notation) and a map (called p,,, also abuse of notation) p . :
R ~F— R ~F which are both defined in a “canonical” way
[e.g,p,4: R ~F=R ~F is the lift to the metalinear bundles
of a map which is the restriction to R ~Fand R ~F”, respec-
tively, of the flow on the bundle of all » frames of M (of
which R ~F and R ~F” are subbundles) associated to the
flow p, on M]. If s is an arbitrary section of L (with local
representation s, with respect to a nice cover) and v an arbi-
trary section of B ~* then

(prs)y (m)
=sa(p,m)'exp((iﬁ)“J (P (Xp) —f)(psm)dS),
(V]
4.1)
(I ) =v((p,(£))7),
(p,+ (£))~ defined by continuity in £. (4.2)

The map p*: QB-QB(z) defined by pF(sev)
= ( p¥*s) @ ( p*v) now obviously has the property that if ¥
is a F-constant section of QB then p*y is a F(¢)-constant
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section of QB(?). Finally we assume that for all r(0,¢)
(e>0) Fand F(?) satisfy the conditions (2.1) for a pair of
polarizations. If we denote the pairing between QB and
QB(?) by { , )rr(, and the inner productin Hby ( , )y
then the operator f is defined by the equation

V) y = lif(r)x — i %(X,p;"\l’)pﬂ,,, Y. YeH. (4.3)

Remark: It is not at all evident that this formula defines
an operator f, and indeed there exist examples in which this
“definition” does not yield a result, for instance in cases in
which im(y, p*¥) g.r(,, is not equal to (y,¥) 4.

In general one has to know the specific form of f to
compute (4.3); however there exist conditions on f for which
one can simplify (4.3) and in which one can obtain an explic-
it expression for the operator f. Two of such conditions are
well known: (a) if fis constant along F, i.e., [ X,,F ] = {0},
then fis multiplication by f; (b) if X, leaves Finvariant, i.e.,

[X,.F ] CF, then fis represented by a first-order differential
operator.

In this paper we will show that there is an even weaker
condition for which we can compute f explicitly: the condi-
tion [X,,F'+ F]CF'+ F. To compute (4.3) with this
condition on fwe proceed as follows: first observe that, since
fis real and F a polarization, we also have [X,D |CD,
which implies that F and F(¢) satisfy conditions (2.1) with
D" =D and E" = E; it follows that we may replace in
(4.3) the “lim t10d /dt ” by “d /dt |, _,.” Now we choose a
nice cover and two arbitrary elements W and ¥’ of H, and we
perform the calculations on a local chart U, where we have

V=581, ¥ =515 [see(1.3)],
(¥, p?¥) (m(m),((5))
= (&, p¥s) (m) V(X ;,.X ) ")
X (P, 1P _ a (X))

3] S10. . g% b ((9))]N
where the lift (X ,,p . (X))~ to R ~F® of the frame
(X.;,p_,« (X)) is chosen in such a way that it depends
continously on ¢ and reduces to the well defined metaframe
(X ;,X.)~ att = 0. Using 4.2 and the definition of v, (1.3)
we can simplify this expression to

(W', p#¥) (m(m),((5)))
= (s"pFs) (m) v((p,a (X ;),X)7)
XlLi(Xrl,...,X'}(,ﬂ'; 1((;)))'.

We now define functions g;, and b;, by

k
[XX.]= Y a.X., 1<j<k
u=1

k n
[X-X,]= 3 X+ Y a.X,
u=1 u=k+1

+ z b X, k<j<n.

s=k41

(44)
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If we use the transformation property of ( — 1)-F-forms
(1.1), we get
d

1 k
—_— ‘Va X L)) =— E Gy
dtl.—o (CPuw (X,)X07) 2 ,~=1a”

@
dt t=0 o T
1 & )
=(— a.;
(2 j=;+l v

Combining these results with (4.1) and (1.2) we find

4
dtli—o

(em (gred S o

j=1

V', pr¥) (m(m),(($H)

.....

24| E10. AT, % s [ (2 )1 (4.5)

Comparing this formula with the inner product (3.1) we
might say
. d )
—ifi— (¥, pr¥) (7(m),((5)))
dt t=0

= (W',L¥) (m(m) ((£)))

or

—E 2] Wt = (VL) (46)
dtii—o

where the section L,V of QB is defined by the local expres-
sion

L,(s®v*) = ( — iV s + (f— —lz—iﬁ zn: aﬂ)s) ® V7.
= 4.7

By construction the right-hand side of (4.5) is indepen-
dent of m as long as w(m) remains fixed, so it is a well de-
fined density at 7(m)eM /D. However the section L,V of
QB need not be an F-constant section of QB! So if we assume
that it is allowed to change differentiation and integration in
(4.3) (and we do!) then we find

(V' ,f¥) =f (W', L¥V) = (V,LY), (4.8)

M/D
but nevertheless we cannot conclude that f W = LWV, be-
cause we do not know whether LW is F constant or not.
What we are looking for is a way to construct the “F-con-
stant part” out of L, V:L,¥V determines a linear operator on
H by (4.8) so (if it is continuous) it determines an element
f ¥ of H. In the next section we will show how to construct
this element out of L ¥ by means of a kernel representation.

V. A GENERALIZED BERGMAN KERNEL

In this section we will assume that Fis a positive Kahler
polarization and that there exists a nice cover; in Sec. I we
have seen that, under these assumptions, QB is a holomor-
phic line bundle over the complex manifold M, trivialized by
the local sections W* associated to the nice cover. Now if y is
any section of QB, we denote by y,:U, —C the local repre-

576 J. Math. Phys., Vol. 28, No. 3, March 1987

sentation of y with respect to the trivialization ¥4, i.e.,
X1y, (m) =y, (m) ¥ (m) (5.1)

(N.B. the local representation carries a subscript a whereas
the trivializing section W carries a superscript); moreover y
is a F-constant section if and only if y, are holomorphic
functions.

To each pair of F-constant section y and y’ we associat-
ed in Sec. III a density on M /D=M (because F is Kéhler)
and in particular (W*,¥®) is a (local) density on M. Letp,,
be a partition of unity subordinated to our nice cover, then
we can define for any two sections y and y* of QB (holomor-
phic or not) a density (y,y’) by

(x' Y (m) =3 po (m) xo (M)t y; (m): (¥3¥%) (m),
(5.2)

which coincides with definition (3.1) if y and y’ are F con-
stant because on U,: (¥ = We ¥Yxe Y9
=y} y. - (¥*,¥") and because X, p, = 1. It follows that
we can construct a Hilbert space L 2(M,F) defined as the
completion of the pre-Hilbert space

[)(: M-QB f (oy) < oo],
M
with inner product
(vx') = J (x")
M
and associated norm

Il = v/ (eax)-

If we introduce the measure 1, on U, defined by
du, =p,(¥,,¥,),
then this pre-Hilbert space is defined equivalently by

ZL Yol dita < oo],

(5.3)

(5.4)

(5.5)

[,y: M-QB

with inner product

x'y=3 L XhoXe g

By construction the pre-Hilbert space PH defined in
(3.2) is a subspace of L *(M,F), hence H as defined in Sec.
III (the completion of PH) is the closure of PHin L (M, F).
What we will show first is that PH is a closed subspace (see
also Ref. 7,§5.7), hence H ~ PH which we will also denote by
L%(M,F),,, suggested by the fact that F-constant sections
are just the holomorphic sections. The main ingredient to
prove this claim (and others) is the following lemma.

Lemma 5.1: If y is an F-constant section in PH then for
any U, for any compact subset K of U, there exists a posi-
tive constant ¢ = ¢(K) such that, for all mek,

[¥a (m) [<e(K) -l |l-

Proof: we denote by B(m,e) the open ball of radius €
around m in a local chart contained in C". Because K is com-
pact there exists a § > 0: VmeK: B(m,28) CU,; since y,, is
holomorphic on U, (“U, CC™) if follows by the mean val-
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ue theorem and the Cauchy-Schwartz inequality that

[Xa () ?<const(8)- a (m)[*-d2 O,

B(m,5)
where 4 " denotes the Lebesgue measure on C". Now
(¥,¥9) is a continuous density on U, which is nowhere
zero, hence there exists a constant ¢’ depending on the com-
pact subset K’ defined by

K' = closure( U B(m,5))C u,,
meK

such that
dA e (P, W)
hence

on K,

f IXa (m’)|2d/l (2n)
B(m,8)
< J X (') [2- (%99
B(m,5)

=" f (xx)<c’ f (x) =< lxll*
B(m,8) M

From these inequalities the lemma follows because const(5)
and ¢’ are postive constants depending only on the compact
subset K. Q.E.D

Using this lemma, the proof of the theorem stated below
is a direct copy of the case of complex functions on a domain
in C™: a Cauchy sequence in L ?(M,F),,, implies pointwise
convergence, uniform on compacta.

Theorem 5.2: (1) PH is a closed subspace of L *(M,F).
(2) For any meU, the map PH=H=L?*(MF),,
-G,y — Y. (m) is a continuous linear functional.

Corollary 5.3: For each meU, there exists a unique F-
constant section «,, ,,, of QB in L H(M,F) ol » Such that for
each yeL *(M,F),,:

Xa(m) = <K(a,m)’l’>'

Definition: The generalized Bergman kernel
K . p (m,m’) is defined by
K5 (mm') =kmg(m)f [see(5.1)]. (5.6)

Corollary 5.4: For yeL *(M,F),,:

Xalm) =3 [ Ka mamy iy om' ity (.
B JUB

Proposition 5.5: If (¢, ) is a complete orthonormal set in
L*(M,F),, then

S @ (m)@s (m') T converges to K g, (mm’).
J

Proof: The first step is to prove that for fixed meU, the
series (@, (m)) is a square-summable series, ie.,
(¢ja (m))el . Therefore let (a;)el” with |[(a;)|]* = Z;|q;]%,
then by the Cauchy-Schwartz theorem
N

> ajqua(m)'.

N
> |@ja (m)|* = supremum
4 P

i=1 (apfi<1

If we associate to (a; )€l 2 the element

N
\Ij = Z a]¢jeL Z(M,F)hol

=1
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then ||W|I?<|[(a,)||? and so we have
7

N
Y @ (m)|*<supremum |¥,, (m)|<const,
i=1 iwl<1

where the last inequality follows from Lemma 5.1. So the
series of partial sums is bounded from above hence
(¢« (m))el . Applying the Riesz-Fisher theorem it follows
that y 4., » defined by

Xam = Z P (m)'@j’
7

is in L >(M,F),,, and we claim that ¥ o ., = K(4,m, . There-
fore choose any yeL ?(M,F),,, then

X =2 (@)

[because (@;) is complete orthonormal |

and so [because point evaluation is continuous (Theorem
5.2)1

Xa (M) = 3@, 1000 (M) = Y@ (m)ig;x)
J J

= <Z P (m)*tpj,x) = Xeam X)-
J

By uniqueness of k.., the equality follows, whence we have

K(a,ﬁ) (m,m') = K(a,m) B(r’l')T

=X(a,M)ﬁ(m')t = z ¢ja (m)¢)jﬁ (ml)T'
’ QED

Corollary 5.6: K, g, (m,m’) is holomorphic in m and
K(a.ﬂ) (m’ml)T = K( B.a) (m,’m)'

Having defined the generalized Bergman kernel, we can
proceed with the main story. An element yeL *(M,F) defines
a continuous linear functional on L ?(M,F),, by means of
the inner product: WeL*(M,F),, — (y,¥)eC. Since
L *(M,F),, is a Hilbert space this linear functional can be
represented by an element y,,€L?(M,F),, defined by
(x,¥) = (¥no-¥) where the inner product on the left is in
L%(M,F) and on the right in L >*(M,F),.

One can easily show that the map y-—yuq,
L?*(M,F)—L*M,F),, is the orthogonal projection onto
the closed subspace L *(M,F),, and we will show in Propo-
sition (5.7) that this projection can be represented by an
integral formula using the kernel X, 5, . The reason why we
call this kernel a generalized Bergman kernel is that if one
replaces L >(M,F) by the Hilbert space of square integrable
functions on a domain G in C* and L *(M,F),,, by the sub-
space of holomorphic functions then the same reasoning as
above applies; the associated projection admits a kernel rep-
resentation which is the (usual) Bergman kernel representa-
tion.

Proposition 5.7:

Xnota (M) =2f Kiop (mm') yg(m')-dug(m’).
B JUB

Proof: y — yna Iis orthogonal to LZ(M,F),,, hence

(Kiamy X)) = (K(amy Xnot) = Xnora (M), where the last
equality follows from Corollary 5.3. Q.E.D.
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With this proposition we can solve the question posed at
the end of Sec. IV concerning the construction of operators
in geometric quantization.

Theorem 5.8: Let (M,w) be a symplectic manifold, F a
positive Kihler polarization and suppose there exists a nice
cover (see Sec. I). If fis any observable, i.e., : M—R, then
the associated operator f on H = L >(M,F),, is defined by

Dom(f) = {yeL *(M,F),q |LxeL *(M,P},

xeDom(f) =y = (Ly¥ ) o

where Ly is defined by (4.7) and the holomorphic part
(LY )na by Proposition 5.7.

VI. APPLICATION |

In this example we consider the symplectic manifold
M=R w= dp Adg and the polarization F= C-(d/dp
+1i0/dq) = CX,, , ,,. In this case all bundles, L, R, R ~F,
B ~*, and hence QB are trivial so we can identify sections of
these bundles with functions on M. For L the connection V is
then given by

Ves = E&s — (i/H)3(6)s,
where we choose the symplectic potential ¢ =1(pdg
—gqdp); the compatible Hermitian form is given by
(5,8 ) (m) = s(m)¥-s'(m). The cover consisting of the one
chart R? is a nice cover because the section ¥° defined by

¥o(p.g) = exp( — (p* + ¢°)/ (4%))
is F constant and nonvanishing. The complex structure on M
induced by the positive Kdhler polarization F is such that
z = p + ig is a holomorphic coordinate.

According to Sec. V we have to compute the density
(¥°,¥°) in order to know the inner product in L *(M,F) and
in L*(M,F),,; using formula (3.1) (with X, , ;. spanning
F) we find

(¥O,9°) = v/ (2/h)exp( — z'z/(2#))dp dg.
Consequently if we identify a section y of QB with the func-
tion g = y, (i.e., y = g¥°), the Hilbert space L *(M,F) is
given by

1/2
LAMF) = { cw:’( ) figu)lz

)dpdq<oo]

Xexp( 2%

N i 172 f ( )

(g.8") (h ) f g(2)'g'(z)exp 27 dp dg,
L?*(M,F),,, is the subspace of holomorphic functions g;
since L ?(M,F),, = H describes (according to geometric
quantization) the quantum mechanical system we find here
the well known Bargmann representation, mostly used for
the harmonic oscillator.

The elements g, (z) = (2k) ~V4(n!)~V/2(2#) — "z
form an orthonormal complete system hence [Proposition
(5.5)] the Bergman kernel for this Hilbert space is given by

Kwz) =3 g, (w)le () = (2) 71" e"p( (2%) )

so Corollary 5.4 gives the well known reproducing formula
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for holomorphic functions on C:

172
k
g(w) = ( ) f (w,Z)g(Z)eXP( o)

=;,—1f (_z_ﬂiﬂ) ,
g(z)exp 3 dp pq

Now let f'be any observable and let geH then

)dp rq

(6.1)

a3 o a)
X, = L9 _ ¥
r l( a2t 9z 3z 3zt
2 2
o 9 a’f )
X,X,] =2 x,+2L x,),
[ '((az*)2 * T zor

so when we calculate formula (4.7) we get
of dg t 9 9
Lg% = (Zﬁ (
78 azt dz /= c?z* az oz

Applying Theorem 5.8 we find the following prescription to
compute the operator f (using partial integration, omitting
¥o).

Prescription I: In the Bergmann representation the oper-
ator f associated to an observable f'is given by

(£8) (w)
—h ___ZT(“"Z))( —ﬁ———azf)g dp dg.
h f exP( (2%) pare) il
(6.2)

We now notice that for “any” holomorphic function k()
the following formula holds:

T(w —
ht exp(—z—(—(u-;—;)i)—)sz(z)dp dq

- Hw—2) dk dk
=h lf (i———)zﬁ dp dg = 24 .
xp (24) dz 7 dz(w)

Combining this with the previous formula we get a prescrip-
tion how to obtain the quantum mechanical operators asso-
ciated to polynomial observables (see also Ref. 7, §6.3.4).

Prescription II: if fis a polynomial observable, then the
operator f in the Bargmann representation is given by the
following process.

(a) Compute (f— #3>f/(3zdz")) as polynomial in z
and z'.

(b) Write in this polynomial z* to the left of z.

(c) Replace each z' by 2% d /dz.

Examples:

() f= %(pz + ) =f= %z-zf

2
=f—*# o f =LzT-z—iﬁ,
dzadzt 2 2
f=i-(2ﬁ d)z——l-ﬁ ﬁ(z L 1)
2 dz dz
1, 4 P4+ utz4 224
2 = — = —f = s
@ f 2p 4 9z 3zt 8
f= ﬁzd ﬁzi+22+_!_ﬁ

2 d7 Ty dz 8
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_1 2
(3)f—24

% _ — (2?2242 +28)
9z dz' 8

1 ,,d* 1 d 7 1
f 2ﬁ2dzz+2ﬁzdz s T

Remark 1: The connection between these operators and
their counterpart in the usual Schrodinger representation
(H = square-integrable functions of ¢) will be discussed in
the third application.

Remark 2: The eigenfunctions of the Hamiltonian
H=1(p*+¢*) are the functions g, defined by
g, (2) = (2h) ~V4(al) "2 (2%1)) ~™%2" with eigenvalues
(n+1) #i(n=0,1,.2,...). It follows that the operator z (mul-
tiplication by z) is a creation operator, and the operator
z" = 2# d /dz an annihilation operator. With this interpreta-
tion our prescription to compute f can be stated as follows:
compute f — # d%f/(J9z dz") in terms of creation and anni-
hilation observables z and z' and put all annihilation opera-
tors to the left of the creation operators. Stated in these
words, this prescription resembles the normal ordering used
in quantum field theory, where—contrary to this case—the
annihilation operators are put to the right of the creation
operators.

Remark 3: In the above description of our system we
have used the coordinates p (momentum) and g (position)
and we have introduced a complex coordinate z = p + ig.
However, this has physically no meaning because p and g do
not have the same dimension. If we wish to obtain a physical-
ly correct description of our system we can introduce con-
stants & and 8 with dimensions momentum (resp. position),
and then define a new complex coordinate 2’ = p/a + ig/p,
which has no dimension. The changes in our prescription
due to this change of the complex coordinate are slight:

H = {g: C-~C|g holomorphic},

(@h) = \/(Zaﬁ/h)f g(2)h(2)
C

=f—#

s

- 0
Xexp(—————z Zap )ﬁg— _d_q_ ’
2% a B
and in formula (6.2) and in the prescription # has to be
replaced by the dimensionless constant #/(af3).

Vil. APPLICATION I

In this case we consider the symplectic manifold M = S 2
together with the symplectic form o = — Ae, where A
€R\ {0} and € the standard volume- ( = surface-) form on
S2. For the physical interpretation of this symplectic mani-
fold as representing the phase space of the classical spin, we
refer the reader to Ref. 8. In polar coordinates (6,4) on
S2DR3, €is given by € = sin € d9 A\ dp; however, we prefer
to use complex-holomorphic charts on §? = P'(C) which
can be obtained by projection from the north/south pole:
U, = C = U, with transition function U,32- 1/z = weU,,
which corresponds in homogeneous coordinates (z,:2,) on
PY(C) to z = z,/z4¢>(25:z, )W = 2,/2;; the relation with
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polar coordinates is z = cot g(8 /2)e". In these coordinates
the volume element is given by

e=[—2i/(z"z+ 1)?)dz A\dz'
= [ —2i/(w'w + 1)*]dw A dw'.

We now introduce the local symplectic potentials ¢; on U,
defined by

&y = (iA /(2'z + D)(zdzt — 2T dz),
& = (A /(w'w + 1)) (w dw' — w' dw),
sod, — ¢, = d (i4 log(w/w")), from which one deduces that

" the gauge transformation gy, of the prequantum bundle L is

given by
8o1(2) = expl(i(iA /M) log(w/w')) = (z/21)* 7%

Since g,, should be a well-defined function on U,N U, this
formula shows (it is not a proof, but it can be made into one)
that L exists if and only if 24 /#€Z, i.e.,

A =n-#/2, forsome neZ.

On (S%w) we use the positive Kihler polarization
F=CX, = CX,, (X, as always the Hamiltonian vector field
associated to the function /) so with the trivialization de-
fined by these Hamiltonian vector fields, the gauge transfor-
mation g, of the F-frame bundle R ¥ is given by

g(2)=—z"% (X,= —2°X,).

Since — z~2 admits a global square root the metaframe bun-
dle R ~¥ exists and hence the quantum bundle QB. Using
formula ( 1.2) one can show that the local sections s/ on U; of
L defined by

L) =2+ 1D sfw) = (ww+1) 77

are F constant, hence the cover { U, U, } is a nice cover. Com-
bining the transition functions of the bundles L and B ~*
[the latter has transition function v/ ( — z72) = i/z] with
the fact that (w'w + 1) =% = (z'z + 1) — "2 (2'2)"?, we
get the result that, with respect to the trivialization of QB by
the F-constant sections ¥ = s/ @ v/ [see formula (1.3) ], the
transition function Ay, of QB is given by

hoy(2) = i/z°(2/2Y2 22y = iz" .

In other words, a global section y of QB determines two
holomorphic functions y; [see (5.1)], who are related by
the equation:

Xo=hor X 19%0(2) = iz" "'y, (1/2).
This shows that y; can be at most a polynomial in z of degree
n — 1, implying that if we wish to obtain something nontri-
vial, then # (and hence 1) should be positive, and that the
resulting Hilbert space H = L (M,F),,, has dimension (at
most) n. At this point we mention that, had we used the
polarization F' instead of F, then the complex coordinate z'
had been the holomorphic coordinate and we had found that
X: could be at most a polynomial of degree — n — 1, imply-
ing that n (and hence A1) should be negative and that H has
dimension (at most) — n. To show that this bound on the
holomorphic functions y; is in complete agreement with the
inner product, we compute the densities (¥*,¥'), using for-
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mula (3.1):

(\I’O,\I/O)(z) = (ZTZ—|—- 1) —n.(a)(thXz )/(lh))llzlwl

= (24 /h)"? (22 + 1) "~ |dz Ndz'|
=2(n/2m)"? (272 + 1) "~ Ldx dy
(withz = x + iy).

A similar result holds for (¥',¥") but, since S ?\ U, consists
of one point which has measure zero, it follows that we only
have to deal with the chart U, with its holomorphic coordi-
nate z = x + iy: omitting ¥° we obtain

H= [g: C—Cl|g a polynomial of degree at mostn — 1inz,

n 172
2(—) f|g(z)|2(z*z—+—1)“""dxdy<oo],
27 C

172
(gg) =2 (_n_) J g% (2)(zz+ 1)~ " 'dxdy.
21 C

Careful analysis shows that the two conditions on g are
equivalent, hence we can say that H consists of all polynomi-
als of degree n — 1 in z, and indeed, as already said, H is a
Hilbert space of dimension #.

The functions g, (z) = (n/2m)"V* (n — 1 over k)V/? Z*
form an orthonormal system in H and hence the generalized
Bergman kernel is given by

n 1/2n—l(n_1) .
K 1,
wn=(37) Z" )

Finally let f be an observable (i.e., a real function on S?)
then on the chart U

x =t (@ 3 7 )
7T 214 \dzadt  dtéz)
i a((z'z + 1)28f/az*)X
9z
La((sz+ 1)23f/8zT)X
24 azf 4

[XX.] =

_+..

hence,

1 d((z"z + 1)’ /92")

L.(g¥% =
s (8Y°) 2n az

+f—2N(Zz + l)a—f;] g(z2)¥°

1 of dg
+—(zfz+1)? yo
n ( D dz' dz
Applying Theorem 5.8, using partial integration, and omit-

ting ¥° we find the following prescription for operators.
Prescription: For an observable fon S ?, the correspond-
ing operator on polynomials g of degree 24 /% — 1 is given by

n—1 1 szg(z)
@w=2"5 (" >“’kfc——(z*z+1)~+l
(z'z+4+1)? 9

2n dz dzt

(7.1)

X [f(z,zT) - ] dx dy.
Examples: Let (a,b,c)eS*CR? then the correspon-
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dence between the three coordinates (a,b,¢c) and the com-
plex coordinate z is given by

a=(z'+2)- 2+ 1),
c=(z—1)-(z+ 1)},

b=izt—2)-(Z"z2+ 1),

which represents the projection from the north pole onto the
x-y plane. Now we introduce the spin observables S, = Aa,
S, = Ab, and S; = Ac; for these observables the expression in
(7.1) is already holomorphic, so in this case we do not need
to apply the generalized Bergman kernal to obtain the corre-
sponding operators, which are

t [ d
S] =7ﬁ -(1 —-ZZ)E-F (n— I)Z],

1.
Sz=7lﬁ[(1 +22)%— (n— l)z],

1 ,[. d
S, =—#|22" —(n—
N s (n 1)],
whence
(Sz) + (52)2+ (S3)2 ﬁz(n — 1)1

When we say that this model with a classical parameter

= (s + 1)#describes a particle with spins (25 =0,1,2,...),
then these results are in complete agreement with the usual
quantum mechanical description of spin: the Hilbert space
of a particle with spin s has dimension 2s + 1 =24 /fi=n
and the sum of squares of the spin operators is
s(s + 1)#*1 = i#*(n* — 1)1. Moreover, if we express the
spin operators as matrices with respect to the orthonormal
basis g, introduced above (in descending order!), then one
recovers the usual Pauli-spin matrices; in particular in the
case n = 2 (spin-1) one obtains

1 0 1 1 0 —i
350 o) s=24( )
2 \1 0 2 2ﬁi 0
1

1 0
=-—ﬁ( ),
S 2 \0 —1

and in the case # = 3 (spin-1):

S, =

0 1 0
s,=+v24l1 o 1],
2 01 0
0 —1
s,——i2al1 o -1,
2 o 1 0
10 0
s,=#lo o o).
00 —1

Remark I: If one computes in the case

A=H(en=205=})
the operators associated to the observable f = (; )* then one
finds in all cases £ = [ (#%)/3]1, which is in agreement with
the observation that S + 5% + .52 = #. There is no con-
tradiction with the fact that the sum of squares of the spin
operators is not equal to the operator associated to the sum
of squares of the spin observables because we nowhere
showed nor used that the operator corresponding to a prod-
uct should be the product of the corresponding operators.
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Remark 2: Contrary to the opinion stated in Ref. 2,
§11.2, p. 205 (see also Ref. 7, §6.3.6]), it is not necessary to
change the quantization method to obtain a correct descrip-
tion of the quantized spin. The procedure described above is
quite adequate: the classical model with parameter
A( = n-1#) describes, after quantization, a particle with spin
s = A /#i— 1. In my opinion it has the definite advantage that
can describe a particle with spin, value zero, i.e., in the classi-
cal model there exist spin observables, which yield, after
quantization, always the value zero. The alternative is a clas-
sical model without an extra sphere in the phase space, hence
without the possibility to measure spin (except by saying that
it does not exist). At this point it should be mentioned that
the value A = 0 is not allowed, because then the symplectic
form reduces to zero and is no longer a symplectic form.

VL. APPLICATION il

In this section we want to analyze the effect of the quan-
tization prescription given in Sec. V1, when translated to the
usual Schrédinger representation: H = functions of the posi-
tion (see also Ref. 2, §8.1 and Ref. 7, §5.11.5). We will do
this in the case M = T*R? = R® = C>: the phase space of a
single particle in R>. To avoid confusion with dimensions we
introduce (as in Remark 3 of Sec. VI) constants « and S and
dimensionless coordinates x; = p;/a and y; = ¢,/ on M;
furthermore we define the complex coordinates
Z; = x; + iy; (the coordinate z’ of Remark 3, Sec. VI), and
we introduce the dimensionless constant y = af /4. Finally
we introduce two polarizations: a “holomorphic” polariza-
tion F, spanned by X, and a “vertical” polarization F,
spanned by X ..

In these coordinates w = af 3;dx; Ady; and as in Sec.
VI we use the symplectic potential

1
0:—2—aﬂz (x; dy; —y; dx;) .
7

To facilitate the notations we introduce the column vectors
X, y, and z with entries x;, y;, and z;; furthermore the symbol
T applied on column vectors will denote transposition and
the symbol ' will denote transposition and complex conjuga-
tion, hence ||z||* = z'z = x"x + y"y = ||x|*> + ||y||*<R.

The bundles L, RF, R~F, R~¥, and hence QB are trivial
for both polarizations, so we identify sections with functions
on M. With the symplectic potential ¢ we compute the F-
constant sections of L according to (1.2):

¥ F, constantW(x,y) =W, (y)exp( — LiyxTy),
x F, constanty (x,y) =y, (2)exp( — Lyz'z)
and y, holomorphic in z.

Applying the theory of Sec. III we obtain two Hilbert spaces
H, and H, given by

H, = [‘I’v(y)ngl‘I’u(y)lzdy< oo] ,
H, = [xh (Z)l(r/rr)mL s (2)]?
X exp( — % rz*z)dx dy < co} .
Since the polarizations F, and F, satisfy conditions (2.1)
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with D* ={0} and E" = T*M, there exists a pairing
between H, and H, given by [using formula (2.4)]:

; 372 ¥
(Wooxn) = (—1— i) J (‘Fu (y)exp( L i;fxTy))
2 7 c 2

X Xn (z)exp( - -%— yz*z) dx dy.

This pairing defines unitary maps U,,: H, - H, and U,,:
H,—H, by

(W, U Xn ) o = (WosXs) = (U W0 Xn) s
which are given explicitly by the formulas

(UuhXh ) (y) — [e"i/4(éz/_)l/2]3
s

Xf)(,, (z)exp( - —1—y[z*z - 2ixTy]) dx,
(U ¥,) (2) = [e—“”‘(i)mr f ¥, (s)
s

Xexp( — —‘11-7/[ — ZTZ -+ 4is7z + ZSTS]) ds.

(8.1)

That these formulas are indeed given by (8.1), that they are
unitary, and that they are inverse to each other can be veri-
fied by using the reproducing formula (6.1), the Fourier
integral fexp(ixy)dx =275(y) and the Gaussian integral
Sexp( — mx*/a)dx = v/a (for a>0).

With these ingredients we can translate the prescription
of Sec. VI as given by formula (6.2) to the usual Schrodinger
quantization: let f=f{x,y) be an arbitrary observable and
let ¥,€H,, then

f‘llv = Uuh (f( Uhu \I/u )) = Uuh ((Lf( Uhu \Pv ))hol )
or, more explicitly,

(£¥,)(y) = H(—;—)m]s f f f expliytT(y — 1))

xexp( — 3 vl|it —sli* + |ly — 5|1
X(f(rs— ()7 '[A, + A, 1)
XW,(t)drdsdt. (8.2)

Example I If the observable f does not depend on x, i.e.,
it depends only on the position coordinates, then the integra-
tion over r and t in (8.2) can be performed and one obtains

() (y) = [(%)m f (f~ (49)"'AF)(s)

xexp( — 7y = suz)ds] ),

in other words f is multiplication with a function f°(y) de-
fined by

rw=(2)" [ir-unp=ane

xexp( — vlly —s||*)ds
=(1-@“n~'4)

}, 3/2
X[(;) ff(s>exp(—rlly—sll2>ds]. (8.3)
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We now notice that the constant 1/y is usually very small
(@ =1m,B=1kg m/sec=>y=10%), so if we neglect for
the moment the additional term (4y) ~' Ain (8.3) thenf°is
the convolution of £ with a Gaussian curve of width =~ 1/7,
i.e., roughly speaking f ° is the average of the potential f over
a region of dimension 1/ around the point y. This prescrip-
tion of replacing the potential by such an average is some-
times used in quantum mechanics to explain certain correc-
tion terms (e.g., the Darwin term in the Hamiltonian of the
hydrogen atom, see Ref. 9 with the explanation that the elec-
tron is not a mathematical point). Let us investigate in more
detail the integral (8.3), to see its effect upon different poten-
tials:

f=1 y yys ) ) )*
o=1 y, ymys ) ) )*=-302n 2
|
i 8
EV)(¥) = ——
4

Another interesting potential is the Coulomb potential
J(y) = |ly||~! for which one obtains

o _ . l 172 livll B
Loy =yl exp( — yr?)dr
T — vl

¥ 172 2
+(L) " exp — iy
T
= Il -ext /vl + (r7m) 7 expC — 7y,

and we see that indeed f° differs from f only in a region of
dimension 1/y.

Example 2: In this example we consider observables
which are linear in the momentum (i.e., linear in x), so sup-
pose f(x,y) = x;-g(y), then one finds after partial integra-
tion in (8.2) with respect to the variable t:

v, y 2
¥) [(—) f (€ — (47)~"Ag)(s)exp( — 7|ly — s||2)ds]
y; T

T 372 _ -1
+\Pu(y)-[—ﬁ~(l) f Ile — (4p) Ag)exp(—?’”)’—SW)ds],
Yy \rm ds;

or without the wave function ¥, :

—y 3/2 _ —1
+ [_£ . (_7’_) fa(g 49 'A8) o — ylly — sllz)ds] .
™ ds;

(4

There are several interesting possibilities, of which we will
study only two: the case f = x; (i.e., the linear momentum)
and the case f = y,x, — y,x; (i.e., the angular momentum).
Evaluating the integrals in (8.4) we see that the second term
vanishes in both cases and (after some calculations) we ob-
tain

f=xj :}f__—:_.:i_é_’
Y ayj
—i a a
=YX — Wi X; :}f—_—.__l(y.—__y _._)
o i Y ja.Vk g ay;

or, reintroducing p; = ax;, g; = By; and y = af /#:

a
aq,.’

f=qp —qp; =f= —1if (q,-

=>f= —ifi

f=Pj

e d)
dq, 9

Example 3: We could go on with higher powers of x, but
the calculations become more and more complicated. How-
ever, the observable f = }||x|)? is interesting enough to calcu-
late; after twice integrating by parts in (8.2) one finally ob-
tains

f= — (274,
or, in other words, the kinetic energy 1||p||” is represented by

— WPA,.
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—1i

7/ 32
f= [(—”—) f (g — (4y) " 'Ag)(s)exp( — ¥y — S||2)ds] -

9
y;

(8.4)

i
IX. FINAL REMARKS

Remark I: It should be noted that the theory of general-
ized Bergman kernels can be applied as well to geometric
quantization using ( — })-F-densities instead of ( — 1)-F-
forms, because in that case too, two F-constant sections of
QB differ by a function which is holomorphic on the leaves of
7. E.

Remark 2: The difference between the use of ( — 1)-F-
densities and ( — {)-F-forms in the first application is that in
prescriptions I and I1 the expression f — # 3 2f /dz dz' should
be replaced by f — 2% 9 *f /9z dz'.

In the second application the difference is that (a) in the
description of the Hilbert space H, the “parameter” n should
be replaced by n + 1 (so the dimension of H becomes n + 1
instead of n) and (b) in the prescription for f the expression

f— 224+ 1)/2n 3% /3zdz' should be replaced by
f— (Z'z+ 1)2/n 3% /3z 3z' (N.B. here n should not be re-
placed by n + 1).

If one now calculates the operators S;, one obtains the
same Pauli-spin matrices, except for a different value of n:
n =1 now represents s = §, n = 2 represents s = 1, etc,, in
accordance with (S,)% + (8,)* + (S;)2 = n(n + 1.
Moreover, for n = 1 (&5 = &4 = 1#) the operators asso-
ciated to S? are all equal to (#2/12)1.

The differences in the third application are all due to the
differences as described for application I; the connection
between H, and H, remains the same.
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A generalized fiber bundle model in which the fibers are Hilbert spaces is studied. Unitary
transformations are used to define a unitary isomorphism (“parallelism”) among them. The
Weyl group is first used to “connect” the projective Hilbert spaces (ray spaces) and to
introduce a one-form connection that defines which coset at a point y is parallel to a given
coset at another point x. Then, the central extension of the Weyl group by U(1)’ is studied in
order to introduce the most general mapping between the elements of these cosets. This leads
to a two-form connection and makes the model a good candidate for a fiber bundle approach to

string theories.

I. INTRODUCTION

Gauge theory in physics is similar to fiber bundle theory
in geometry. At each point of the base manifold (space-
time) we have a fiber isomorphic to a group G. The connec-
tion is a one-form which defines an isomorphism (“parallel-
ism”) between the G at a point x and the G at a different
point y. The one-form connection and the corresponding
two-form curvature are interpreted in physics as the poten-
tial and the gauge field. In this paper we study a more general
fiber bundle type of model. We consider Hilbert spaces as
fibers and introduce unitary transformations in order to de-
fine a unitary isomorphism (“parallelism”) among them.

Our model is the generalized version of scalar electrody-
namics (e.g., Ref. 1) which includes not only the +e
charges but also all the higher charges + 2e, + 3e, etc. The
wave functionis ¢ (x,0), where fis a coordinate for the U (1)
gauge group. The electric charge is treated in a quantum
mechanical way (like the momentum). The charge operator
is § = ie d, and the e plays the role of Planck’s constant for
the @ dimension. Periodicity in 6 (¢(x,80 + 27) = ¢(x,0))
gives a discrete charge spectrum. We regard the #(x,0) asa
collection of wave functions ¢, (&) at the various points x of
four-dimensional space-time. At each point x we introduce a
Hilbert space

H_ = {complex periodic functions of 8}.

The unitary transformations will be used to “connect” (i.e.,
to define a unitary isomorphism between) the Hilbert spaces

t the various points x. The group of unitary transformations
is?

G = {exp(iad)exp(iN&)exp(iy)}. (1)

We start with the projective Hilbert spaces PH, (or ray
spaces in Weyl’s terminology). In PH the coset{exp(iy)
X |6 )|arbitrary y, fixed 6} represents one element. Kets
with different quantum phase represent the same element.
The group of unitary transformations for this space is
W=G|U(1)(U(1) = {exp(iy)}) and is known as Weyl
group of quantum canonical transformations.” The U(1)’
represents the ‘“quantum phase” and is the center of the
group G. We call it U(1) in order to distinguish it from the
original U(1) group, which is in our model the & dimension.

Local Weyl transformations will lead to the potential

®) Present address: Fachbereich Physik, Universitdit Marburg, Mainzer
Gasse 33, D-3550 Marburg, West Germany.
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operator 4, §. Thecoset I, = {exp(iy)|@ ) |arbitrary y} at x,
is now parallel to the coset I,={exp(iy)|0
+ % 4, 6x,)| arbitrary ¥} at . This expresses the well-
known fact that parallel transport along a curve C changes
the U(l) phase by the path-dependent quantity
$%ey 4, 6x,.Up to this point our model simply contains the
structure of a standard gauge theory (a one-form connec-
tion). Since, however, the I, and I, are cosets we can intro-
duce a mapping between the elements of 7, and the elements
of I,. If we do that in the most general way, we are led to a
new two-form connection (and the corresponding three-
form curvature).

In order to introduce this mapping in the most general
way, we explore all the groups G that can be constructed
from a given W and U(1)’. The only constraints are that
W= G |U(1)' and that U(1)' is the center of G. The subject
of central extensions>* explores this problem. In general the
group G will have the elements given in (1) with the multi-
plication rule

8.8, = {exp(ia, g)exp(iN,0)exp(iv,)}
X {exp(ia, g)exp(iN,0)exp(iy,)}
= exp{i(a, + a,)qtexp{i(N, + N,)6}

xexpli(y; + v, + o(a;,Na,.N,))} (2)

The o(a,,N,;a,,N,) is called a factor set and is restricted by
the associativity requirement.

Our basic assumption is that there is no preference to a
particular extension and that we should try to construct a
theory, covariant under transformations with any of the
multiplication rules given in (2). The fundamental, for fiber
bundle theory, concept of parallelism has been broadened in
our model; at each point of space-time we introduce a whole
class of groups G, all with the same elements but different
multiplication rules. We then show that in order to define a
mapping (“parallelism”) between these multiplication rules
at the various points of space-time, a two-form *“‘connection”
is required. If g(x) is an element of the group G, then
g“(x)ay g(x) depends on the multiplication rule, i.e., on
the extension. For a given g(x) and under a transformation
from one extension into another

g 'd,g~g7 ', 8+iA,.
The A,, is a quantity that we will calculate. This transforma-
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tion of the extension introduces loop gauge transformations’
and consequently a two-form potential 4,,, and a three-form
gauge field £, . In this sense we have a particular type of a
string model. Our strings are simply tubes of magnetic flux.
This is the original but a very particular interpretation and
application of string theory. Another interpretation (follow-
ing Ref. 6) uses the lower modes of the infinite spectrum,
which necessarily exists in every string theory, to describe all
the existing physical particles and therefore unify all the
physical theories. Our model contains of course an infinite
spectrum but it is an infinite spectrum of electric and mag-
netic charges.

The standard fiber bundle theory (i.e., the standard lo-
cal gauge theory) is too restrictive and cannot accommodate
quantized monopoles and quantized magnetic strings. The
Bianchi identity d,*f,, =0 does not allow magnetic
sources. Magnetic monopoles’ are introduced as line singu-
larities in space-time. They create a nontrivial topology
which is able to accommodate many cohomology classes of
f..v- With this argument we get the standard Dirac’ currents

J = f 8(x — ) { y*(1,0),y"(7,0) }dr do, 3)
, dy*(7)
anyv=Jv=J6(x_y)lF"dT’ (4)

which are semiclassical. The string follows one particular
world surface y#(7,0) and not all the surfaces as quantum
physics would require. TheJ,,, is givenin (3) in terms of this
particular surface y#(7,0) and not in terms of a wave func-
tion. The magnetic monopole is also semiclassical and it fol-
lows only one world line (y#(r)=y"(r,0 =0)) in space-
time and not all the world lines as quantum physics would
require. The magnetic current of Eq. (4) is given in terms of
a & function of the position and not in terms of a monopole
wave function.

The quantization of string theory is currently under de-
velopment and is discussed from various points of view. One
approach is the Polyakov® functional integration over sur-
faces. Another more recent approach® is based on BRST
(Becchi-Rouet-Stora-Tyutin) invariance. The connection
of this approach with Connes’ noncommutative geometry
has been discussed in Ref. 10. A fiber bundle type of ap-
proach to string theory is desirable for theoretical and practi-
cal reasons. It will state clearly and explicitly its symmetry
content; this should be the starting point of the theory, but
historically it was developed in a different way and its sym-
metry content is rather unclear. It will also show how from
fundamental assumptions we are led to the physics of string
theory, in analogy with gauge theories and gravity. For
mathematicians it will open new directions to explore. Here
we study a generalization of fiber bundles which uses Hilbert
spaces as fibers and which leads to the two-form connection
and the two-form current that characterize string theories.
We show that the currents J,,, and J ; have not the semiclas-
sical form of Egs. (3) and (4) but that they are expressed in
terms of the field ¢ (x,0). Therefore we claim that our model
is a good candidate for a fiber bundle approach to string
theories. It is quite clear that the aspects of quantized string
that we discuss here are quite different from those in Ref. 8
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or those in Ref. 9. At this stage it is not explicitly clear the
connection among them; this is a more difficult task.

We conclude this section by sketching the relation
between our work and Ref. 11 which also played an impor-
tant role in the development of the subject. The later is on
SU(N) gauge theories but it is known'? that there is a rela-
tion between string theories and the SU (&) (N— « ) gauge
theory. Let us discretize our & position space, by taking ¥
points uniformly distributed in the & dimension. We have in
this case quantum mechanics on a discrete position space of
N points (Ref. 2, Schwinger, p. 63, Weyl, § IV.14). The
momentum space is discrete and contains N momenta, i.e.,
we have NV charges, le,..., Ne (defined mod N). The quan-
tum phase is in this case an element of Z,,. The wave func-
tion becomes ¢ (x,K), K = 1,..., N, and the Hilbert space H,
is finite (V) dimensional. The group of unitary transforma-
tions is U(N) and the Weyl group U(N)|Z, . From a math-
ematical point of view this model is similar to the U(N)
gauge theory. In Ref. 11, the quantum mechanical algebra
that is appropriate for this case,

VIU* = U*V'exp{i(kl)/N}, k, integers,
UN=V¥=1,

has been used, to introduce general pseudoperiodic bound-
ary conditions in a finite box. A finite number of different
classes have been found. Our model is in the N— oo limit
(Ref. 2, Schwinger, p. 259, Weyl, § IV.15). We use the stan-
dard quantum mechanical algebra for a circle position space.
Our momentum space is discrete and infinite and our quan-
tum mechanical phase is an element of the group U(1)’. The
extensions of Wby U(1)’ introduce a similar effect with the
nontrivial boundary conditions in Ref. 11. Indeed, we study
H*W,U(1)’) in Sec. II and we find an infinite number of
classes.

We finally mention Ref. 13 where obstruction to group
extension (which is related® to H>) has been used in the
study of magnetic monopoles. The associativity and conse-
quently the Jacobi and Bianchi constraints are violated. In
our paper we respect associativity and we explore
H?=2Z?%B"

Il. EXTENSIONS AND COHOMOLOGY OF THE WEYL
GROUP

The Weyl group for a circle position space is> W
=G |Uy,

G = {exp(iad)exp(iN@)exp(iy)},

U(1)' ={exp(iy)}, §=ied,, N integer. )
Here, W is an Abelian group with elements the cosets
w, = w(N,a,) = {exp(ia,§)exp(iN,0)
X exp(iy)|y arbitrary}, (6)

w(N,a )w(Nyay) = w(N, + Nya, + a,).

We are going to search for all the nontrivial ways of
reconstructing G from a certain W= G |U(1)’ and U(1)".
This problem is known in the mathematical literature as
group extension.>* Here we are only interested in extensions
where the U (1)’ is the center of G(central extensions). We
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use the notationg; = w, exp(iy,) for an element of G, where
w, is an element of Wand exp(i7,) an element of U(1)". We
also use the notation g, = exp(ia,§)exp(iN,0)exp(iy,)
keeping in mind that the exp(ia,§)exp(iN,0) is the coset of
Eq. (6). Another notation used in the literature is (w,,exp
iy,) where it is clear that the w, exp(iy,) is not a product in
the ordinary sense. The most general way to define multipli-
cation between two elements of G is

882 = (w, exp iy,) (W2 €xp iy,)
= wyw, exp iy, + v, + o(w,w,)), )]
which we have already presented in Eq. (2). Theo(w,,w,) is

called a factor set and is an arbitrary real function restricted
(i) by the associativity rule, which implies

a'(wl,wz) + U(wlwz,w:;) = U(wl,w2w3) + a(wz,w3);
(8)

and (ii) by o(L,Lw) = o(w,1) =0, where 1 is the unit ele-
ment of the group W, i.e, the coset w(a =0, N=0). We
can have even more general multiplication rules, but here we
only study the limited case of central extensions. The func-
tion o (w,,w,) is a two-cocycle. The definition of two-cocycle
is®

60 = o(w,w,) + o(WWyWws) — o (w,W,ws)
— 0(Wwyw,) =0, (9)

and is precisely the associativity requirement (8); & is the
coboundary operator and 82 = 0. We call Z*(W,U(1)’) the
group of two-cocycles.

Let 7(w) be an arbitrary function with 7(w=1)
=r{a=0,N=0) =0. The o(w,,w,) =7(w,) + 7(w,)
— 7(w,w,) obeys the requirements (i) and (ii) and is a spe-

cial case of a two-cocycle. In fact it is by definition a two-
coboundary

&r = 7(w;) + 7(w,y) — 7{ww,). (10)
We call B%W,U(1)') the group of two-coboundaries.
The two-cohomology group is HIW,U(1))
=Z3W,U(1)")|B{W,U(1)’). Each factor set o(w,,w,)
[defined up to 7(w,) + 7(w,) — 7(w,w,)] characterizes a
two-cohomology class.

The commutator of two elements of the group G is now

[g1.8:1=87"8; 'g:8, = explid(w,,w,) ],

(11)
A(w,,wz) = ~—A(w2,w1) = U(wpwz) - 0(w29w1)'
For central extensions®
(8182831 = [21:85] (82851,
therefore
A(wle,wg) =A(w1,W3) +A(w29w3), (12)

which we rewrite as

AN, + Npa; + axhN;a3)

= A(Ny,a;;Ns,a3) + A(Nya;N5a3).
From this and the relation 4(w,1) = A(1,w) =0 we con-
clude that 4 (w,,w,) is a multiple of (N, — N,a,),

A(w,w,) = me(N,a, — Noa,). (13)
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We see that we get the “expected” result ¢(N,a,
— N,a,) with an extra factor m. For a noncompact dimen-
sion , the m can be any real number. This result is known in
theliterature (e.g., Ref. 4). In our case @ is a compact dimen-
sion and we require that for a, =27, N,=0, a,=0,
N, =1, the ig,8.] =1-A(w,w,) =27M (M integer).
We get the relation em = M. This is the Dirac quantization
condition in our model.
We have proved that the commutator of two elements of
the group G'is

[exp(ia,&)exp(iN,@?)exp(iyl),
exp(iazé)exp(iNzé)exp(iyz) ]

= expli(em) (a,N, — a,\N,)], em =M. (14)
Taking into account that a two-coboundary is symmetric in
w,, w, {Eq. (10)] we conclude that each m characterizes a
cohomology class. This class contains all the extensions with

factor sets
o(w,w,) = me(N,a, — Nya,) + 7(a,N,) + 7(ay,N,)

_T(al +a2,N1+N2)- (15)

Therefore the H ?(W,U(1)') is at least equal to the set of inte-
gers Z. It remains to be explored if there are symmetric fac-
tor sets o(w,,w,) = o(w,w,) that are not two-cobound-
aries.

Using Eq. (14) we can easily prove

exp( — iN@)§ exp(iNO) = § — (em)N. (16)

The unit element m = O of H %(W,U(1)’) contains all the
extensions with factor sets the two-coboundaries [elements
of B{W,U(1)’)]. In this case the commutator [Eq. (14)] is
equal to 1.

We should point out that the problem of central exten-
sion of the group Wby the U(1)' is equivalent to the problem
of projective representations of the group W. A projective
representation is defined as the ordinary representation with
an extra phase factor

P(w) P(w,) = explio(w,w,;) ] P(w,w,).

Assume now that the elements of the group G depend on
x and that they are independent of 6. In other words, the
a(x), y(x) are functions of x and independent of . The N is
of course an integer independent of x, . Assume also that
the factor set o{x,w,(x), w,(x)) is a two-coboundary that
depends explicitly on x. We expect that the derivative of
g(x) will depend on the multiplication rule that we choose.
We calculate the

73

g '(x)d, g(x) = lim
Ax, -0

where

g(x) = exp(iad)exp(iNd)exp(iy),
g~ 1(x) = exp( — iad)exp( — iNG)
XCXP{ _i{7+0( —a, _'N;a’N)]}y
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g(x + Ax) = expli(a + ba)q]

X exp(iN@)exp[i(y + 6¥) ],
(18)
g7 (x)g(x + Ax) = exp(ibag)

Xexp i[6y — o( — a, — N;a,N)
+o( —a,— N;a + da,N)].

The o is a two-coboundary and, according to (10),
o(—a,—N,a,N)=7(—a,—N) +7(a,N),
o( —a, — N;a + é6a,N)
=7(—a, —N) + r(a + é6a,N) — 7(ba,0)
=7(—a,—N) + [r(a,N) +bad,7(a,N) + ]
— [6a d, 7(0,0) + ---].

The 7(a =0, N=0) =0 but the d, 7(a,N) at the point
a = 0, N = 01is not necessarily zero. Therefore

g 1(x)g(x + Ax)

(19)

= exp(idaq)
Xexp i[8y + ba(d, 7(a,N) — 3, 7(0,0)) + -]
(20)
and from Eq. (17) we conclude
g '(x)d, g(x)=id, ag + id,y+Bd, @), (21)
B =4, r(a,N) — 3, 7(0,0). (22)

The terms (d, @)g, d, y are familiar but we also have an
“extra” term S d, a due to the nontrivial multiplication
rule. If {a(x), N') does not depend explicitly onx the 8 3,
is an exact one-form, i.e.,

B3, a=3, rla(x), N)— 3, rla(x) =0, N =0).

The interesting case is when 8 d, a is not an exact form and
the exterior differentiation gives a nonzero result. From
(21) we can easily see that

3. '9,8) 36,879, 8
=3,3Bd, a) —3,(iB3, a)

. —; 9(Ba)
=1[3”ﬂ6,,a—3vﬂaﬂ a]=1m.

(23)
This is by definition an exact two-form and therefore is
closed, i.e.,

z ap d(B.a) =0

cycl 3(x # ,x")

The g, g~ ' are not independent and we expect that
(3,873, 8) — (3,8 ") (3, g =0. We can prove this
explicitly, using (21) forg~* d,, g and a similar equation for
(3, g~ ")g. Therefore (23) gives

g '[8..9,]g=¢""(d, 9,

(23")

d(x#x")
(24)
This result is not zero if 7 and therefore # depend explicitly
on x. As a result of the x dependence of the nontrivial multi-
plication rule we cannot interchange the order of differenti-
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ation. Itis known (e.g., Ref. 14) that when the [d,,,d, ] acts
on path-dependent quantities, we get a nonzero result which
is the curvature. Here we see that a similar thing happens for
path-independent quantities, if we use a nontrivial multipli-
cation rule. The £ d, @, d( f,a)/d (x*x") can be under-
stood as “connection” and “curvature” hidden in the nontri-
vial multiplication rule. We explain now in what sense the
terms “connection” and ‘“curvature” are used here. At a
point x of space-time we have a group G, which has been
constructed from Wand U(1)'. However, G is not the trivial
Wx U(1)' but a “twisted” one in the sense of Eq. (7). The
“connection” 8 d, a isa “correction” totheg ™' d, gdueto
the fact that the multiplication rule is x dependent.

For given a(x), y(x), N and for a transformation from
an extension with factor set o(w,w,) = 7(w,) + 7(w,)
— 7(w,w,) into another extension with factor set o + o,
=0+ 7 (w)) + 7 (w,) — 7 (ww,),

g 'd,8-87'3,8+i6Bd, a,
g '[d..9.18—¢g7"[8,.9,1g +i
6B = aa Tl(d,N) - aa Tl(0,0).

We call this extension transformation or loop gauge
transformation. The second terminology will become clear if
we reexpress these results using the path-dependent

G(x,C) =g(x)exp[ —1i ) Ba, a6xﬂ]

(c)

d(dB,a)

, 25
d(x*x") )

Bd, adx, ],
()

(26)
where Cis a path in the four-dimensional space-time and the
integration is taken along C, from a reference point O up to x.
The G(x,C) is an extension-dependent quantity because S,
which is given in (22), is an extension-dependent quantity.

For given a(x), ¥(x), N and for a transformation from
an extension ¢ into another o + o,,

= exp[ia&]exp[iN@ Jexp i[y —

G(x,C) —»G(x,C)exp[ — if 6B 3, adx, ],

(27)
=4, r(a,N) — 3, 7,(0,0).

We call (27) an extension transformation or loop gauge
transformation. Now,

G~'(x,0)3, G(xC) =i(3, g +i3, 1),  (28)
G ~'(%,0)[3,.3,]G(x,C) =0, (29)

ie, the G ~'(x,C)d, G(x,C) is invariant under exten-
sion transformations. The path-dependent term exp
[—i§%y BO, adx, ] has canceled the effect of the nontri-
vial multiplication rule.

The definition of area differentiation for path-depen-
dent quantities is well known (e.g., Ref. 14). We apply it to
Eq. (26) and we get

5 G(x,C)=i _a(_Bﬂ .

60, I(xHx%)

This is a different way of expressing the result of Eq. (24).
We consider now general factor sets in Z %(W,U(1)’).

Equation (18) is still valid, but ¢ is now given by Eq. (15)

G (x,C) (30)
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and therefore Eq. (19) has an extraterm — N(em)&a in the
right-hand side. Consequently Eq. (21) will have an extra
term — iN(em)d, a on the right-hand side. This term can
be understood as a resuit of the noncommutativity between
(d, @)g and exp(iN9) [Eq. (16)]. In the extensions with
factor sets in B 2(W,U(1)’) that we studied before, the m = 0
and this term is absent. For given a(x), y(x), N and for a
transformation from an extension in a class m,,

g= eml(N1a2 -_ Nzal) + T(Nl’a]) + T(NZ’aZ)
—7(N, + N,,a, + a,)

into the corresponding extension (i.e., with the same func-
tion 7) in the class m,

g = emz(Nlaz —_ Nzal) + 7-(vaal) + T(NZ’az)

— 7'(]V1 + ]VE,Cll + a,),

theg™'d, g—g ' d, g — iNe(m, — m,)d, a, where e(m,
— m,) is an integer. We see here the special role the non-
commutativity between ¢ and & plays in our model. The val-
ue of m defines the strength of this noncommutativity [Eq.
(14)] and by going from a class m, into a different class m,
we have a U(1)’ gauge transformation.

Iil. LOOP GAUGE THEORY AND EXTENSIONS WiTH
FACTOR SET IN B3(W,U(1))

We introduce’ the complex wave function #(x,8),
where @ is a coordinate for the U(1) gauge group. We need
of course’ a length scale L for U(1) and we put L = 1. The
electric charge operator is § = ie d.

Consider now the Weyl transformations W acting on
the wave function ¢(x,6) defined up to a phase factor. We
are working, at the moment, with the cosets

{exp(iy)¢(x,0) |arbitrary y}.

Reference 4 explains in detail how we define continuity
and derivatives in this case. We work with representatives of
the cosets and at the end we multiply the result with an arbi-
trary phase factor exp(iy).

We introduce local Weyl transformations, by taking
a(x) tobe a function of x and N an integer independent of x.
The W is an Abelian group [Eq. (6)] and the exp(iN6)
commutes with the exp(iag) in the sense that the commuta-
tor is the unit element of W, i.e., the coset {exp (i) |arbitrary
y}. Therefore the exp(z‘N@) plays no role at this stage.

We define now the covariant derivative

D,=d,—id,q, (31)
which transforms like
exp( — iaq)D,, exp(iag)-D,,,
(32)

14# —»14“ "+'é%; a.
Here the exp(iag) denotes the coset of Eq. (6) with an arbi-
trary integer N. Covariant derivative of this type has been
used before (e.g., Ref. 1). Note that the potential (connec-
tion) is an operator 4,,§. The 4, (x) and a(x) depend only
on x and are independent of @. This is a known restriction in
the five-dimensional theories associated with the require-
ment that translations in the internal dimension should not
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change the length of the projection of a curve in the four-
dimensional space-time (Chap. 17 of Ref. 15).
We also introduce the gauge field (curvature) operator

[D..D,]= —ifn@s fo..=0,4,—3d, 4, (33)
which obeys the Bianchi identity

> 22D ={S a s, a=0 e

cyc cycl

Let C = X #(r) be a path in R*. We introduce the wave
function (defined up to a phase factor)

exp[ - iJ. A4, dx,,@]qﬁ(x,ﬁ)
()

=¢(x,0+ A# dxu) '

)

=E¢N(x)exp[ iN(0+eJ A, dx#)] . (35)
N (c)

The integration is taken along C from a reference point O up
to the point x. This is the path-dependent gauge-independent
Mandelstam wave function' for our model. The operator
exp[ — i fi,A, dx, §] is the loop operator for our scheme.
Particularly interesting is the case of closed loops C,, which
have x as origin and as end point. The wave function is
$(x,0 +efc A, dx,) and depends on the point x and on
the loop C,.,.

So far we have used the group W of transformations and
the wave function was defined up to a phase factor [element
of U(1)’]. The connection 4,4 defines “parallelism”
between cosets. For example, the coset {exp(iy)|0 ), |arbi-
trary y} at the point x, is “parallel” to the coset

"y
9+J 4, 8x,),
x(c)

at the point y. We will now go further and define “parallel-
ism” between the elements of the coset at x and the elements
of the coset at y. The extensions of Wby U(1)’ are needed
here. We will introduce a theory covariant under transfor-
mations in any of these extensions.

It is easy to introduce covariant derivative for transfor-
mations in the trivial (o = 0) extension only. In this case the
extension is simply W xXU(1)". The g~'3, g=i(d, a@)g

+ i d, y and the covariant derivative is

D,=d,—id,qg—iT,,
A,-4,+6, a,
r,-r,+4d,7

For a given g(x), consider now a transformation from
the trivial extension ¢ = Qinto an extension o with the factor
set a two-coboundary [element of B*(W,U(1)’)]. Note that
in this case m = 0 and [Eq. (16)] exp( — iNé)i] exp(iNé)

= g. We now use Eq. (25) to get

g 'D,g~g"'D,g+iB3, a,

g '[D,.D,)g~g '[D,.D,]g+i

lexp( iy) arbitrary 7/]

(36)

37
d( Ba)
a(x*x")
The D, is given in Eq. (36) and can no longer be called

covariant derivative. The value of the quantity g~'D,, g de-
pends on the multiplication rule, i.e., on the extension. Simi-

(38)
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larly the g~ '[D,, D, g also depends on the extension. We
call (37) and (38) loop gauge transformations or extension
transformations.

We introduce now a “potential in loop space” 4,,, (x)
which for given g(x) and under transformation from the
extension ¢ into o + o, transforms like

Ay —A,, + ;‘((ff,fv)) (39)
where 4 is given in Eq. (25). We now define the
Q,,=[D,D,]—id,, =[4,0,] —iF,.q
—i[(a F,—3,T,)+4,,]
=D, —i@d,T,—4,T,) (40)
D, = [a#,av] —id (41)

The g~ ! (x)ﬁwg(x) is covariant under transformations of
the extension (loop gauge transformations).
The gauge field (in loop space) is®

pr,{ = z a,u Aw{

cycl
and is invariant under loop gauge transformations [Eq.

(23)']. Its dual is
2, = €upo Frpo = €uypo 0, 4, s =0%A4,, (43)

Equation (42) has important geometrical content and is
called Cartan structural equation in the loop space.
They obey the Bianchi identity (in loop space)

(42)

€upo Ou Frpe =0 0r 4, 2, =0. (44)
Note also that
€popr (0, 2, — 0, 2,) = %4, +38,8, 4,
+3, 9, 4,, (45)
We can rewrite (43) and (44) as
9,*Q,, =€,,,,0, 1y (46)
d,(d,* ﬂ,w) =4,2%, =0 (47)

In the quantity (,,, we have the gauge field F,, and the
potential in loop space 4,,, . Consequently Eq. (46) is a com-
bination of the Bianchi identity (34) and the structural Eqgs.
(42) and (43). Equation (47) expresses the Bianchi identity
in loop space.

We can introduce the potential in loop space 4,,,
through Eq. (30). In Eq. (27) we have seen how the G(x,C)
transforms under an extension transformation (loop gauge
transformation). From Eq. (30) it is clear that a covariant
area differentiation is

S . d(ép.a)
—i4,, A, -4, +——,
oo, o # # g(x*x")

“v

(48)

8B is given in (27).

We now introduce a surface dependent but loop-gauge
independent wave function. For a closed loop C,, with ori-
gin and end point at x,
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A4,, da”,,] ¢ (x,0+ ef A4, dxp)
CXX

A, do,, + t'f A, dx, &] #(x,0)
Cxx

exp [z’
Sern

== eXp [i

S, .

—exp { [ i+ é)dam] p0),  (49)
where S __ is a surface with boundary C, . This wave func-
tion depends on the surface S with boundary C,,.

For a closed path C,,, the Weyl group that we used at
the beginning of this section led to the result that the coset
{e|0)|arbitrary y} is parallel to the coset {e”|6
+ f¢_ A, 6x,)|arbitrary y}. Now we have defined a map-
ping between the elements of these cosets and the ket €7]6 )
is parallel to the

w7+ Anso)||o+ ]
Scx C,

A, 5x, >
For open paths, we can write a similar result using a surface
between our curve and a reference curve, usually taken at

infinity.

IV. THE ACTION

We study now an example of a Lagrangian in which the
above ideas can be applied. We separate the action in five
parts. The terms S, and S5 are not invariant under loop
gauge transformations and the loop current J,,, is not con-
served. The strings are open and the end points, which are
described with the currentJ;, = d, J,,,, are magnetic mono-
poles. We will see that the magnetic current J |, corresponds
to the group U(1)’ and is coupled to the potential I, . The
I, cannot be absorbed by the 4,,,, because our action is not
invariant under loop gauge transformations.

Another consequence of this noninvariance of the ac-
tion is that we need to specify a particular loop gauge, for
which our Lagrangian is written. If we want to change loop
gauge we need to add extra terms in the Lagrangian. We fix
the loop gauge by using the multiplication rule with factor
seto = N,a, — N,a, [Eq. (15) withem = 1, 7 = 0]. In this
particular loop gauge the multiplication rule is very simple.

The first part of the action is

s, =%fded4xw,‘ e

D,=d,—id,§—iT,,
@ is considered as a dimensionless variable. A length L is
required in the  dimension’ and it has been taken equal to 1.
The second part of the action describes the coupling
between 4,,, and the source J,,, . Equation (41) suggests that
at least one possibility is the term

=%j‘d9d4x(pf"” ¢)*(Dyv ¢)’

(50)

(51)
D,, =[d,d,] —id
which in the loop gauge that we have chosen becomes
k '
=7‘fd6d“xA2m,|¢|2. (51"
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We introduce here a term with higher-order derivatives to
describe the source of the 4,,,. Higher-order derivatives are
usually undesirable in renormalizable models. However, La-
grangians like ours are usually considered as effective La-
grangians, for a deeper model where the Higgs mechanism
and Nielsen—Olesen'® strings occur. In this context, we sug-
gest that (51) is a possibility for a source term.
The third part is the action for the F,,, field

—%szﬂvd“x. (52)

The fourth part is the action for the
known to be’

S, = —kZJd“x%):j:%fd“szm

The constants k, and &, are necessary for dimensional rea-
sons [k,,k, ~ (mass) ~2].
The fifth part is a mass term for the 4,,, field

F,,, and is well

(53)

1
S, = _Tf [4,, + (@, T, —3,T,)]*d*%. (54)
The action has the general form
S=JL1(A)d4xd6+fL2(A)d4x,

and variation gives the equations of motion

JL, JL, aL,
do -4, dé—a =0.
f + 33, A) *3(d, 4)

(35)

Variation with respect to 4,,, gives the equation

o, F,, c? A, +3d,9,4,+3,0,4,
= €va (ak 2/1 - aA Zk)
= (VVk))[ — I +4,, + 3, T, -6, T,)],
(56)
with
I =k, f 6 |(x,0) 2 (57)

in our particular loop gauge.
Variation with respect to I',, gives the equation

3,[Ay + (3, T, —3,T,)] =J,
J =ijd0 [6(D, $)* —¢*(D, ], (58)

D,=d,—i4,4—iT,.

The J !, corresponds to the U(1)’ group and it would have
been zero if our Lagrangian was invariant under loop gauge
transformations. However, the terms S, and S, break loop
gauge invariance and the J  is not zero.

We differentiate Eq. (56) and we get

0y dyy=98,[4, + (0, T, -0, T)] (59)
From Egs. (58) and (59) we see that we need to prove
A Ju =J . (60)

We have already explained the physical meaning of this
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equation. The loop current is not conserved and the strings
are open with magnetic monopoles at the end points. The J /,
is the magnetic current.

In order to prove this equation we consider a loop gauge
transformation from our particular loop gauge into another
one infinitesimally near and we calculate 5L,

¢—¢exp[' OA, bx ]¢,

(c)

X

9, ¢~exp[i 8A,, 5x,,](a,, +i6A,),

(c)
[ay,av]gb—»exp[iﬁ )6A“ :Sx#]{[c?#,av]
+i(3, 8A, — 3, 5A,)}4,

and
6L =J, 8A, + 7, (3, 6Au—8“5AV)
=(J;, —3d,J,,)8A, 3, (Ju 5A# ).

We get Eq. (60) and 6L = — 4, (J., 8A,). Of course, in
our model L = —4J, (V.. 6A,,) #O0.

We multiply Eq. (56) by €,,,, and differentiate to get
[use also Eqs. (43) and (44)]

B>+ 1/k)Z, =3} J,,. (61)
These equations are known’ and the only modification in our
model is that the J /, and J,,, are given by Eqs. (57) and (58)
and not by Egs. (3) and (4).

Variation with respect to 4, gives

a,F,=J, (62)

v

with

J) =in0[(c§¢)(D,, $)* — (3)* (D, $)1,

D, =9, —id,§—iT,, (63)
a,J, =0. (64)

TheJ,, is the electric current which can also be considered as
the ( u,0) component of the energy-momentum tensor in
the five-dimensional (x#,0) space.

We should point out that a real field #(x,0) is sufficient
to describe the electric charges

¢ (x,6) — iNG).
The ¢,(x), ¢,*(x) describe the + le, ,(x), #,*(x), + 2,
etc. The complex field 4 (x,0) has double degrees of freedom
and describes both electric and magnetic charges.

Variation with respect to ¢, ¢* in the five-dimensional
(x*,0) space and in the particular loop gauge 7 = O gives

D¢ +A4%, 6=0, (65)

D,¢* +A4°,, ¢*=0. (66)
The A ?,, ¢ describes the effect of the “Bohm—Aharanov me-
dium” on the field ¢ (in this particular loop gauge).

Following Ref. 1 we can include in the Lagrangian a
mass term

=Y én(x)exp(iN6) + @% (x)exp(
N
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S, =f 18, 62 d*x d6

=;N2f(l¢~lz+ ¢ _n[*)d x. (67)

This term gives higher masses [ ~O(N ?)] to higher charges
and therefore offers an explanation for their nonobservabi-
lity in the experiments. This term alters Egs. (65) and (66)
to

D,u2¢ +A2,uv¢+602¢=0s

2 2 * 2 4% (68)
Dﬂ ¢*+A uv¢ +ae ¢ =O‘

V. CONCLUSIONS

Electric current is associated with a U(1) symmetry
and magnetic current is also associated with a U (1)’ symme-
try. It is a nontrivial problem, to combine the two U(1)
groups in a theory with electric and magnetic charges. In
standard electrodynamics without magnetic charges, paral-
lel transport along a closed curve C changes the U(1) phase
by ef.A,6x, =e(gf, bo,,; this is magnetic flux
through the loop C produced by electric charges and de-
scribed by the potential 4, . Magnetic strings and magnetic
monopoles are in some sense “extra objects” which have to
be introduced in a way consistent with the above picture.
The Dirac-Wu~Yang approach exploits the fact that U(1)

= R |Z; it introduces tubes of magnetic flux 27N /e, which
change the phase by 27NV and leave unchanged the quantity
explie f A, 6x, + 27N}

In this paper we treat the ¢’ € U(1) phase quantum me-
chanically. Parallel transport along a curve C transforms the
coset I, = {e”|0)|e” € U(1)'} into the coset I, = {e”|6

+ §% 4,6x,)|¢” € U(1)'}. We then ask the question, how
should we combine the U(1)’ with the Weyl group in order
to interpret the U(1)’ as a group of magnetic charges? We
explore various ways as extensions of the Weyl group by
U(1)' and we use them to study the most general mapping
between the elements of 7, and 7,. We find that theg™'d, g
is an extension-dependent quantity and that a change of the
extension leads to a loop gauge transformation and conse-
quently to the potentials and currents that describe magnetic
strings and charges (two-form potential, two-form current
and three-form gauge field). So the answer to the above
question is that we should require covariance under a change
of the extension.

The currents J,,, and J ] are not the semiclassical cur-
rents of Egs. (3) and (4) but are given in (57) and (58) in
terms of the wave function ¢(x,8). An important point,
which we have not discussed, is the e -0 semiclassical (for
the 6 dimension) limit. The operators § and & become ¢
numbers and the U(1)’, which played an important role in
our arguments, shrinks into a point. In this limit the currents
(57) and (58) should reduce to (3) and (4).

Finally we should mention the work on quantum me-
chanics in nontrivial topology,'” which has been inspired by
the Bohm~Aharanov experiment and which is a beautiful
prototype for the ideas involved in the topological objects. In
the Bohm~-Aharanov experiment we have a solenoid (singu-
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larity) that is a macroscopic classical object (which follows
only one world surface in space-time) and that creates a
multiply connected space. We should generalize these ideas
and study the “Bohm-Aharanov medium” where the tube of
magnetic flux follows all the surfaces in space-time. In this
paper we have presented a geometrical model for the Bohm-~
Aharanov medium.
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The d-dimentional space-continuous time-discrete Markovian random walk with a distribution
of step lengths, which behaves like x ~ ** % with @ > 0 for large x, is studied. By studying the
density—density correlation function of these walks, it is determined under what conditions the
walks are fractal and when they are nonfractal. An ensemble average of walks is considered
and the lower entropy dimension D of the set of stopovers of the walks in this ensemble is
calculated, and D = min{2,a,d?} is found. It is also found that the fractal nature of the walks is
related to a finite value of the mean first passage time. The crossover of the correlation
function from the fractal to nonfractal regimes is studied in detail. Finally, it is conjectured
that these results for the lower entropy dimension apply to a wide class of symmetric Markov

processes.

. INTRODUCTION

The morphology of random fractals has recently be-
come of considerable interest. One of the primary motiva-
tions for this interest has been the central role that these
morphologies appear to play in a variety of kinetic growth
processes. Among major questions to be understood in these
processes are the questions of what conditions are necessary
and sufficient for fractal growth to occur, and how the cross-
over to nonfractal growth regimes takes place. Unfortunate-
ly, even relatively simple, moderately realistic growth mod-
els are sufficiently complicated to render analytic progress
toward understanding these questions difficult. Under these
circumstances, it is therefore useful to study a much simpler
process which exhibits both fractal and nonfractal growth
and in which one can make analytic progress both in charac-
terizing the nature of the fractal object generated in the frac-
tal regime, and in studying the crossover between the fractal
and nonfractal regions. To this end, we will study the process
of Levy flights, which, in a certain sense, exhibit crossover
from fractal to nonfractal growth as the step-length expo-
nent of the walk is varied. Although the Hausdorff dimen-
sion of the stopovers of a Levy flight is always zero, the lower
entropy dimension' (LED) for the process is nontrivial and
corresponds to our intuitive motion of a “mass dimension.”
This dimension, defined for an ensemble average of walks
(see below) will be used to distinguish between fractal and
nonfractal regimes of the walk. Aside from their utility as
analog growth processes, Levy flights are also of interest in
their own right. Some work on the subject has been done by
Mandelbrot,? and on the related subject of Weierstrassian
random walks by Hughes, Montroll, and Shlesinger and
Montroll and Shlesinger.> Furthermore, after the work re-
ported in the present paper was completed, we became aware
of the work of Hioe* in which a number of our results are
obtained in the context of a lattice version of Levy flights.

The structure of the rest of this paper is as follows: First,
we shall introduce some preliminary notions including a de-
finition of the LED. Then we shall relate this dimension to
the density—density corelation function, after which we shall
calculate the asymptotic behavior of the density—density
correlation function for the processes of interest. We shall
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end up with an expression for the LED of the stopovers of the
Levy flight defined over a certain ensemble, as well as obtain-
ing a relationship between the fractal nature of the Levy
flight and the mean first passage time. We will also be able to
study in detail the crossover between the fractal and nonfrac-
tal regions of the walk as we vary the step-length exponent.
We will conclude with several comments and speculations.

The process we will study, a discrete-time continuous-
space Levy flight, is a Markovian random walk process con-
trolled by the probability function P(n + 1,x|n,y)dx dy
which is the conditional probability for the walker to be in
the region x + dx at time step n + 1, if he was in the region
y + dy at time n. Here x and y are points in a continuous d-
dimensional space, dx =d?x, dy=d“y, and n is an integer.
We restrict ourselves to P(n + 1,x|n,y) = f(x — y), and we
will be particularly concerned with cases in which
fx—y)~|x—y|~“*® for large |x —y|- The Levy
flight is thus a random walk with a variable step length
whose size distribution is determined by f(x — y). To inter-
pret the Levy flight as a “growth process,” we imagine plac-
ing a particle at the end point of every step. Among the quan-
tities we will discuss is the lower entropy dimension (LED),
D, of the collection of these end points or stopovers defined
by averaging over a suitable ensemble of walks. This D is a
measure of how N(L), the average number of particles con-
tained in a nonempty region of linear dimension L, scales
with L: i.e., N(L)~L?% and is thus consistent, for this
process, with our intuitive notion of a mass dimension. If
D(L) is independent of L over some range then the system
has a well-defined LED over that range.

Before proceeding with the calculation properly, it is
useful to carefully define the quantities in which we shall be
interested and to clearly state how averages are to be under-
stood. Consider then the Levy flight defined by

P, (x) =J.dyf(X—y)Pn_1(y), (D

where P, (x) is the probability density for the nth step to
land on point x. We start our process at time n = 0 at point
x = 0, so that in terms of the conditional probability defined
above,
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P, (x)=P(n,x|0,0). 2)
Now, suppose we have generated a single sample of a Levy
flight with a total of m steps. Let p,,, (x)dx be the number of
stopovers contained in the region dx about the point x. The
density—density correlation function is then

C,(rx)=p, (x+1)p,(X). (3)
This quantity can be integrated over r to obtain

L
N'(L:x) =f d% C! (r;x), 4)
0

which is the number of points contained in the region of
linear dimension L weighted by p,,. (x), the number of parti-
cles at x. Finally, we may average this quantity over a num-
ber of such m-step Levy flights and over all starting points x
to obtain

N(L)y=(N"(L;x))

L
= <f di C,, (r;x))
(1]

L
==( d"rpm(x+r)pm(x)>
0
L
=J dr{p, (x+1)p,, (X))
0

I L
:f d(C, (1)) =f d%C,,(r), (%)
0 (¢

where ( ) means averaging over the ensemble of samples.
An explicit procedure for performing this average will be
explained below. As we shall see, as a result of our averaging
procedure, N(L) and C,, (r) will beindependent of x. Inany
case, the x dependence for large m would be trivial since the
process is translationally invariant. Therefore, N(L), the
average number of particles contained in a region of linear
dimension L, having a behavior like N(L) ~L ? is equiva-
lent to C,, (r), the average density—density correlation func-
tion behaving like C,, (r) ~r” 4.

I. THE AVERAGE DENSITY-DENSITY CORRELATION
FUNCTION

We now want to calculate the average density—density
correlation function for the processes in which we are inter-
ested. The result of this calcualtion will be an expression for
the LED of the Levy flight averaged over a suitable ensem-
ble. We will also be able to relate the fractal nature of the
Levy flight to its mean first passage time, and we will be able
to study in some detail the crossover from a fractal to non-
fractal structure for the walk as we vary the step-length ex-
ponent. Unless explicitly stated otherwise in the sequel,
when we refer to properties of the Levy flight, it should be
understood that these statements refer to quantities aver-
aged over the ensemble of sample flights, the construction of
which we now explain.

To do this, we begin by defining a modified correlation
function,

Cm (rij,X) = (Pm (X + r)pm (x)>(j,x) ’

where ( ),,, means averaging over those systems in the
ensemble in which the jth particle (i.e., the jth vertex of the
given path) is between x and x + dx. Then
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> 'PLr + x| jx), (6)

Ca (rljx) =

where the prime on the sum means/ /. This is just the aver-
age particle density at the point r + x if the jth particle is at
the point x. Averaging over x, we have the correlation func-
tion averaged over an ensemble of samples in which the posi-
tion of the jth particle is taken as one end point of the correla-
tion function: i.e.,

C,. () =Jd“xPj(x)Cm (r] jx). (7
Using Eq. (1) itisclearthat P([xjm)y) =P, _, (x —y) for
I>m, so that

i=1 m—j
Cm(r‘j):: ZPI(T)"f’ EPI(T)- (8)
I=1 I=1

Finally, if we randomly choose one particle in the object as
the origin for calculating the correlation function, it is equal-
ly likely to be any of the particles, so that

1 m
C,.(r)==—NC,(r]j)=2 (1 —
mj;) lJ 2

We now want to take m— o in this expression. First we
show that C, (r) and =], P,(r) diverge and converge to-
gether as m— «o. To see this, note that if C,, (r) diverges as
m-s o, then ZJ°_, P,(r) also diverges since, recalling that
P, (r}>0, it follows from Eq. (9) that Z]L, P, (1) >1C,, ().
Furthermore, we can prove that if 2%, P,(r) diverges as
m— o, then sodoes C,, (r) as follows: If 2]*_, P,(r) - 0, as
m — w0, then for a given r there exists, for any L, an M such
that 27*, P,(r)>L. This means that for m > 2M,

C.(n>23% (1 —--—I—)P,(r)

I==1

)Pz(l') )]

>22(1 M P,(r)>2z( — 2Py

I==1 I=1

1
>2—L =L.
2
Therefore, for large enough m, C,, (r) is larger than any
preassigned number L, and so diverges as m— oo.

Finally we note that if C,, (r) converges we have

C(r) = hm C,.(r)=2 EP; r).
=1
The right-hand side of Eq. (10) is twice the mean first pas-
sage time for this random walk.
Now we use a Fourier transform to rewrite Eq. (10) as

(10)

1 fK) _a
C(r) =2 dk e ~ T, 11
™ (2#)‘“2,( 1 —f(k) (h
where
f(k) = ~—-—-(2 dﬂfdi-f(r)e"‘"

is the d-dimensional Fourier transform of f(r). We have
used P, (k) =f'(k). If we consider only those processes
which are independent of the angular variables, Eq. (11) is
reduced to a form of Hankel transform,
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C(r) =r—“- x)/zf°D dk }(lf)
o 1 —f(k)
Xk (d— l)/Z(kr) l/ZJ(d— 2/ (kr),
where r = |r|, k = |k|.
Let us now compute C(7) and the LED for Levy flights.
We consider walks for which the kernel in Eq. (1) has the
form

(11%)

n
f(r)~r*"2b,-r'“‘, a,>a, ;> >a,=a>0,
i=0

by #0, (12)

for large 7 and some integer #>0 (@ = o« is included as a
special case).
It is easy to show that (see Appendix A)

flky =1—pBk*+o0(k*) as k-0, (13)

where 4 = min{2,a}. Notice that }‘(0) == 1, otherwise the
P, (x) cannot be interpreted as probabilities.

Using (13) in (11) it is not difficult to determine the
necessary and sufficient conditions for the convergence of
C(r). We find that C(r) converges (a) for d>3 and any
a>0,(b)ford=2anda<?2,and (c) ford=1landa <1
Using (13) in (11), we see that for these values of d and a,
C(r)~r~“@—Pasro w,andsince C(r) ~r* ¢, D=4 for
these values of d and a. By Eq. (10), the mean first passage
time is also finite for these vlaues of d and .

For values of d and a for which C(r) is divergent, we
need to study C,, () in the m — oo limit a little more careful-
ly. This is done in some detail in Appendix B. Here we
report the results of this calculation. We find that for (d,x)
such that C(r) diverges, lim, _ , C,(0)—> o, but
lim,,_, , [C,, (0) — C, ()] is a finite function of r. There-
fore, it is also possible to extract for this case a value of the
LED by rescaling the correlation function by its value at the
origin. Defining C,, (r)=C,(r)/C,(0), we find
lim,,_  C,(r) =1, and so the LED in this case is D = d.
This is the case in which the LED of the trail of points left by
a typical sample of the Levy flight passages has the naive
dimension of space, and is, by Eq. (10}, also the case in
which the mean first passage time diverges. The value of the
LED for all of these cases, for both divergent and convergent
values of C(r) can be summarized by the formula
D = min{2,a,d}. Notice that we can mimic those cases in
which f(r) falls faster than a power as r— o« by setting

= 0. We then find the usual Gaussian result for short
range random walks, namely D =2 ford>2, and D = 1 for
d=1.

i1i. THE CROSSOVER REGIME BETWEEN FRACTAL
AND NONFRACTAL

The structure of a typical sample of the Levy flight pro-
cess, as we can infer from the results of an ensemble average,
are markedly different in the fractal and nonfractal regimes.
Since, to our knowledge, this is one of the only analytically
tractable systems to exhibit this crossover, it is of consider-
able value to explicitly display the behavior of the correla-
tion function in the crossover regime. This is done in Appen-
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dix C. Here we wish to point out some features of this
crossover and comment on the qualitative differences in the
behavior of a typical Levy flight in the fractal and nonfractal
regimes. First, we want to make it clear that there are really
three qualitatively different types of behavior possible for the
Levy flight: (i) For D <d<2 andfor D <2 and d>3 the Levy
flight is fractal-like and self-similar and the mean first pas-
sage time is finite. (ii) For D = d<2 the Levy flight is non-
fractal and space filling and the mean first passage time is
infinite. (iii) For D = 2 and d»>3 the Levy flight is not space
filling, but neither is it fractal. (This case also corresponds to
the usual short-range finite step length random walk above
two dimensions.} Because the walk is not space filling the
mean first passage time is finite in this case, also.

The dynamics for case (i) differs markedly from the
dynamics for cases (ii) and (iii). In cases (ii) and (iii) in
which the step length distribution, f(r), falls relatively ra-
pidly, there will be no very large jumps and the stopovers will
tend to congregate near the origin of the walk with the distri-
bution of steps forming a Gaussian-like distribution which
grows smoothly in width (and for d<2, in height) at time
goes by. For d = 1 and 2 the phase space is restricted enough
so that these dynamics will cause C,, (0) to diverge as m — o
causing the mean first passage time to be infinite. For d>3
there are enough random walk paths to prevent C,, (0) from
diverging as m— o, and so the mean first passage time is
finite. If, on the other hand, f(r) does not fall rapidly
enough, as is the situation in case (i), the dynamics is very
different. In this case very large jumps will be possible, and
the whole space will be sampled, although not densely. In-
deed, in computer simulations of fractal Levy flights it is
observed that the fractal structure is generated by the walker
spending some time in a given region of space, then taking a
single very large step to a far distant region, spending some
time there, and repeating the process in a scale invariant
way. This dynamics differs markedly from the smoothly
spreading Gaussian distribution of cases (ii) and (iii). In
terms of the density—density correlation function, we show
in Appendix B that for d = 1,2, if we set & = d — ¢, then for
small positive e, C(r) ~ (1/€)r <. Thus C(r) » 0 as €07
and [C(r) — C(0)] ~In r for large r and € = 0, a behavior
reminiscent of simple crossover effects in critical phenome-
na. This paradigm is worth keeping in mind as one studies
more realistic and complex growth processes with fractal-
nonfractal crossover.

iv. SUMMARY

In this paper we have analyzed the structure of Levy
flights in the continuum. Using the lower entropy dimension
as a criterion, we have found that the set of stopover points
can exhibit both fractal and nonfractal behavior depending
on the value of d, the number of dimensions in which the
walk is embedded, and «, the power with which the jump
distribution falls off asymptotically. We were also to exhibit
in detail the behavior of an ensemble average Levy flights at
the fractal-nonfractal crossover point. We showed further-
more that if the mean first passage time diverges, the LED is
equal to d, and the typical Levy flight (understood as a rep-
resentative of our ensemble) is not fractal-like. If the mean
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first passage time is finite, then the typical Levy flight will
not be space filling and will generally be fractal unless d»>3
and a2, in which case the dimension of the walk will be
D = 2, just as for the ordinary random walk with fixed, finite
step length.

We have analyzed the Levy flight for the specific step
size distribution of Eq. (10). However, a careful examina-
tion of the derivation of our results clearly suggests an inter-
esting generalization. We believe that the expression for the
lower entropy dimension of the stopovers of this random
walk, D = min{2,a,d}, will be correct for any symmetric
distribution f(r) where a is defined by

a= sup{a’U-}x}"f( Ix])d%x < ]

The random Levy flight we have studied has a very rich
structure, but, using the techniques of this paper, is amena-
ble to considerable analysis. Such models should prove to be
simple but useful archetypes in the study of fractal kinetic
growth processes.

ACKNOWLEDGMENTS

We are grateful to Z. Schuss for helpful discussions and
comments and to B. Mandelbrot for a stimulating corre-
spondence.

This work was supported by the Department of Energy
under Grant No. DE-FG02-85ER45189. One of us (R. S.)
also gratefully acknowledges the partial support of an Alfred
P. Sloan Foundation Research Fellowship during the early
stages of this work.

APPENDIX A: LEADING BEHAVIOR OF f{k) FOR SMALL
k

In this Appendix we show that for

”n
f(r)~r_d2b,,r_a‘; a,>a,_ ;> " >,=a>0,
=0

f drr—+e+0(1 — cos rky)
R

R
= — drr—U+e+D(1 cos rky) +
1/ky 1/ky

< (__I)j+l

by 50 for large r, we have
Jky =1—Bk*+ o(k*),
where 4 = min{2,a}.
Sketch of proof: Without loss of generality, let us consid-
er the case f(r) =r~@+®%= c,r~'for a>0, rlarge. By
using the integral representation of J, (x) for d>2 we have

» 1
k) = J drf(r)rf - ‘f dy(1 — y2)4 =208 kyr,
o 0

(Al)
where ¢ is a normalization constant. Equation (A1) can be
rewritten as

flky=1—¢

as k—»O,

]dy(l — )=
0

><[J°° drfiry*t— (1 —coskyr)}. (A2)
0

Let us first concentrate on the integral,
f drf(r)r =1 (1 — cos kyr)
0

in (A2). We divide the integral into two parts by some large
number R above which the expansion of f(r) around r = o
is valid, then expand the integrands properly, we have

derf(r)r“" 1 — cos kyr)
0
r21+d—1]

- k z;[f d — ()
121( y) Tt (2 )!
— cos rky).

+3a

=0 R

drr—(l+a+l)(1

Define

R i
e, (R) =J‘ arl=DAD) XG0 pPi+rd—1
o 2n!

thenitiseasy toseee, (R)’sarefinite forany R for « > R>0.
Next we divide the integral in the second summation into
two parts by (1/ky) (> R), then expand (1 — cos rky) in
the first part and rescale the integral variable in the second
part, and then we have

(A3)

drr=O+e+d(1 — cos rky)

R o0
drp—(+a+d+2y (ky)’(““’f drr=0+e+d(1 _cosr)
1

[ g— k 2/
121 2t () Vky
(k )z,( 1)j+l[ RY-U+a+ih+l (ky)—2j+(l+a+i)—-l]
B ’Z‘ PTG - (rasn+1 y-(Uratd+1

+ (ky)—(1+a+n+1f drr=+a+d(l _cosr)
1

= -—j;(ky)z’;gj (R,i) + (ky) ~@*9h,,
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where
X _11‘+1 R2i—(1+a+i)+1
gJ(R’l)z( ) s . s
N 2Y—U+a+i)+1
and
© . j+1
hi=z( 1.) ' 1 ‘
< @) Y-QAQ+4a+i+1

+J‘ drr=4+e+9(1 _cosr).
1

There could be a In(ky) term for @ = integer in the above
procedure, but it will not be the leading term, so it will not
affect our derivation.

Now we go back to (A3), and we found

fwdrf(r)ﬂ' (1 — cos rky)
0

= ;(ky)zf[e (R) — Eg. (R,l)cj]
+ ZC,.h,-(ky)_‘"“’. (AS)
i=0
Then we see

Jtky =1~ 3 k| [err - prILnY |

i=1

xf (11—
0

_cik —(a+i>[cihiJ‘1(l _yz)(d—s)/z z‘dy]
i=0 0
(A6)

)(d— 3)/2 2i dy]

Since ¢, #0
© ( _- 1)1 +1 1

A @)Y Y-—a
The leading term in the second summation is in order of
k ~“.The leading term in the first summation is k % for some
integer i > 0. If @ > 2, from the probability theory we know
that the second monent exists, therefore,
flk) =1—pPk?+ 0(k?). From all the above procedures,
we have shown for d>2,

Flky =1—Bk* + o(k*) with 4 =min{2,a} and B #0.

The proof for d = 1 is very similar (and also simpler).

By = #0.

APPENDIX B: FINITENESS OF C(0)—C(r)

In this Appendix we show that if
C(r) =lim,,__ C,(r) diverges, then lim,_ [C,(0)
—C,.(nN] is a finite function of r so that

lim,,_  C,, (r) =1,where C,(r) =C,(r)/C,(0).

The Fourier transform of C,, () may be written

&t =28 (1= D)o

I=1

(B1)

"Hm f Hm fm+1
=2 L .

[fH1 m H3 M H, ]
where H,, (k)=1— [ f(k)1™

596 J. Math. Phys., Vol. 28, No. 3, March 1987

Weneed to examine the cases d = 1 and d = 2 separate-

ly.
(a) Ford=1,

C,.(0)-C, (r)~dek [1—cos(kr)]
0

(B2)

Recalling that f’ (k) <1fork>0 andf(O) = 1, itis clear that
for m — « only the first term in the curly brackets survives,
0

(o) —C(r)~f dk (1 — cos(kr)) 2 (B3)

o H,

For k-0, the right-hand side of (B3) behaves like
§o(K*/K*)dk and so is convergent. For k— « the right-
hand side of (B3) is also convergent, having the behavior
f""f(k)(l — cos kr)dk. Therefore C(0) — C(r) is a finite
function of r.

(b) For D = 2; after integrating over the angular de-
grees of freedom,

= fk)
CO)-C(r)~ kdk—~
© () Jo H

1

1
XU (1—yp») 21 — cos(kry))dy].
(]
(B4)

For k-0 the right-hand side of (B4) has the behavior
§o(K3/K *)dk, which is convergent, and for k— w, the
right-hand side of (B4) behaves like

o 1
f k dk f(k) U (1—p)~ "1 — cos(kry))dy],
0

which is also convergent. Therefore C(0) — C(r) is a finite

function of r in this case also.

APPENDIX C: LEADING BEHAVIOR OF C(n) IN
CROSSOVER REGIME

In this Appendix we study the crossover between the
fractal and nonfractal regimes by examining the leading be-
havior of C(r) for large r and values of a close to the critical
crossover value.

(1) d = 1. Here the critical value of ¢ is a = 1. Let
a=1—e

(a) €<0. In this case we know from the results of Ap-
pendix A that lim,,__ C,, (r) = «© and C(r)/C(0) =1,
which we interpret as implying nonfractal behavior with the
LEDD=d=1.

(b) €>0.
cn) =’1i11:°Cm(r) j;(f)k —————cos(kr)dk
Y ('r/r)“‘,.( /) \cos " dr. cly
o 1—F(r/r) e

We now want to show that the leading behavior of the
integrals as r— o is a constant proportional to 1/¢€. To do
this we note that
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2 0= ()

is bounded and that

(C2)

1im 8T — . (C3)

T Tl_"

From this we can show that

[ (1_')] cos T ar, (C4)
r— r

1-¢€

lim ( )cosr I —
(1]

r— oo

and, since 7(0) is a finite constant, the integral in (C4) has
the behavior

J- r—oo

The leading behavior of C(r) for r large and € > 0 is thus
C(ry~(1/e)r— -

COS T “cosT

Note that as € -0 for large 7,
C(ry~(1/e)[1 —€lnr] = (1/€) —Inr.

Here we see explicitly thatas e » 0%, C(r) consists of a diver-
gent piece plus a finite function of r, which at the crossover
point is proportional to In r.

(ii) d = 2. The derivation of the behavior of C(r) in this

case is quite similar to the one-dimensional case. Defining
a = 2 — ¢, we have, as before, nonfractal behavior with the
LED D = d = 2 for €£0. For € > 0 we can write
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® Fk) J- 1/2
= ALY k
C(r) fo kd TS (1 —y*)V2 cos(rky)dy
=r‘f a5 (TV"(” (C5)
o 1—F(r/r) rlri=e

As before
(/r) - (Z)
1—Fr/r) \r
is bounded, and
J, 0(7' )

lim =0,

T— o0 7'1 —€
S0 that
lim dr (r/r)*—¢ (T\JO(T)
rmwdo 1 —f(r/rY \r) 1 —¢

P eV
rewl —f(r/r) 1-¢ ¢

Therefore for small positive €, the leading behavior of C(7)
for large r is

C(r)~(1/e)yr—=.

!B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francis-
co, 1983), p. 359, and references therein.

2B. Mandelbrot, see Ref. 1, p. 288f.

3B. D. Huges, E. W. Montroll, and M. F. Shlesinger, J. Stat. Phys. 28, 111
(1982); E. W. Montroll and M. F. Shlesinger, in Nonequilibrium Phenom-
ena II: From Stochastics to Hydrodynamics, edited by J. L. Lebowitz and
E. W. Montroll (North-Holland, Amsterdam, 1984), p. 1.

“F. T. Hioe, in Random Walks and Their Application in the Physical and
Biological Sciences, AIP Conf. Proc. No. 109, edited by M. F. Shlesinger
and B. J. West (American Institute of Physics, New York, 1984), p. 85.
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The Hamiltonian of the three-dimensional hydrogen atom is reduced, in parabolic coordinates,
to the Hamiltonians of two bidimensional harmonic oscillators, by doing several space-time
transformations,separating the movement along the three parabolic directions (£,7,¢), and
introducing two auxiliary angular variables ¢ and ¥/, 0<¥, ¥'<2x. The Green’s function is
developed into partial Green’s functions, and expressed in terms of two Green’s functions that
describe the movements along both the & and 7 axes. Introducing auxiliary Hamiltonians
allows one to calculate the Green’s function in the configurational space, via the phase-space
evolution function of the two-dimensional harmonic oscillator. The auxiliary variables ¢ and
i are eliminated by projection. The thus-obtained Green’s function, save for a multiplicating
factor, coincides with that calculated following the path-integral formalism.

. WEYL FORMALISM

The Weyl correspondence (1927), as denoted by
A<a(p,q), relates any operator

A= Ja(u,v)e‘ A (Qu+ P gy dy
of a Hilbert space to a phase-space function’
a(p,q) = Ja(u,v)e — Wi qutp) dy gy,

the Heisenberg uncertainty principle, which is mathemat-
ically due to the noncommutativity of the observables, in the
Hilbert space, being expressed in the Weyl formalism, by the
Wigner distribution function, or quasiprobability, not every-
where positive, associated with the states of a physical sys-
tem.? Two interesting formulations of Weyl’s ideas have
been proposed, by Kastler® and by Bayen ef a/.* In its most
developed formulations, this theory is an alternative to
Schrédinger wave mechanics, Heisenberg matrix mechan-
ics, or Feynman functional mechanics.

Gracia-Bondia® has recently calculated the hydrogen
atom spectrum and the Green’s function in the configura-
tional space, by making use of the well-known Kustaan-
heimo-Stiefel transformation, which has already been em-
ployed in celestial mechanics. His phase-space Green’s
function is that of the unconstrained four-dimensional har-
monic oscillator.

Our aim is to calculate the hydrogen-atom spectrum

A-B—a(p,q)*b(p.q)

= a(p,q)exp {—Z{% a% _9 i}] b(p,q)

and its Green’s function, in parabolic coordinates.® These
physical coordinates are useful especially when the system
has a prevailing direction, for instance, the electric field di-
rection in the Stark effect.’

By performing several space-time transformations, se-
parating the parabolic variables in the Hamiltonian, and in-
troducing the auxiliary variables ¥ and ¢/, it is possible to
determine the H-atom spectrum from that of the two-dimen-
sional harmonic oscillator (Sec. II). The generalized
Green’s function is obtained as the Fourier transform of the
evolution function (Sec. III):

g(E) = —%Lwdte"mz(——;-ﬂwt), (1

with &(— (i/A)H, t)>U =exp{ — (i/A)tH}. H «H.
Here

(g (-

is a solution of the following equation:

iﬁ%=Hw*?€ =&+*H,.
at

By taking into account the association between the product
of the two operators 4 and B,

BHb(lMl),

and a phase-space function defined by

A—a(p,q),

;- I+m+k+ _ys+m+n r+s+l4+m4+ktn r+s+Il+m+k+n
_ (ﬁ)r + s+ n ( ) a a a : kb , (2a)
raTm \ 2 st imlk!n! 9'x 3%, d'vyd™p, d*23"p, 3'p, I°x3’p, 3"y d"p, 3"z
k,n
598 J. Math. Phys. 28 (3), March 1987 0022-2488/87/030598-07$02.50 © 1987 American Institute of Physics 598



in a six-dimensional space, we express the Green’s function
in terms of Green’s functions that describe the movement

along the three axes.
The evolution function is related to the propagator K by
the following equation:

1 n ip
K(q,q,;t) = jd X {_..(q — l)]
(qfql t) (2 )n P exXp # f q

, (2b)

a=(q/+9)/2

€ (——-—i—Hwt>
X fi

where 2n is the phase-space dimension.
Il. SPECTRUM OF THE THREE-DIMENSIONAL H ATOM

In Cartesian coordinates, the classical H-atom Hamilto-
nian is written as follows:

Hy=02M{p2+p.+pY—a/r, P=x"+y"+7,
&)
M being the mass of the electron, and p = (p,,p, ,p,) and
q = (x,,z) satisfying the Hamilton equations
do_ My, du_OH,
dr dq d 9

It is obviously impossible to calculate the H-atom spec-
trum from Eq. (3), because of the occurrence of the Cou-
lombian term, which is indefinitely derivable and gives thus
an infinite-order differential equation or an insolvable inte-
grodifferential equation for the evolution function.

It is possible to find a coordinate change that transforms
the Hamiltonian (3) into that of an harmonic oscillator, the
evolution function of which can be calculated and is known.*
We employ the space-time transformations defined in Refs.
6and 7.

In parabolic coordinates,

X = ( é‘”) 1/2

y=(&n)'*sing, 0<En< o,

z=4E—7n), 0<$<2m,
the Hamiltonian [Eq. (3)] is written as follows:
2 P _ 2

M(£E+7) MEm £+

(4)

cos &,

{pié+pimt + (5)

<l

A. First time transformation (q,p,#) - (q,p,S)
By means of the “time” transformation

éﬁz__r(s) =é’(s)—i-‘ﬂ(s) ) (6)
ds 2 4
the Hamilton equations, which describe the evolution of
P = (psPy:Py) and q= (&,7,¢) in the coordinate system
(q,p,?), become

dp _dp ds_ OHy dp_ _ rOHa
dt ds dt dq ds 2 dq
dq _dg ds_OH.  dq _ r 9H,
dt ds dt dp ds 2 dp

in the coordinate system (q,p,s)-
The transformation (6) thus appears not entirely ca-
nonical. However, if
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LY YOI 1P
E 5 Mi“(t) r 5 Mi“(s) ) .
is the energy of the system and H, ~E, there can be defined
a pseudo-Hamiltonian 7% == (r/2) (H_ — E) which is nil,
in the weak sense of Dirac, and which keeps the Hamilton
equations unchanged:

4 a

dp r 0H, J (r ) a
P2 (lHm,-B)= L9,
ds 2 Jdq dq 2( o ) c')q%
dq _rdH, 9 (r ) d

A r7d 2 (Ll — =2 g

d 2 3dp p 2( a—E) 8p%

Thus this pseudo-Hamiltonian 57, determining the move-
ment in the coordinate system {q,p,s), is

¥ = -g—(Hc, —E)

L A AL 1y

wm o T et
a FE
- S = Etm=0. (7

The canonical variables p and q, occurring in (7), satisfy the
Hamilton equations. The “time” transformation eliminates
the denominator term (£ + %) of (5), in introducing a new
classical pseudopotential — (E /4)(£ + %), and in making
a/2 act as a pseudoenergy.

B. Separation of the movements

The angular variable ¢ is cyclic, thus dp,/ds = 0, and
Py = Pog 15 a constant of movement.

The equation p, = I, = xp, — yp,, allows the constant
Pos 10 be calculated in the quantum case*:

Spectrum{ p, } = Spectrum{/, } = m#,

wherem=0,+1,+2,4+3,....
Then the pseudo-Hamiltonian is the sum of two pseudo-
Hamiltonians 77, and 77,:

H=Hyp + K, —al20, (8)
with
pix  #m® E
H, = - X, = (§,7m). 9
o e g @ 9

These equations separate the movements along the posi-
tive directions £ and 7.

The quantum eigenvalue 7im can replace the generalized
momentum p,; we let #i—0 and m — o« as fim = const.

The pseudo-Hamiltonian (9) describes the movement
of a particle having a variable mass M /x, in two pseudopo-
tentials: the Coulombian potential #m?*/8Mx (%0, with
fim = const), and the potential — Ex/4 of an electric field
with the intensity E /4. It will be shown that every pseudo-
Hamiltonian 57°, is a constant of the movement. The evolu-
tion of 77, is indeed described by (x = £,7),

di¥

s Ko Y smpep, = 0

the Poisson brackets being understood in the weak sense of
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Dirac. Then, 7 =p,, #°, =P,, and, taking (8) into ac-
count,

By + B, =a/2. (10)

Because the pseudo-Hamiltonians 5%, and #°, contain
some Coulombian terms, both constants 5, and 5, cannot be
calculated now. It is clear that the pseudo-Hamiltonians #°,
and #°, govern the movements along the axes £ and 7, re-
spectively:

dx % K +H,—a/2) X,

14

ds  dp, p. op.
dp. ¥ K+, —al2) O,
ds ax ax - ax

x=(&n) and p, = (pe.,p,).

C. Second time transformation (q,p,s) - (4,p,0)
The time transformation

& _ 1 (1)
dé x(6)

ie.,
d 1 g o __1

6, €6y do, noy)’
aims at making constant the variable mass M /x in the kinetic
terms of Eq. (9). This time transformation amounts to intro-
ducing, according to the procedure described in Sec. II A,
two new pseudo-Hamiltonians, 7] (£p,,6,) and
x, (17,1),,,02),' nil in the weak sense of Dirac:

H = (1/E)(H ¢ —B) =, — E/4=0, (12a)
Xy = (1), —B,) =5, —E/4=0, (12b)
where
P #m’ B E
YoM sMx? x4
i-0, m-o o, fim=const, (13)

X = (gyﬂ)’ Dx = (P;ypﬂ)y i= (192)-
The 57, being the new Hamiltonians governing the
movements, the Hamilton equations

¢ 19%, 4 (1 )
= =—|—(F —B))
d6 ¢ dp, dp.\¢ ¢

_ 2 (s, E) 22

’

dp, 4 ap§
op; 1 87 a(l )
e _ e _ Y, —
36 £ O I g( e = A
- _i(;yl_ﬁ):_%
Ex 4 9

govern the movement along the positive axis £, in the coordi-
natesystem (§,p¢,6,). Similar equations are obtained for the
movement along the axis 7, in the coordinate system
(7.,,6,), by changing (£,p;,0,,7 ¢, 1,6,) into
(17.p4 ’929%7, v 232).

Thus the transformation (11) makes the masses con-
stant in the kinetic terms of (13), but it results in the occur-
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rence of two new Coulombian potentials 53,/x, i = (1,2),
x = (&7), in Eq. (13). The potential #*m?/8Mx, which is
Coulombian in (9), becomes centrifugal in (13). The occur-
rence of Coulombian terms in (13) makes it impossible to
use this equation in order to determine the constants 53,
(i=12).

D. Third transformation
The transformation (€,p, ) - (u,p, ), defined by

E=u’ and p, =p,/2u, (14)
changes the Hamiltonian &, (13) into
%l = pu ﬁzm - &z_E—
sMu*  SMu* W 4
(lim hm=const). (15)
#-0

The movement equations of Eq. (15) are, in the coordinate
system (u,p,,0,),

du 0%, dp, A#,

—=—* and —= ———=L,

deé, ap, » deo, du
In Eq. (15), the kinetic term has still a variable mass 4Mu>.
It can be made constant following the usual procedure, by

introducing a new time transformation (é,- ), which is
defined by

D — (). (16)
dr
It provides a nil pseudo-Hamiltonian
| =4(F, —E/4) =K, — 4B, =0;
or the pseudo-Hamiltonian
K, =p:/2M + #m?/2Mu* — Eu* =48, (17)

(with the usual limit rules for #*m?), which governs the
movement along the positive axis # in the system (u,p,,7):

du _ 9K, and dp,, - 9%

dr dp, dr du
By doing the same space-time transformation in the case of
the movement along the axis 7,

p, dé
= 1)2, == —— —-—2

7 =% ar

the Hamiltonian #, and the pseudo-Hamiltonian K, are

obtained:

= 4% (7'),

5 p: #m* B, E
¥, = A2 18
2T My sMyt 2 4 (18)
P #m?
= — Ev*=483,, 19
2= T R (9

#*m? being the constraint to the usual limit rules.

The pseudo-Hamiltonians K, and X, describe the two-
dimensional isotropic harmonic oscillator (E <0), by set-
ting

Py =Py =%im inEq. (19),
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with lim #im = const.

#i-0
Then
P P'zlf 2
H = + — Eu
®¢ M 2Mu?
2 2
P EPY gty v =aB, (20a)
2M
with
wW=X*+Y% X=ucosyy, Y=usiny,
and
Pt Ptzlf 2
H, = + — Ev
oM 2Mv?
2 2
-+ ! l} I
= -&-E—M—’f'-”— —E(X7?+Y?) =48,  (20b)
with
V¥=X%4+Y? X' =vcosy, Y =vsiny.

These equations allow the constants 5, and 5, to be calculat-
ed? in the quantum case:

48, =#l —2E/M 1'*[N, + 1+ N, +1],

(21a)
(N,N,) =0,1,23,...,0,
with the condition
Spectrum{ p, } = fim = (N, — N,);
and
48, =#[ —2E/M "> (N; + 1+ N, + 1), 21b)
(NN, =0,1,2,...,00,
with the condition
Spectrum{ p, } = fim = #i(N; — N,).
Accounting for Eq. (10), this gives us
E, = — Ma?/2#°n?,
n=n,+n,+|ml+1=123,.., 00,
(n,n,)=0123,.,0, m=0,+1,+4+2,...,
(22)

which is the well-known H-atom spectrum.

iil. GREEN’S FUNCTION OF THE HYDROGEN ATOM

The Hamiltonian operator corresponding to (5) is writ-
ten

a~ # 1 a
A= T 15 gewa &
M g Veg™ 3y =7
and as functions of the moments p, = (#/i)g~"/*d, g+,
conjugate to the g,

H=(1/2M)g=""%p \gg%ppe~"* — a/r,
whereby the quadratic differential space element is
2 2
ds2=§+’7[d§ + 21 1 ng ag
4 L ¢ 7
As aresult of the time transformation (6), a new, nil pseudo-
Hamiltonian, is obtained:

601 J. Math. Phys., Vol. 28, No. 3, March 1987

% = (1/2M)p Ngep, +g( — a/r — E) =0.

By redefining a Hilbert space by the scalar product without
measure

i) = f Y, dE dn dp,

which amounts to changing p, into — ifi d, in the aforesaid
Hamiltonian, the Weyl transform can be obtained:

L 1 o
P, =L p (-———~—E)
2Mp "‘\/EgaB*Pﬁ‘*‘\/g .

—_-5117 {P§*§ e + Py * P, +p¢‘§4-éi'_77n *p.,s}
_%_§@+m

=2-1;{-{p2§ +pim} +§§7('§17+":7)
_%_§@+m=& @

The Weyl-transformed #°,, thus coincides with the classical
expression 5% {Eq. (7)]. The generalized Green’s function
is obtained from Eq. (1), in the space-time system (p,q.s),
by setting

G(E) =L f ) dte*"""""?f( - —i-H,,,t)
hJo #
i i
= ——J. ds?(——-%w).
fiJo fi

A. Decomposition into partial generalized Green’s
functions and separation of the movements

(24)

The variable ¢ being cyclic, its conjugated momentum

Py is constant:
d
= — [op, —pys ] =0.
s

As aresult, p, can only have discrete values.

By using Egs. (1) and (2b) in order to separate the
angular movement from other movements by means of inte-
gration over p,, the expression (24) becomes

—i (77 APy (irhapyh— b0
G(¢pdsE) = — —L. g T
o £ J_. 2mh
xf ds ?f(———l—%-s)
o #i b= (dr+ 8372
_._1 + o im(¢!—-¢‘-)
S €
2

xf ds ff(—-’—ﬁ/'"-s), (25)
o #i
where 777 is expression (8) without the conditions #—0
and m- . The purely quantum potential (#°m?2/8M)
X (1/€ + 1/7) is thus introduced, and the independence of
& from ¢ is taken into account.

ASH A, = H 4Ky = K H,, withfi£0and m
an integer, then

L. Chetouani and T. F. Hammann 601



g’(;ﬁ‘lzm-s) =g~ Lo, s)8( - L3,5).

Each evolution function & ( — i/#i7°, -s) is also the Fourier
transform of a pseudo-Green’s function:

. . + N
3(——;{%x5)=i.f dﬁie-’ﬂﬁﬁgg"(ﬂi}'

This allows (25) to be written as follows:

G(¢f9¢£;E )=

+ o

i im(¢,— 67 f ® icxs/ 25
e dse
Q7)A m Z o

= - o0

x {[ | _+: dB, e~ “MBogy (ﬁl)]

X Uj: dB, e~ PR (B,) ] ]

The integration with respect to s leads one to write

=1 § me-a
G(¢f9¢i’E) Q). z e

tepte (B1)gE(B,)
[ apap, LD
P —r G/Z—ﬁl—Bz-i-fO
and, taking into account the analyticity of the g7’s,

1 im(dp—
G(¢p9:E) = (27)2"':2”0(2 (#r—90
+ 0, o
x[ [ apago(%~5,-8,)
Xgr(B)8E(B,). (26)

We thus succeeded in expressing the function G(¢,,4,;E) as
a function of two monodimensional pseudo-Green’s func-
tions g7, depending on the variables £ and 7, respectively.

B. Green’s function of the hydrogen atom

In the space-time systems (£,p,;6,) and (7,p,,;6,) re-
sulting from the transformation (11), an evolution function
# can be associated with each g% (8;):

2B =-Zﬁif°° o, &(—i,6,), i=(12),
(]

Q27
where 77, is the Weyl transform of the operator 3!\’”{ ,
2 2 A
jf:*_,;f;w=_l__*p"x 1 _#m B _E
Jx 2M [y 8Mx* x 4
P # B, E
AR ) 4
=0 —E/A=0, x=(n), p.=Pedy)
Furthermore
#m* -1 B .
Ky = A e m — = (1,2),
o 2M o o x 0P

differs from the classical expression (13), only by the pure
quantum correction — #/8Mx?, which is independent from
the potential and only depends upon the transformation
(11); but 5, coincides with (13) at the limit #—0, m— oo,
while #im = const.

602 J. Math. Phys., Vol. 28, No. 3, March 1987

Let
By = -4 f " de, e"“/‘*sf( _ _;;/,.,9)

_ __f do, ‘E""“”fé’(—;ﬁ”,we,), (28)

where %7, is the Weyl transform of the operator JV which
is obtained by the punctual transformations (14),
(6ps;01) - (up,;6,), and (9,p,,;6,) - (v,p,;60,).

For example, for 77°,,, we get

2 —~ 2 2

o, = 1() (&)+m.—_lz._&
sM u sMuy*t w?
__p #

2 3\ _B_E
M | SMu® (m 4) 24
which is different from the classical expression (15) only by
the quantum correction — 3#/32Mu?, but coincides with
(15) at the limit #—0, m - «, #im = const.
The time transformation (u,p,;0,) - (u,p,,7) has no
influence upon (28),

82(51) — __é_J; drei(‘t/ﬁ)ﬁ,rg(__é_K!wT),

where
1 P # ( 3)
Kw=— * o & 2 _ _.E'2
\ u ” U+ — — m a U
. 7 ( 5 1) )
= m‘— —}— Eu*=4p,,
YRETYT 4 “ !

and is again different from (15) by a quantum correction
— #/8Mu?, but coincides with (15) when %0, m— oo,
#im = const.

Finally, Eq. (26) becomes

—1i im{gs— &3
G(¢f’¢ "E) (2 )2ﬁ2 z e

m== — oo

o + o a
ST
XJ‘“’ dr e<4i/ﬁ)ﬂﬂg( —_ %Klwf)

0
% J' dr e(wﬁ)ﬁ,fg( _ _;_ szf')]. (29)
o

By integrating with respect to £,, £,, and 7,
: “+ a0 ) ©
G(¢biiE) = — e "’f’f dr e’
i B A
i H
X g( - 7K1w1’)$( - -;sz’f) . (30)
Now passing into the configuration space by integrating
with respect to p, and p, [« and v vary from — o t0 + oo,

whereby the movement is limited by an infinite barrier when
(u,v) <0],
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G (s @t 0,0 5E) = — &9 f dr e¥ar/h { 1
o

J-+ o dp e(,‘/ﬁ)pu(uf— u;)
2 ).

ap,comer (L)

i
T

X?(—%Klwr)

v=(vr+v))/2 }

u= (up+ u;)/2 2mh j_ o
Following (2b)

L[ g omo g ix,.0)
27k J- o #i

where P(uy,u;;7) is the propagator, which is written in the Feynman path integral formalism® as follows:

Pugu;;r) =fgu(a)@pu(a)exp(-;—fda(puﬂ —wa))
0

=P(uf;ui;7-)y
u = (uet+u)/2

(31)

= f Du(o)Yp, (a)exp[ fdﬂ (Pu

Introducing an auxiliary Hamiltonian® (p,,,
projection method'® to be used:

27 . _
P(ugusr) = (uu;)'"? L di, €™ P(uyyu,,0;7),

where

‘1—)( up'//f’uno;"')

i %)+ %))

— #/4)/2Mu?, where ¢ is an auxiliary angular variable (0<¥<27), allows the

1 P ‘ ‘
=WJ°@(“’¢)9(pu,p¢)exp(_h_J; do(p,u+pyyp — Hy ))

= f@X@ Y‘@p,‘,@p,,exp(—;i.—Jw do(py X +p, Y —H,,_ )) ,
(0]

H__. being the classical “Hamiltonian” [ Eq. (20a) ]. Naturally P can be related to the evolution function of the bidimensional

harmonic oscillator

_ 1 + o0+ o /R [px(Xp— XD + py(Yp— Y] i
P(uppru; 0 =“_—j f dpx dpye TN g(_—HmT)
(f¢f ) (Zﬂﬁ)z . W pX .pY ﬁ

with*

6’( — L.Hmr) =————exp [ — —ZLHosc tan ﬂ—} ,
# cos?(wr/2) #iew 2

and E = —} Mw’<0.

Integrating with respect to p, and py, developing Pinto
partial propagators, and integrating with respect to ¥, lead
us to write

—i (upu,)'?

#i sin(w7)

P(ugu;r) =

X exp [—21}1— Mo (u} + u,?)cot(a)r)]

I ( iMougu, )
"\#isin (071)/’
where I, is the modified Bessel function.

By reintroducing the initial variables £ = 2, 7 = 17, the
H-atom Green’s function finally becomes

tMa)

1/4 iy l'm(¢f— ¢
G(rf)rnE) (§]§ ﬂfﬂl) 2 €
© Jr e2iar/ﬁ ; ( _ iMm(é—fé—i)llz)
b sin(w7) " fi sin(wr)

- iMm(nfn,.)l/z)
#isin{wT)

an

Xexp[—— Gr+&i+n+m )COt(a)T)]
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(32)

= (X, +X)/2, Y= (Yp+ Y72

r
It coincides, save for the factor 4(£,&; 1,7, )14, with the re-

sult obtained by means of the functional formalism.® This
factor is due to the time transformations 8, —7, 8,—»7’' [Eq.
(16) ], and was ignored in Eq. (29).
The identity'?

+ oo

Z em™I ()1, () =L[(Z+2%—
allows the Green’s function [Eq. (32)] to be written in a
compact form,>’ after changing o — iw.

227’ cos ¢)l/2]

IV. CONCLUSION

We obtained the H-atom spectrum by classical transfor-
mations of the Hamiltonian, which lead to the classical
Hamiltonians of two bidimensional harmonic oscillators,
with well known spectra and evolution functions, in the
phase space [the Kepler problem with SU(2) ® SU(2) sym-
metry].

It seems difficult to obtain the Green’s function in the
phase space only as a function of physical coordinates, like
the parabolic coordinates, if one avoids the Kustaanheimo—
Stiefel transformation.

Thus, before doing the Weyl transformation, we have
written in the Hilbert space the Hamiltonian operators ob-
tained from different time-space transformations of the
Schrddinger equation.

The Weyl transformations of these Hamiltonians enable
us to obtain the evolution functions.
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The Green’s function was obtained by a Fourier expan-

sion [Eq. (26)]:
G(¢s¢:E) =

i im(gp— $;)
E e
Qr)? 5

T a5 nn)

X&7 (B1)gE (B2),

where the Dirac distribution takes Eq. (10) into account,
and gx(B,) and g7 (f,) are the pseudo-Green’s functions
corresponding to the projected harmonic oscillator Hamil-
tonians [ (20a) and (20b) ]. The intimate relation® between
the Weyl formalism and the Feynman path integral formal-
ism, particularly with respect to the Coulombian problem,
should be noted.>® It would be interesting to get the spec-
trum of the H atom in the case of spherical coordinates.
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The generalized Morse oscillator in the SO(4,2) dynamical group scheme
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A family of the Morse oscillators with certain quantized coupling constants are described as
composite objects in the framework of the SO(4,2) dynamical group scheme. Although a
single Morse oscillator can be solved by the subgroup SO(2,1) of SO(4,2), this SO(2,1) is not
the spectrum generating group, the set of all energy levels is given by the representation of
another particular one-parameter subgroup of SO(4,2), which is the dynamical group of a
single Morse oscillator. The continuous spectra of this oscillator and other variations of the
Morse potential are also discussed by making an analytic continuation from the Morse

potential well to the Morse barrier.

i. INTRODUCTION

Recently, some interest has been revived in the Morse
potential problem from both the physical application and
the calculational technique points of view.'~ In particular,
the SO(2,1) algebraic approach has been successfully ap-
plied to the study of the Morse oscillator model for molecu-
lar and nuclear anharmonic vibrations.! Although the al-
gebraic method has proved powerful for many quantum
problems,” there is no general procedure for constructing a
necessary algebra. It is certainly desirable to have a scheme
within which a class of problems, if not all, can be treated in a
unified manner. A possible candidate for such a general
scheme is the one based on the SO(4,2) dynamical group.”-'°
In this paper, we reexamine the Morse problem in one di-
mension in the context of the SO(4,2) scheme.

The Hamiltonian of the Morse system is given by

H = (1/2m)p* + de ~** — Be ~*, (1.1)

where a is a positive constant. For the standard Morse oscil-
lator,'" the constants 4 and B are positive and related by
24 = B. In our discussion, we include the nonpositive real
values of 4 and B for generality and for other possible appli-
cations. In the coordinate representation, the Schrédinger
equation, H |¥) = E |¥), is written as

2mA 2mB

d? _ _ 2mE
e e e

a2

¥(§) =0,
(1.2)

where we have set #i = 1 and & = ax. Usually, this equation is
solved for the energy eigenvalues and the corresponding
wave functions.

However, in this paper, we treat the Morse oscillator as
a composite system obeying a wave equation based on the
dynamical group SO(4,2).” A large number of relativistic
and nonrelativistic quantum systems belong to this general
framework.® In Sec. II, we discuss the SO(4,2) scheme for
the Morse system, and show that the basic equation of the
SO(4,2) scheme can be reduced in a particular representa-
tion to the Schrodinger equation for a family of Morse sys-
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tems (1.2). In Sec. 1II, we obtain algebraically the discrete
and continuous energy spectrum of the Morse oscillator
(A>0). We also find the energy eigenfunctions from the
basic equation in special representations. Sections IV and V
cover the Morse barriers with 4 < 0 and 4 = 0, solutions for
which are related to those of the oscillator case (4 > 0) by tilt
transformations. Some basic and necessary information of
the dynamical group SO(4,2) and its most degenerate uni-
tary irreducible representation are put together in the Ap-
pendix. Throughout the paper, we denote the special orthog-
onal group in N dimensions by SO(N) and its associated
algebra by so(N).

ii. S0(4,2) SCHEME FOR THE MORSE SYSTEM

The Morse oscillator is a composite system that, we as-
sume, obeys the wave equation’

W|¥) =0, .1
with a relativistically covariant wave operator
W=aP"T, + a,P” + a,P’S + S+, 2.2)

constructed on the carrier space of SO(4,2) ® 7(3,1). In
(22),T, (u=0,1,2,3) and Sare 5 of 16 operators in the
algebra of SO(4,2), P, are the generators of the space-time
translation 7(3,1), and P> =P, P* = M? is the invariant
mass squared. We characterize the system by selecting the
parameters of (2.2) to be

a,=[(@/2m) +A1/M, a,=a;=0,

B=(a*/2m) —A4, y= —B.

In the rest frame where P, = (M, 0, 0, 0), the wave
equation (2.1) takes the form

[(@*/2m + A)Ty + (a*/2m — A)S - B]|¥) = 0.

(2.4)

The physical state in a moving frame can be obtained by
boosting the rest frame solution. However, confining our

interest in a nonrelativistic Morse system, we consider the
choice (2.3) as a characterization of the system in the nonre-

(2.3)
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lativistic limit. For a relativistic Morse oscillator, we would
have to make a different selection of parameters. In (2.3) the
parameter a, depends on the invariant mass of the whole
Morse system. A similar situation occurs in other composite
systems.®

To find the rest frame solution of (2.4) we perform the
tilt transformation,

|D) = e~ 7| W), (2.5)

The tilt angle 6 may be fixed appropriately to specify the
group state |®). The tilt operator T, and other two opera-
tors, I’y and S, form the so(2,1) subalgebra of s0(4,2),

[Fo,S1 =T, [LT]=iS, [§T]= ~iT,  (2.6)

The group states |®) are chosen to be the basis states of the
most degenerate unitary irreducible representation of
SO(4,2). With respect to the subgroup SO(2,1), they are the
eigenstates of the Casimir operator Q2 =T% — S§2— T2,

Q%|®) = (@ + 1)|P), 2.7)

and are simultaneously eigenstates of a linear combination of
I";and S, which is to be specified by a particular choice of the
tilted angle 6,

e~ TWeT|d) =0, 2.8)
or
[((a*/2m)e® + de ~°)T,

+ ((@*/2m)e® — Ae ~°)S— B 1|®) =0. (2.9)

In the £-representation given by (A17) and (A18) in
the Appendix, we can express (2.9) as

2
[——-—d - — ___ZrnzAk Zg— e —2% ——zszke O~ ¢
d& a a

(oo =0

This equation coincides with the Schrodinger equation (1.2)
for the Morse problem provided that the following identifi-
cations are made:

(2.10)

k=eé°, 2.11)
and
2 1)2 a? 1
e
(Zm 75 )| P@ T D+
(2.12)

Thus we see that finding a solution of (2.9) under conditions
(2.11) and (2.12) amounts to solving the Schriodinger equa-
tion of (1.2).

In previous applications of the SO(4,2) scheme, the
generators of the s0(2,1) subalgebra are related to the ener-
gy operator, and a fixed value of the parameter y, i.e., a fixed
single representation of s0(2,1) contains all the energy lev-
els. In contrast, for the Morse system, we reverse the above
procedure. First, we fix the eigenvalue of an appropriate
SO(2,1) operator through the wave equation (2.9) and let
the energy dependent parameter y, i.¢., the Casimir operator
of SO(2,1), vary. This procedure allows us to obtain a com-
plete description of the Morse system in one dimension in-
cluding bound and scattering states. Here,

p= —@(p +1)=(2mE /a*) +}. 2.13)
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The eigenvalue of T’y is now fixed by geometry of the
Morse potential, whereas the energy E is related to the eigen-
values of the Casimir operator of SO(2,1). Hence we see that
for each physical state we use a different representation of
SO(2,1). In other words, we consider a family of representa-
tions T, of SO(2,1) and take one state from each corre-
sponding to a fixed value of I',. Therefore, SO(2,1) is not the
spectral generating group of the system. The energy levels of
a given Morse osciilator form a representation of a subgroup
of SO(4,2) commuting with I, which is in general SO(4).
Since the energy spectrum is nondegenerate for the one-di-
mensional case, we have only a one-parameter subgroup of
SO(4), i.e., the one generated by L,,, which lowers and
raises @ by one unit for a fixed value of L ,. This accounts for
the finite number of bound states. Furthermore, we see that,
for the Morse oscillator in three dimensions, the full SO(4)
representation will be the underlying Hilbert space of states.

Il. THE MORSE OSCILLATOR (4> 0, 8> 0)

To discuss the Morse oscillator (4 >0, B>0) in the
SO(4,2) scheme, we start with the basic wave equation (2.9)
tilted in the rest frame, and condition (2.13). Choosing the
tilt angle € in (2.9) to be

0 =1iIn(2mA /a*), 3.1
we reduce (2.9) into the form
[ (26?4 /m)V*T, — B]|®) =0. (3.2)

Of course, (3.2) is free of representation, so that it can be
handled in any representation. However, it is important to
notice that solutions in different representations are not all
physically equivalent.

The compact operator I'y in (3.2) can be diagonalized
7.9

FOI(Dn> = nlq)n >’

as
3.3)

where the discrete eigenvalue # is either bounded below

D (p)in=—@ +s (p<—1), (3.4)
or bounded above
D~ (plin=¢p—s (p<—Y), (3.5)

with s =0, 1, 2,..., as shown in (A24) and (A25). On the
basis, however, the dynamical equation (3.2) fixes the eigen-
value of T, to be

n=B(m/2a*4)V>. (3.6)

This is a point fixed in the homogeneous space SO(2,1)/T .
We see from (3.6) that n is fixed. Then for a fixed energy E,
@is fixed. Hence by (3.4) sis fixed. Thus, as we stated above,
we have one physical state in each representation of
SO(2,1).

If B>0, ie., if n>0, then the D * (@) representation
(3.4) is appropriate, but the D ~ (@) representation (3.5) is
not. Using (3.4) and (3.6) in (2.12), we obtain the discrete
energy spectrum for the bound states in the Morse potential
(see Fig. 1),

1) (5l
Es='__'B - - y
aml \ 2274 St3
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FIG. 1. The Morse oscillator with 4 >0 and B > 0: The principal contin-
uous series is for scattering states and the discrete series for bound states.

where

5=0,1,2,.<B(m/2d*4)"* — L.

In particular, setting B =24 in (3.7) yields the standard
result,

aZ (zmA)l/Z ( 1 )]2
E = -2 —(s+=)],
) 2ml\ & ot 2

with
§=0,1,2,..<(2md /a*)"/* — §.

The scattering states of the Morse oscillator (4 >0,
B> 0) correspond to the continuous values of ¢ in the prin-
cipal series of representation (A27),

(3.8)

Dp(¢)):¢)= —i+io (oreal), (3.9)
thus belonging to the continuous energy spectrum,
E =%/ 2m. (3.10)

For this oscillator, there is no continuum corresponding to
the value of ¢ in the supplementary series (A28). Again for
each energy we have a different representation of SO(2,1).

For B <0, ie., for n<0, the D * (@) representation
(3.4) is not applicable, but the D ~ () representation (3.5)
would appear consistent. The D ~ (@) series, however, leads
us to the discrete energy spectrum

E;= — (a*/2m)[ — B(m/28°A)"* — (s + D%,

5=0,1,2,..< —B(m/2a’4)"~
This is physically undesirable since the Morse system with
B <0 does not have a potential well in which the system is
bound (see Fig. 2). In fact, there are no finite eigenfunctions
belonging to the discrete spectrum E ;. All allowed states of
this Morse system (4 > 0, B <0) correspond, like the scat-
tering states of the Morse oscillator (4 >0, B> 0), to the
values of @ in the principal series (3.9), carrying the same
continuous energy spectrum as (3.10). The limiting case
where B = 0 can also be included in the continuous spec-
trum belonging to the principal series (3.9).
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V(x)
l

Princip. series

Az20, B<O

FIG. 2. The Morse barrier with 4>0 and B < 0: Only the principal series is
involved for the positive energy continuum.

To find the energy eigenfunctions, we employ I, in the
R-representation (A14) to reduce (3.3) to the Whittaker
equation'?

[ > _(@+P-} n_ 1

dR? R? R 4
whose solutions are given in terms of the Whittaker func-
tions or the confluent hypergeometric functions.'* For the
bound states with ¢ =5 — n (B> 0), we choose a solution
regular at R = 0. Transforming the R variable back into the
x variable, we obtain the wave function

D (x)=M, 12 (2ke = %)

]cp(R) =0, (3.11)

(3.12)

0 — 5 —

or
(Ds (X) — (zk)n-se—(n——s)ax

Xexp( — ke ™ *)F( — s, 2n — ns;2ke ~ %),
(3.13)

where n = B(m/2a’4)"'? as fixed by (3.5) and
k= (2mA /a*)"?, (3.14)
as chosen by (3.1) via (2.11). For the continuous energy

states with ¢ = — 1 + io (o real), the finite solution in the
valid range of x is

D, (x) = W,,, (2ke ), (3.15)

where o = (2mE /a?)2and n are given by (3.6) with BsO0.
For B <0, if one insists on using the D ~ (@) discrete series,
one can get from (3.12), by settinggp =n + 5,

"DE' (R) =Mn,j:(n+s+l/2) (R).

However, these solutions are divergent at either R =0 or
R = «, which we consider unphysical.

Alternatively, using the p-representation (A20), we can
write (3.2) as a differential equation of the Infeld—Hull
type,”

2
L+%+c,p2 +c3]<l>(p) =0,

- (3.16)
dp” p
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with

6= —4@+1)*+1=(8mE/a®) +}, (3.17)
;= —4k?= —8md /d’, (3.18)
¢, = 8k(mB?/2a°A)"* = 8mB /a*. (3.19)

The discrete energy spectrum (3.6) can immediately be ob-
tained from the formula of Wybourne,’

45+ 2+ (1 —4c)) 2 =cy(—cy) V2 (3.20)

For the continuous spectrum, we have to go back to (2.12)
with (3.9). The corresponding energy eigenfunctions (3.12)
and (3.15) follow via the solutions of (3.16)

O (x) =p'*®(p),
with p = exp( — lax).

(3.21)

In comparison with the usual radial wave equation, we
notice that in the R-variable equation (3.11), the energy
appears as an “angular momentum” and »n as a “coupling
constant.” The coupling constant, being quantized, repre-
sents a family of Morse oscillators. We may say that SO(2,1)
is the dynamical group of states of a family of different
Morse oscillators belonging to the same energy E, whereas
the dynamical group of a given single oscillator is the group
SO(3). Thus, even for a one-dimensional system, the larger
group SO(4,2) seems to be necessary, which contains both
the above SO(3) and SO(2,1) groups.

At this point, it may be relevant to remark that the
Morse oscillator can also be treated exactly by path integra-
tion. This is due to the fact that the Morse oscillator is re-
ducible to the Infeld—Hull form, which has been known to be
path integrable.'*

1IV. THE MORSE BARRIER (4 <0)

The Morse system (2.9) with 4 > 0 and B > 0 has bound
states and scattering states. However, if 4 > 0 and B <O or if
A <0, there are no bound states. In the case where 4 <0 (see
Figs. 3 and 4), the choice of the tilt angle (3.1) is irrelevant.

V(x)

Princip. series

Suppl.
series

A<Q, B<O

FIG. 3. The Morse barrier with A4 <0 and B < 0: The principal series is for
the positive energy continuum and the supplementary series for the negative
continuum.
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Thus, instead, we choose

6 =1In( —2md /a*), (4.1)
reducing (2.9) into
[(—24°4/m)"2S — B ]|®) =0. (4.2)

Since S'is anoncompact operator, its diagonalization yields a
continuous eigenvalue’

S|P,) =v|®,), (4.3)
where — 0 <v < 0. On the |®, ) basis, (4.2) fixes the val-
ue of v to be

v=B(—m/2a%4)"?, (4.4)
which is a point on the real projective line SO(2,1)/S. No
real discrete spectrum of @ corresponds to this case. The

positive and negative energy continua belong, respectively,
to the principal series of representation (A27),

p= —L+io (oreal), 4.5
and the supplementary series (A28),
@ = real. (4.6)

However, a complex discrete spectrum may also be obtained
by considering the D * (@) discrete series of representation
with n—ivin (3.4). The complex energy thus obtained is

E, = (a*/2m)[B( —m/28°4)'? + i(s + ) ]?,
s=0, 1,... s (4'7)

and this corresponds to the discrete tunneling of the positive
energy continuum into the potential hill. Besides multiple
reflections inside the hill, the trapped waves with energy giv-
en by Im E; would escape outside of the hill.

In the R-representation (A15), the tilted equation (4.2)
can be expressed as

> plp+1) v 1]
— — + —[l®(R) =0, 4.8
[dxz 2D 12y Lo (4.8)
withv = B( — m/2a*4)"*. Ifweset R’ = — iR, then (4.8)

V(x)

4 |

Princip. series

- X

Suppl 7 /"‘"—

A=0, B>0O

FIG. 4. The Morse barrier with 4<0 and B> 0: The principal series is for
the positive continuum and the supplementary series for the negative con-
tinuum.
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becomes

d? _(<p+§)2—}1 _lV__L] " o_
K7 R + 7 ®(R') =0, (4.9)
which is identical in form with the Whittaker equation
(3.11).Since we have defined R = 2ke ~ ** withk = (Z2mA /
a»)"? in (3.11), we have to recognize that
R'= — iR = ( — 8mA /a*)"?¢~“°* is now a real variable
ranging from zero (x— oo ) to infinity (x— — oo ). For the
positive energy continuum, regardless of whether B20, the
solution is of the form

P(x)=CM,,,2k'e ™)+ C'M,, _,,(2k’e” "),
(4.10)
and for the negative energy continuum
P(x)=CM,, ,(2k'e" )+ C'M,, _,(2k'e™ ™),
(4.11)
where

172
V=B(——-—m ) )
2a%|4 |

(zmIEl)l/Z
o= _— 5

a 2

a

172
k,=(2m|A|) .

The constants C and C' have to be appropriately chosen to
meet the boundary conditions.

V. THE MORSE BARRIER (A=0)

In the case where 4 = 0 (see Figs. 2 and 4), the basic
equation (2.4) or the tilted equation (2.9) with & = 0 takes
the form

[(@*/2m)(Ty+S) —B]|®) =0. (5.1)

Although 6 may be kept arbitrary, we can set 8 = 0 without
loss of generality. The continuous eigenvalue A of the non-
compact operator 'y + 5'is fixed by (5.1) to be

A =2mB /a’. (5.2)

Again, as in the case of 4 <0, if B> 0, the principal and
supplementary series of representation correspond to the
positive and negative energy continua, respectively. For
B <0, there are no negative energy states.

In the p-representation, (5.1) can be written as
d_z_ 42+ 1)2—1 +8mB

dp? 4p* a’

by setting k = 1in (A20) and (A21). A solution of (5.3) is
given in terms of cylindrical functions,

®(p) =p'Z,,,,(2k"p), (5.4)
wherek " = (2mB /a?)'/?. Thus, we obtain the positive ener-
gy solution

q)(x) —e (1/4)ax[CJ2ia (2k "o~ (1/2)ax)

(5.3)

®(p) =0,

+ C'Ny, (2k "e = /2y ], (5.5)
and the negative energy solution
<I>(x) —e~ (1/4)ax[CJ20 (2k e~ (1/2)ax)
+ C'N,, (2k"e~ "% ], (5.6)
where o= (2m|E|/a®)"'%. - Clearly, the constant

k” = (2mB /a*)"/?isrealif B> 0and imaginaryif B < 0. For
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B <0, the negative energy solution (5.6) must vanish in or-
der to remain finite for the entire range of x. Thus, there is no
negative energy continuum.

VI. FINAL REMARK

We see that for different ranges of the parameters 4, B,
and energy E one has to use different representations of
SO(2,1) and to make different SO(2,1) generators diagonal
(see Figs. 1-4). It is known that also in the H atom we use
two replicas of the SO(4,2) representations, one for the dis-
crete spectrum and one for the continuous spectrum in
which different generators are diagonalized. For the one-
dimensional Morse oscillator the full extent of the SO(4,2)
does not come into play because we transformed the system
(2.1) into the rest frame. It will come in when the three-
dimensional and moving system is considered.

APPENDIX: REALIZATIONS OF THE GENERATORS OF
$0(2,1)CS0(4,2)

Here we briefly describe some properties of the most
degenerate representation of SO(4,2) and provide some
physical realizations of the SO(2,1) generators relevant to
the discussions in the text.”'>!3

The 15 operators L g of the dynamical group SO(4,2)
form the Lie algebra so(4,2)

[LAB ’ L CD ]

= i(84pLac —8acLrp +8scLup —8epLluc), (Al)
where  4,B=1.2,..,6, 811 =82=833 =844 = —8s5
= —g¢¢s= — land g,z =0for4 #B. The algebra
s0(4,2) contains the angular momentum vector L(L,;, L5,
L,,), the Lenz—Runge vector A(L,,L,,,L,,), the Lorentz
boost vector M(Ls,L,5,Ly5), the current vector
I'(L,sL,6Ls6), and the remaining three operators
Iy =Ls, S = L, and T = L5, which form the subalgebra
s0(2,1). Here, I',, (I',I',) is a Lorentz four-vector and T'is a

Lorentz scalar.

In general, the basis of a unitary irreducible representa-
tion is labeled by the eigenvalues of the nine invariant opera-
tors. However, we confine ourselves to the most degenerate
unitary irreducible representation whose basis i§ character-
ized by the eigenvalues of only four operators. To realize the
generators of SO(4,2), six real variables are needed in gen-
eral, whereas only four are sufficient in the degenerate repre-
sentation. If polar coordinate variables (7,6,4,1) are used,
the radial variable » and the other angular variables can be
separated in realizing the operators. Let us set
(r,6,0,4|®) = &(r)D,,’, (6,4,9) with

L?D," (6.4,4) =1(I+ 1D, (6:4.9), (A2)
L12Dm110(0:¢,¢’) = ’nl)mll0 (9a¢’¢)) (A3)
LoD, (6.6,9) =1,D,", (6,,9), (A4)
where
[Lo»Lap]=0; 1,=0,12,.,0r § 3 3.
L= \l|,|l] + 1, llg| + 2,...,N;
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and
m= —1I, —~]+1,.0]—1L

The Morse system in one dimension may be characterized by
I = 0 and hence described by the representation with /, = 0.
If the compact operator I'y is diagonalized with the eigenval-
uen, then the upper limit N of /is n — 1. On the other hand, if
a noncompact operator of so(2,1) is diagonalized with a
continuous eigenvalue, then NV is infinity. Now we are able to
represent the generators of SO(2,1) in terms of the radial
variable r alone and treat them as operators acting on ®(r).
For example,

1 d> 2d IU+1) ]
o(r)=—r -4 _22 1|®(r),
oP(r) z’[ 2 a2 !

(A5)

1 d*> 2d IU+1) ]

==y £ _2 4 2T ,
(A6)
T®(r) = _i[ri+ 1]@0). (A7)
dr
It is easy to show from (A5)-(A7) that
Q%®(r) =1l + 1)®(r), (A8)

where Q?=T3 —S?—T? is the Casimir operator of
SO(2,1). Clearly the eigenvalue (@ + 1) of Q2 coincides
with that of L2,

el + D) =II+1). (A9)
Therefore we can write (AS), (A6), and (A7) as
TPo(r)
1 d* 2d  @plp+1) ]
=—p] — — - 11®(r),
2'[ 2 Tat 2 TR
(A10)
S(r)(p(r)
1 d* 2d  @l@e+1) ]
] — e = — — LT - 7 11D(r),
2’[ aF ra T R e
(Al11)
TO®Gr)y= — i{r-g——}— l]d)(r), (A12)
r
satisfying
Q*®(r) =g + DND(r). (A13)

The realization of the generators is by no means unique.
We can change variables and operands successively to obtain
various representations. To this end, in each step, we con-
struct the generators L’ es0(2,1) in such a way that
LP®(x) =f ()L &(y) when ®(x) =1 ®(py) under
the mapping x — y. First, let ®(r) = R 7'®(R) withR = 2r
(0 <R < ). Then, we have in the R-representation,

2
T{OD(R) = [ ~Rd‘;2 -t LD +-i-R]<1>(R),
(Al4)

d? (p+1) 1
S ®OPR =[—-R L ———R]QR,
(R) T R [e®
(A15)
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d
T®B(R) = — iR —P(R).
(R) i IR (R)

Next, let P(R)=R"? &(£), with R=2ke ¢
( — o <£ < ). Then, in the £-representation,

(A16)

© _ 1 e[ _a’
IPe€) =—e| — +@lp +1)

Tl BPTE
+-i-+k2e‘25](l>(§), (A7)
S‘5’<I>(§)=—1-ef[— d’ +olp+1)
% | dE?
+%——k2e—25]<1>(§), (A18)
TOB(£) = i[j—- —i]cb(g). (A19)
a2

Furthermore, letting ®(&) =p'/’*®(p) with p =e~ %
(0<p < ), we have the p-representation

F(()P)q)(p)
2
- _5;.1— (g + QP‘;‘“"*‘” +4k2p2]<b(p),
(A20)
S(p)q)(p)

1 d? 1 3
g oo
(A21)
TPd(p) = —%i[Zp-g;T+ 1]@(,0). (A22)

Suppose the SO(4,2) symmetry is broken so that the
eigenvalue of Q ? is shifted by

el + D =1U+1) —p (A23)

Certainly, Ty, S, and T, realized with this shifted eigenvalue
(A23), do not satisfy the so(4,2) algebra (A1). Neverthe-
less, they still form an s0(2,1) algebra. Therefore the realiza-
tions of the SO(2,1) generators with ¢, (A10)-(A22) are
useful in dealing with the case of symmetry breaking. The
parameter u” in (A23) indicates the degree of the symmetry
breaking of SO(4,2) to SO(3)  SO(2,1).

There are four types of unitary irreducible representa-
tions of s0(2,1): (i) positive discrete series D * (@),

n= —@, —@ +1, —@ +2a-~-,

@ real and negative; (A24)

(ii) negative discrete series D ~ (),

n=@, ¢ —1,p—2,., @real and negative; (A2S5)
(iii) supplementary continuous series D, (@),

— 1+ |Eo|<p< — |Ey|,  |Eo| <}

n=FE, E,+1,E,+2,.; (A26)
and (iv) principal continuous series D, (@),

¢= —Li+io, oreal (A27)

In the above representations, 7 is the eigenvalue of I'y,. In the
broken symmetry case (A23), the supplementary series
need to be modified as

(@ +1*<U — |E|D)? —p? (A28)
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An important class of 67 symbols for the groups SP(2¥), SO(2XN), and SO(2N + 1) with one
nontrivial multiplicity index is investigated. An appropriate choice of a basis in the multiplicity
space is made and the so-called canonical form for 6/ symbols is obtained. Their expressions
depending on the roots of an N th-order equation and explicit expressions for some simple class

of representations are obtained.

I. INTRODUCTION

The problem of finding matrix elements of generators
for simple classical algebras B, ;, Cy . ,, and Dy, with
reduction on subalgebras By, Cy, and D, is important for
applications of mathematical methods. The branching rules
for the above reduction are known."? The appropriate sets of
the so-called missing label operators are found.>* Applying
the generalized Wigner—Eckart theorem to commutation re-
lations between the generators, one obtains equations for re-
duced matrix elements. In this approach the 6j symbols for
chosen subgroups occurring in the above system should be
calculated. An important subclass of these 6j symbols is
found in the present work. In Sec. II the general remarks on
our class of 6/ symbols are made, and the symmetry proper-
ties of 3/ symbols entering into 6f are discussed. In Sec. III we
show that 6/ symbols may be found from the unitarity prop-
erties if some reasonable basis in the multiplicity space is
chosen. In Sec. IV their general expression depending on the
roots of N th-order equations is obtained. In Sec. V singular
cases connected with reduction of the dimension of the mul-
tiplicity space are discussed. Also, we have found explicit
expressions for a simple class of representations (see Sec.
VI).

The same class of 6/ symbols for the SU(N) group may
be considered, and we hope that our approach may be ex-
tended also to this group.

Il. GENERAL REMARKS ON THE INVESTIGATED 65
SYMBOLS

The class of 6j symbols to be treated in this paper shortly
denoted by $(Q),,, is of the form

Q) 0,9.) {l* ! A] 2.1)

¢ aa"‘¢(’aa_0 Q Q; ”A', (

where the symbols (Vs (Q = (2,,(),,...,2,,)) label a unitary
irreducible representation (UIR) belonging to groups
SP(2N), SO(2N), or SO(2N + 1) and Q* is the complex
conjugate representation. The representation
(24,5,...,£2,,0,0,...,0) is written shortly (£2,,(2,,...,2, ) and
we sometimes omit the parentheses in our notation if the
meaning of the label is obvious, as in example (2.1). The A
representation is one of (0), (11), (2), and the 4 is the mul-
tiplicity index, so, in the Kronecker product of representa-
tions 2 X A, the ) representation may be found more than
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once. Other multiplicity indices do not occur in our symbols,
so we use dots in their place. Here, we use the same definition
and the notation of 6j symbols as in Ref. 5. In expression
(2.1) index in the left-hand side is fixed from the Q/, repre-
sentation in the following way:

Q; - (91,92,...,9“1‘ _l,ﬂlal + Ea,ﬂla! +1 ""’QN) 3
(2.2a)

where €, = 1( — 1) if the a>0 (a<0). For the case
SO(2N) one more ()} representation should be added,
Q= (0,0,...0) . (2.2b)
Hence therangeais + 1, + 2,..., + N, (0), respectively, for
cases SP(2N), SO(2N), (SO(2N + 1)) and the reduction of
a’s must be done if some €2/, is not an allowed label for the

studied group [see (2.5a)-(2.5¢) and text below]. Let us
introduce the notation

AL=01), A_=(20), A=(0), (2.3a)
for groups SO(2N) and SO(2N + 1) or
A+ = (2’0) 3 A_= (1)1) s A()‘_— (O) s (2'3b)

for the SP(2N) group [here A | is an adjoint representation
for all cases]. The case of the SO (4) group is rather peculiar.
In this case the three-dimensional representations (1,1) and
(1, — 1) are used instead of the A, = (1,1) + (1, — 1) and
some modifications of expressions to be obtained here
should be done.

The dimensions of the multiplicity space referred to tri-
ads {Q,0* A, } are denoted by d_ . All symbols of our
class may be written if one uses index a instead of
A, A, A, where

a=4,, for A=A, (2.4a)
a= —1, for A=A,, (2.4b)
a=—A_—1, for A=A_, (2.4¢c)

for cases SP(2N) and SO(2N). For the SO(2N + 1) group
(2.4a) and (2.4b) coincide, but if 2 #1 (see Sec. V) then
(2.4¢) should be changed:a = — 2, — 3,..., —d_,0.

In what follows we will understand ¢(2),, as a square
matrix, the dimension of which depends on (). For that rea-
son we introduce §, symbols

o=lo oo (2.59)
1o, ifQ,=9Q,,,, '
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where a=12,.,N—1 [or a=12,..N—2 for the
SO(2N) group]
[1, if Qy>0,
6N = N
0, if Qy=0,

for the SP(2¥) and SO(2N + 1) groups, and for the
SO(2N) group we have

(2.5b)

1, if Qy_, >,
On—_1 ={ . w1 > [l (2.5¢)
0, if Qy_,=+Qu,
1 y if nN——l >09
= 2.
On {o, if Qy_,=0. (2.5d)
For the SO(2N + 1) group we use
1, if Qy#04,
S =[ ‘ 2.5
°7 10, otherwise. (2.3¢)

Now we may introduce A, symbols indicating rows of

Jf+1-m(©2f+ 1),
D,=D, =11,
JQf+1 -3 Q2f+ 1),

if a>1,
fa= -1,

where D, is the dimension of UIR M and D, is denoted by
D,. We have

N, for SP(2N),
f={N—-1, for SO(2N),
N—}, for SOQN+1),

_ [1 R for SP(2N),
T=1-1, for SO2N) ,SOQ2N +1) .
The following three classes of 3j symbols occur in 6;:
(a) (naorn*)m()m' ’
(b) (Q,Ai )‘Q'* )Atm,mzrng s
(©) (,1,95%) 1 mym, -
The symbols of class (a) are proportional to the ele-
ments of the metrics tensor
(Q)mm' = ((Q)MMl)* = (Dn )1/2(0’099‘)m0m”
that is used to raise and lower m index in the usual way,
F(Q)™ = (Q)™F(Q*),, ,
F(Q),, =FQ*")™(Q%),, -
All representations for groups SP(2N), SO(2N + 1), and
SO(4N) are self-complex-adjoint, but for the group
SO(4N + 2) we have
(05,0, _ 1,0)* = (Q,,Q0,...Qx5_ 1, — Qy) .
It is possible for all classes to use real 3j coefficients that
have very simple symmetry properties:
(QP(I) QI,’(Z) QP(3))
’ ’ Amp(yymp0)My(3y

= (- DTS QLezan, L (29)

Here S» = 1 for odd and S = O for even permutations P

[Q] =%Z (-, (2.10a)
for the SP(2N) group and
[Ql=19,, (2.10b)
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ifa=0 or ag -2,

#(),, that are equal to zero and should be removed,
Ay=1, A =8, BJ;=0by—0, )
A,=6,_,, A_,=6,, fora=23,..,N.

The dimensions d , ,d _ introduced above are

N
d, = Z 8, , (2.6a)
a=1
N—-1
d_=3 6, +6. (2.6b)
a=1

These formulas will be proved in Sec. V.
The unitarity conditon for our 6j symbols may be writ-
ten

> DD, p(Q)%,$(M)p, =654, , (2.72)
> DD, $()2,4(Q)y, =6, (2.7b)
(2.8a)
(2.8b)
(2.8¢)

I

for the SO(2N) and SO(2N + 1) groups (N>2). For coeffi-
cients of class (c), relations (2.9) may be obtained if appro-
priate phase conventions are chosen. The same is true for
classes (a) and (b) if © is not equivalent to Q* [the
SO(4N + 2) caseif 2 7#0], butif  ~ Q* the requirements
(2.9) are not trivial® and should be proved. We do not touch
upon this question in this paper [here the plethysm rela-
tions’ (02) ® { p}, for { p} = {2},{11} must be investigat-
ed]. We obtain the following symmetry relations for 6/ sym-
bols if all entering 3j symbols fulfill conditions (2.9):

T
@) @0, O3)amaa, |07 OF 0F) 444,
[ o)
w 1] W) 4,4.4,4, ’
e (2.11a)
EEWEY
Wy @y W3)a,4,4.4, ot Q, Qf AoAsAzA,
_{w, oF Q‘s"] — ...
Q0 03) 4,40, ,
(2.11b)
[Q, Q, 03] *
W, @, W3la4,4.4,
_{Q}" Q: Q;-]A.AzA;An
of of of
= G(QFww*)™i
X G0 N30,) G (0,08 08)"
[0r QF OF
xG(Q,0203)“"°[ P 3] .
ot o¥ of A, Ayd A,
(2.11¢)
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The multiplicity metric tensor G (2,Q0*,A% ) [see (2.11c)
and (2.1)] is unitary,’ and symmetric for the above case.
Here it does not depend on the order {Q2,Q2*,A* }. The one-
dimensional metric tensors corresponding to the triads
{1*,1,A, } and {Q*,1,0.} are chosen to be equal to 1,
hence, we may omit the three dots [see (2.1)] connected
with ordinary 3j symbols. Taking into account that A*_are
equivalent to A, and (2.11a)—(2.11c), we may rewrite the
unitarity conditon (2.7b) in the form

Y DD ¢(0) 0 () = GIAA*A, ), . (2.12)

Matrix ¢ (£2) to be obtained in Sec. IV is real, hence compar-
ing (2.7b) and (2.12) we find that the tensor G is a unit
tensor

G(Q,0*A,), =6, . (2.13)

In the next section the definition of the tensor operators
(2.14) T(I'),, and the generalized Wigner—Eckart
theorem?® will be used (2.15):

[4(A}),, T(T),,.]

=z(Fm'|A(A+)ml|Fm2)T(F)m, , (2.14)
(n1m1|T(92)m2l93m3)
= 3 (@)™ QF003) 4 mym,
Amy
X(QIHT(92)||Q3)A, (2.15)

where A(A  ),, are generators of the investigated group. Ex-
pressions (2.15) are manifestly invariant under any unitary
transformations acting in the multiplicity space, but for
T(Q),, =A(A.,),, itis more reasonable to do the choice

(Q[AAD) ]| ) =867 (3Cq Dy ) V2. (2.16)

This condition is invariant with respect to U(d, — 1) trans-
formations which do not touch the index 4 = 1. These trans-
formations will be used in the next section. The function C,
is an eigenvalue of the second-order Casimir operator, and
we have

N
Co=2X Y (@2 —g2), (2.17)
a=1
where
B, = Qa +ga ’ (2183)
g, =f+1—«a. (2.18b)

lil. BASIC ASSUMPTIONS OF THE PRESENTED
APPROACH

In this section we find one (g = 1) column for the ¢ (2)
matrix and some simple relations. This permits us to calcu-
late the whole matrix.

)

A: Ab A+ ] [A: Ab
1 1 1 QO O
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A,

Fo—(—1 2[m+2[(1>1{
s=(—1 Q

614

If we take definition (2.14) for I" = (1) between states
(Q*m| and |Q*m') and we make assumption (2.16), after
rather simple calculations we obtain

1* 1 A
1/2 +
(CaDa) [Q : n;]..l.
1 1* A
1/2 -+
+(Co.Dq,) [0,; Q, n]..l.

_ PlAa( Cy, )1/2 .
D,

Here (2.9), (2.15), and a simple tensor sum relation
2 F(Q)"G(Q),,

3.1)

=(— DY FQ%), 6™

has been applied, too. Taking into consideration that repre-
sentations (1) and (1*) are equivalent for investigated
groups, one finds a very similar expression to the well-known
SO(3) formula

¢(Q)a1 =P1N1¢(Q)a1 ’ (3.2a)
P =(— l)ml+ [QL] + [Aq] + L] (3.2b)
N, =2X(CoDaCy, Dy )T = (CoDo D, ) BRI
(3.2¢)
¢(Q)al = Aa/4(cﬂ + C(l) - CQ"I) = Aa(f_ (l)a) ’
(3.2d)

where the following generalization of (2.18a) and (2.18b) is
done:

(3.3a)

W, = Eaa)|a| )

and for the SO(2N + 1) case the component @, is included

wo= —1. (3.3b)
In the same way we obtain other 6j coefficients
o a ot
0 Q Q B1-
_ ( _ 1)2lﬂl+[/\+]+[Ai] 5,;
—1/2 CA:!: (3.4)
X(CnDnCAiDAi) - .
Let us introduce new symbols
H}{ = (CqoDoD,D,D, )'°F3, (3.5)
5= P PP D, ()2 (D)2 (N)y,  (3.6)
P( D)oy = P (CaDo D) (D), - (3.7)

The symbols F§ are a simple extension to a nonsimple reduc-
ible group of the so-called second kind 9j symbols, and they
may be expressed by two 6/ symbols,

4
] ) (3.6")
B1
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The 3j symbols entering into the first 6/ symbol are ordinary,
hence we omit the multiplicity indices and the indices 4 (B)
in the second one depend on the @ (b) [(2.4a)-(2.4c) and
text below].

Lemma 1: Eigenvalues of the Hermitian H matrix are
the ¥(£)),, coefficients.

Lemma 2: (a) The following equations for the ¥(2),,
are satisfied:

¢(Q)aa Uaa = ¢(Q)al Ual ’ (3-8)

where U, = (U,,,U,z5.-.Uspp 1 — ) are eigenvectors of
the H matrix or else the following is true.

(b) The H matrix has the reducible form and here Eq.
(3.8) touches only the index @, a occurring at the same
block.

Proposition 1: (a) If relations (2.16) are preserved and
all §, symbols (2.5a)—(2.5¢) are equal to 1, then the matrix
H may be chosen in the so-called canonical form

H=H”+G, (3.9a)

where H ? is the diagonal matrix and G is of the form

_feo g]
6-[2 2.

Here all elements of the O matrix are equal to zero and the g
is a square N X N-dimensional matrix for the SP(2N) and
SO(2N) case

(3.9b)

X, X, X, X,
0 0 0

g=|2 @ |, 390
| 0 0 0 0 Qy

and g is an N X (N + 1)-dimensional matrix for the
SO(2N + 1) case

X, X, X; Xy X,
0 o, 0 0 0
&=1 . : : : :
| O 0 0 0 Oy 0
(3.9d)
For the diagonal elements of H we have
0, fa= -1,

a

H? =
4 12f+1—7), ifa<—2 [ora=0

for the SO(2N + 1) case] .
(3.10)
Here the following order of index a is established:
L2,..d.,—1,—-2,.,—d_,(0).

(b) If some 8, symbols are equal to zero, then the ele-
ments of H outside the range of @ [see (2.6a) and (2.6b),
(2.4a)-(2.4c) and the text below] vanish.

The proof of Lemma 1 is very simple. Here we obtain the
relation Tr(H" ) = =, (¢,,, )" immediately from the unitar-
ity relations (2.72). Lemma 2 is derived from the relations

('ﬁ(‘Q’)al )" = z (H")?¢(Q)aa ’

which are also obtained from the unitarity relations (2.7a).
Prooffor Proposition 1: (a) The whole space related with
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index a is decomposed into three subspaces & ,,. o, & _
connected with three multiplicity spaces appropriate to the
triads {Q,0% A, L{0,0%A}{0,0%A_} [see (2.4a)-
(2.4¢)], and a more general multiplicity transformation is
U+(d,)yxXU°1)XU~(d_).Infact, we may use only the
Ut(d, —1)XU°(1)XU~(d_) transformation if rela-
tions (2.16) are preserved. Next, the diagonal blocks H T,
HY, H—-,and Hy, H® are obtained by using (3.4)-
(3.6b), (3.2a)~-(3.2d), (2.17), (2.18a), and (2.18b). The
off-diagonal blocks H ;- ,H°_ are equal to zero from the gen-
eral properties of 3/ coefficient. The appropriate choice for
transformations U *(d, — 1) and U ~ (d_) may be done,
and the off-diagonal block H * according to (3.9¢) or
(3.9d)» may be obtained. The proof of point b will be put off
to Sec. V.

IV. THE OFF-DIAGONAL ELEMENTS OF THE # MATRIX
AND THE SOLUTION FOR THE ¢(2) MATRIX

The dispersion equations for the A matrix may be writ-
ten in the form

Hwae[mllz(w_wa)]
g [20+1—¢,]
N(O) 4|X, 2
I .|
= Ro+1—¢,)20+1—¢q_,)
where the (2/+ 1 — 77)-dimensional set

, (4.1)

(0] = [@1,@2sO 5@ _ 1,0 _ 25000 _ 5 (@) ]

is defined by (2.18a) and (2.18b), (3.3a) and (3.3b) and we
have

g.=2f+1, (4.2a)
g_,= —1, (4.2b)
gdo= —q_,=2(Q2 +1"* for a=23,.,N,
(4.2¢)
go= —1. (4.2d)

Here g,(9_o=¢_., = 1) is added only for the SO(2N + 1).
Comparing the residues for different poles of the function in
the left- and right-hand sides of Eqs. (4.1), we receive two

different expressions for all terms X, =X(q,),
X, =X_,=X(q_.,));
1
lXa|2= _—4— r[[ [2wa +1 _qa]
wqElw]
~1
X( I Ile —qa]) , (4.3a)
qelq]
I FEd0d _ o
except the case SO(2N + 1) when fora = — 1 we have
1 17, 20,)*
X _1]* —F|Xo|? = — ‘ (4.3b)

8 H§>v=2 (q12; -1
Similar modifications of (4.3a) should be done for the singu-
lar cases, i.e., whengq, (fora = + 2, 4+ 3,..., + N) takes val-
ues g,, ¢_;, or gy or when they are equal to each other. A
more simple formula for X, is derived if (2.17), (2.18a),
(3.2a)—-(3.2d), and (3.4)-(3.6b) are used:

X [ 2 N ( 2 gz)]l/z (43 )
_——— a— 8&a . .IC
Clarion 2@
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Next, comparing X, with X _, for a = 2,3,...,N we obtain
the following equation for g¢:

1= ﬁ (20, +1-9)(20_, +1—9q)
a=11Q20, +1+¢)20_, +1+¢q)
{(ql +9g-1+9)/ (@ —q)(g-,—9),
— (g1 +9)/(g1—9q),

appropriate for the cases SP(2N), SO(2N) (up case), or
SO(2N + 1) (down case). For the down case we get 2NV — 2
roots g, = — g_y,...n = — ¢ _n, likewise as for the up
case when one unphysical root ¢ = 0 should be removed. If
4, = —q_a a=23,..,N, are found, then all elements of
the H are known, hence the components of the vectors U,
may be calculated immediately and from (3.2a)-(3.2d),
(3.7), (3.8), and (2.10a) and (2.10b) we obtain

(L), =P_(Da (2f+1— 77))_1/2 » (4.5a)

#(Q) o, =140, {20, + )2 — @2} 'X,6(Q),, ,
(4.5b)

$(Q),_, =2Qa, +1+mM{Qo, +1)>—¢i}!
X (Day /Da_)'"2X,0(Q),,, (4.5¢)

$(Q) o ={w, + 1}7'X,(D,s /Dy )'"2$(Q),,
(4.5d)
where the last component ¢(£2),, only for the SO(2N + 1)
case is included, and Q, = (g2 — 1)'/? for a =2,3,..,.N
[see (4.2c) ]. The phase for factors X, (a = 2,3,...,N) may be

chosen [see (3.9c),and (3.9d), and proof of Proposition 1]
so we may let X, = (|X,|>)"/2

(4.4)

J

(A) Qi=Qi+l ’

(B) (Q) = (02,9,,..,.0,_,,0),
(Cl) (ﬂ) = (91’92,-"’91\(—1’0) s
(C2a) () =(0,9,..,0,y_,,0),
(C2b) (N2) = (02,,Q,,...05_,,0,0),
(D) () = (Qp Qs Uy _1:4)

The separation of set [@] into two subsets should be done as
follows:

[&)] - [w]in o [w]out s

where (@] =l@_,0,,,] for case A,
[w]out = [w—N’a)()] (w_N =Wy = ‘—%) for case B,
[@]ow =[w_y] for cases Cl, C2a, and D,

[@]ow = [@_n 4 1,@n@ _ 5] for case C2b (here we simul-
taneously have case A with respect to the pairw _ 5, ;,0y5).

Note I: If more than one pair of [@ _ .0, , , ] satisfying
(5.1A) is found, or if (5.1b) or (5.1¢) or (5.1d) is found
simultaneously with (5.1a), then all of the above compo-
nents should be included in [@],,, -

Now the following results are immediately found.

(1) The expressions 2w + 1 for all @ belonging to
[@].u are the roots of Eq. (4.4) for singular A, B, and all C
cases. Hence for all cases the separation of [¢] into two parts
should be done (5.2a), and the elements [¢q],,, are obtained
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Proposition 2: All roots of Eq. (5.3) are real and if
20, + 13¢,>20, ., + | then the positive roots values are
bounded by inequalities

20, — 129,220, +1, for a=23,.p,

20, + 13¢,>20, — 1, for b=p+1p+2,.,N,
and g, tends to 2w, — (¢ _,~»20_, +1) f 20, _, — 1
tends to 2w, + 1.

From Proposition 2 follows that matrix elements
$(Q),, are real and that right-hand sides of the relations
(4.3a) are positive. The above conclusions also remain true
for singular cases.

V. SINGULAR CASE FOR 6/ SYMBOLS

In this section we investigate all cases when H and ¢(£})
matrices are not, in fact, (2f + 1 — %) dimensional. The full
agreement of the results obtained below with rules (2.5a)-
(2.5d), (2.6a), and (2.6b) assumed by us in Sec. II is ob-
tained.

Definition: We shall say that we have a singular case for
the coefficients 6/ if any one of the following relations holds:

Ww_,+1=—Qo,,, +1), (5.1a)
2w _y+1=0, (5.1b)
w_y+1=qg_,, (5.1¢)
2w _y+1=4gp. (5.1d)

The following representation leads to the singular cases A,
B, C, D:

or if [for the SO(2N) group only] Qy_, = — Qy,
for the SO(2N + 1) group,

for the SP(2N) group,

for the SO(2ZN) group,

for the SO(2N) group,

for the SO(2N + 1) group.

]

from (5.2b), where all we{w],,,, are used:

(5.2a)
(5.2b)

[q] - [q]in ® [q]out >
g=2w+1.

(2a) For cases A and Bwehave X, (=X _ ) = 0 (here
the notation [¢] . = [gn,q _ ~] is used).

(2b) For case D we obtain X, =0 ([g].. = [40])-

(2¢) For cases Cl and C2a we have Q) = O (here the
notation [g],,, = [gx] is used). For case C2b we obtain
Oy 1=0,Xy=0 ([glon = [gn_ 1959 -~])

(3) Except for case C2a we have ¢(2),, =0foralla
such that o €e[w],, [see (2.5a)-(2.5¢) and the text be-
low].

(4) For all singular cases the sets {w],,,[g];, may be
used in Eq: (4.3a) instead of [@] and [g] if X, (g,€[q];,) is
calculated.

If the results of points (2) and (3) are substituted into
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expressions (4.5b)—(4.5d), and also if Note 1 is taken into
account, we obtain that the dimension of the square matrix
6(9)) isreduced [except for case (C2a) }. The range of index
a may be chosen according to (2.6a) and (2.6b) and (2.4a)-
(2.4c) [see also the text below (2.4¢)]. The range of the a
index is reduced to such « that w, belongs to [w];,.

to {w]in :

For the case (C2a) the range of a remains unchanged
for all equations (4.5a)—(4.5¢) and the following modifica-
tion for components ¢(Q),y should be done (here
Oy =0):

$( Qo = Bun — 8 _an) 2Dy D) 2. (5.3)

Formula (5.3) is obtained from the unitarity requirements
(2.7b) rather than from (4.5b). It should be noticed for the
above case that two eigenvalues of H, ¥({)y, and
¥(Q) _ 5y, are equal and one of them belongs to the one-
dimensional block H Y [see Lemma 2(b)].

VL. SOLUTION FOR A SIMPLE CLASS OF
REPRESENTATIONS
In this section we find explicit expressions for the cases

when (£2) = (Q,7'Q,™). If the results of the previous sec-
tion will be applied, we obtain that [w];, contains only four

[or five for the SO(2N + 1) case, w, = — }] elements noted
here:
0, =0, +1ip, — 1), (6.1)
@ = [Q,+ip, + 20, + 81, (6.2a)
o, = +[Q+1p, +6)], (6.2b)

where 8 =1,0,— 1, respectively, for cases SP(2¥),
SO(2N + 1), and SO(2N). The equation for g =g, be-
comes quadratic, and the following formulas are found:

Qo, + 1) —q;
=P, Qw} +p, +8) 2w, —p, — 25 —6)
X {(w}, +IN)* - 02}/S, (6.3)
S =4Cq =p o} + p05* + ‘N[(N+5)2 +pp2) s (64)

172
Q§‘=%[N1'[ {(201,)? —(p,,+n>2}/s] ,

a=1

(6.5)
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X3 = [p1p/N XH*(0},03)/5]"?,
H*(0],0;) = [(@] + V) — 07?] [ (o

(6.6)
— %N)Q - méZ] ,
(6.7)

=}[M/S 17, (6.8)
= ——)H{uw')” o + 1)}
a=1
+ (w4 )H{(zw')z e — D, (69
a=1
172
X§=X§{NH{(2w;>’—p§}/HB] , (6.10)
a=1
XB=’{ I {2)? — ¢ +1)2}]V2(Q3)“‘
°o=7 w1 A Po 2 .

(6.11)

Index A in the above expressions is referred to the SP(2N)
and SO(2N) cases and index B to the SO(2N 4 1) case. In
formula (6.3) we let 0wy =w}% pg =p, if @ = + 1, and
wf =0l pg=p ifa= +2.

The above expressions should be substituted into (4.5b)
and (4.5¢) or into (4.5b)—(4.5d) for the SO(2N + 1) case.
Also if (3.2a)-(3.2d) and (4.5a) will be added, then we
obtain all elements of the ¢(£)) matrix.
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SU(2) and SU(1,1) time-ordering theorems and Bloch-type equations

G. Dattoliand A. Torre®

ENEA, Dip. TIB-Divisione Fisica Applicata, C. R. E. Frascati, C. P. 65-00044 Frascati, Rome, Italy
(Received 14 April 1986; accepted for publication 24 September 1986)

Algebraic time-ordering techniques for SU(2) and SU(1,1) coherence preserving
Hamiltonians are reviewed. The link with Bloch-type equations is pointed out and the
extension of the method to higher groups is briefly discussed.

1. INTRODUCTION

The search for methods that allow the analytical treat-
ment of many problems in quantum optics is under active
consideration. In fact, the numerical analysis of the dynami-
cal behavior of a quantum system undergoing a strong and
time-dependent interaction may be expensive and it could
miss, in some cases, the essential features of the problem.
Analytical methods, whenever possible, can therefore offer a
more appropriate solution, providing also a deeper under-
standing of the physics problem under study.

We recall that exact solutions have indicated their pow-
erfulness by elucidating, e.g., the dynamic of three-level
atoms! or by providing a more clear understanding of the
physical features of two-level atoms interacting with sym-
metric pulses.” These are just two examples that have effec-
tively shown how a clever mathematical formulation of a
physics problem has been a precious tool to indicate new and
previously unsuspected features and to prove the underlying
connection to other seemingly unrelated fields.

The usefulness of rigorous algebraic methods applied to
the time-ordering problems has been emphasized by the
present authors in a number of recently published papers.**®
In particular, it has been shown that the analytical expres-
sion of the evolution operator can be obtained for Hamilto-
nians written as time-dependent linear combination of the
generators of the SU(2) (Ref. 3) and SU(1,1) (Ref. 4)
groups.

Furthermore, the method has been applied to more
complicated time-dependent Hamiltonians involving the
SU(1,1) and Weyl-Heisenberg groups’ and later SU(3)
(Ref. 6).

The keynote of the above papers has been the redisco-
very, and the suitable rehandling, of the Wei—-Norman alge-
braic method.”

It is, however, well known that the dynamic of a quan-
tum system ruled by a SU(2) or SU(1,1) Hamiltonian can
be treated using, in the Heisenberg picture, a set of equations
known as the torque Bloch equations.®® A natural question
can be therefore the following: “Is it possible to recover a
Bloch-type dynamic from the characteristic equations of the
SU(2) and SU(1,1) time-ordering procedure?”

In this paper we show that this is possible and we dwell
on this aspect of the problem because it may allow a general-
ization of the ordering theorems, e.g., the SU(#n) case, in a
rather straightforward way. We will finally add some com-

* ENEA guest.
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ments on the possibility of getting a “global” exact solution
for the problem of SU(2) and SU(1,1) dynamics. By global
exact solution we mean the analytical expression of the evo-
lution operator and a closed form of the wave functions de-
scribing the time behavior of SU(2) and SU(1,1) states.

The paper consists of three sections. In Sec. II we show
how Bloch-type equations can be derived from the charac-
teristic equations of the time-ordering procedure. In Sec. I1I
we indicate under what conditions a full analytical expres-
sion of the evolution operator can be obtained and we also
calculate the most general form of the wave functions for
both SU(2) and SU(1,1) states. Finally in the Appendix we
show how the characteristic functions of the ordering proce-
dure are linked to the average values of the SU(2) and
SU(1,1) generators.

1l. TIME ORDERING AND LINK WITH THE BLOCH-TYPE
DYNAMICS

In Refs. 3 and 4 we have shown that the evolution opera-
tor for a quantum system driven by a Hamiltonian of the
type

H) = “’;’)?«“0 +Q*OF, —QF_ (A=1),
(2.1)
can be written as follows:
f/(t,to) = exp”h(t) — —;—J w(f)df]?},] .
xexp { g()F, } exp{ AF_). (2.2)

The operators F obey the following rules of commutation:
[FoF, 1= +2F,, [F. F_1=—6F, (23

and can be identified with the SU(2) or SU(1,1) generators
according to whether 8 = + 1 (see Ref. 10 for further com-
ments). The functions w(¢) and Q(¢) are nonsingular func-
tions of time, real and complex, respectively. Furthermore,
thew(?), (), Q*(¢), and A, g, f functions are linked by the
system of differential equations

h(t) = 8g()f (1),
gty = — iQ*(t)exp[ —2h(t) + if w(r)dT]

f

— h(ng(®), 24
f(t) = iﬂ(t)exp[Zh(t) - ifw(f)dr]
(h(1y) = g(t5) = f(1,) =0). ’
® 1987 American Institute of Physics 618



It is well known that the above system can be solved once a
single Riccati equation for 4 can be solved.” It is more con-
venient, for the present purposes, to introduce the new func-
tions

Hr=e"", Hr(t) =1, H*(1,) =0,

F=fet F1) =0, F (1) =ifs),
which, as immediately verified from (2.4), obey the follow-
ing second-order differential equations:

HF* 4+ [(— Q*/Q*) — 0] + 8|1Q2#* =0,

F + (- 9/Q) + iw]F +8|1Q2F =0.
Equations (2.6) have a very familiar form, for § = 1 they
reproduce indeed the well-known equations for the two-level
atom amplitude probabilities,® while the § = — 1 case is en-
countered in the analysis of two photon processes.® We can
cast the motion equations of # and 5#* in the form of a

Bloch-type torque equation by embedding these functions as
follows:

W= |F* -8,
U=vVSFH +F*H*],
V= —iV8|FH — Fr*].

Identifying (U, ¥, W) as the components of a vector .# 5, we
find

(2.5)

(2.6)

2.7

./.la =95X.//{5, (2.8)
where
0, =[26%2Re 0,26*? Im Q0] (2.9)

(where Re ) and Im (Q are, respectively, the real and imagi-
nary part of 1). A particularly interesting consequence is
the following law of conservation:

\F|? + 8|7 = 6. (2.10)

The physical meaning of the vector .# 5 is clarified in the
Appendix, where it is shown that

Wc’:_<ﬁ0>, Uoc_(<ﬁ+>_<ﬁ~)))
Vai((F,) — (F_)). (2.11)

A few comments are now in order. When 6 = 1, Eqs. (2.8)
are the ordinary Bloch equations and describe a rotation in
Euclidean space. When § = — 1, Egs. (2.8) can be identi-
fied as the SU(1,1) Bloch equations introduced in Ref. 9 and
can be understood as the rotation of the pseudovector 4 _,
in a Lobatchevsky space. [To be more precise when

= — 1, the motion equations are relevant to be an O(2,1)
space structure. ] Furthermore, the relation (2.10) states the
conservation of the “norm” of the vector .# ;. [It can be
easily proved that the norm of .# 5 is linked to the average
value of the Casimir invariants of both SU(2) and SU(1,1)
groups. ]

Let us now briefly discuss the relevance of the above
results to derive time-ordering relations for higher-order
groups. It has been shown that Bloch-type equations can be
written for the SU(n) case too, under the form of a torque
equation in a (n® — 1)-dimensional space.! It has also been
proved that an ordering procedure of the type discussed in
the paper can be exploited for the SU(3) group too.® We
make therefore the following conjecture: a one to one corre-
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spondence may be found between the generalized Bloch vec-
tor components and a suitable combination of the ¥ and 77
functions, entering the ordered form of the evolution opera-
tor for a SU(n) coherence preserving Hamiltonian. As a
consequence, the SU(n) #° and ¥ functions can be cast in
the form of a torque equation in a (#> — 1)-dimensional
space. We have an indication that the conjecture is true for
the SU(3) case. If proved true, in general the hypothesized
correspondence may be a powerful tool in solving quite
straightforwardly the time-ordering problems, or in general
the disentangling problem, for the Hamiltonians linear com-
binations of SU(7) operators.

. EXACT SOLUTIONS

We have already mentioned the possibility of obtaining
what we have called a global exact solution for the problem
under study.

To this aim we should specify: (a) under what condi-
tions can Eqs. (2.6) be solved exactly, and (b) what is the
form of the wave function of quantum states ruled by the
Hamiltonian (2.1)?

In view of the fact that the Egs. (2.6) are similar to those
encountered in studying two-level systems, we can clarify
the first point by generalizing the technique developed by
Bambini and Berman.? The method consists in mapping
Egs. (2.6) onto the hypergeometric equation (i.e.,
ZA-Zy" +y—(a+B+1Z)Yy —afy=0), by
means of a change of variables Z = Z(¢). Thus getting [e.g.,
for the second of Eqgs. (2.6) ]

F o d/dtln(Z/s‘) —i(¢ —w) 7'+-§s—2.7=0.
VA VA
3.1
(We assume a “chirped” pulse ) = se*” and the prime
means derivative with respect to Z.)
To map (2.1) onto the hypergeometric equation we
must require that when 7 ranges from — o to + oo the new
variable Z ranges from O to 1, and furthermore

& ___aB

z* zu-2)° (3.2)

Z=2(1-2)0io —i¢]/[y -4 — (a+P)Z],
where a, §, and y are the characteristic parameters of the
hypergeometric equation.

Since we are free to fix both the form of the frequency
and of the chirping, we impose (see also Ref. 11)

. (3.3)
(o—@)=y—i—(a+PZ
Because w and ¢ are real functions we must impose
y=iu+4 a=il, B=in, (3.4)
which amounts to
o—¢=p— 1 +7)Z (3.5)

The quantity s*/Z ? is positive, therefore using the first equa-
tion of (3.2) and (3.4) two conditions follow: if § = — 1
then A7 <0andif § = 1then An > 0. In both cases, however,
from (3.2) and (3.3) we obtain

G. Dattoli and A. Torre 619



Z=}sech’t/2, s=|An|"?sech(t/2),

(3.6)

w—p=p—QA+mle/(1+eH].
Finally the solution of (3.1) can be written as
F s =AF il +ipe /(1 +e)]
+Ble'/(1+e)]"? 7" ,F [i(A —p)
+Li(p—p) + 1,3 —ipe /(1 +e’)] , 37D

where 4 and B are constants and ,F,( -) is the hypergeome-
tric function. Note that a similar solution can also be ob-
tained for #7*. What is interesting in the above results is that
the sech-type pulse and its generalization allow exact solu-
tions even for the SU(1,1) case.

We now treat statement (b) and the main problem will
be the search for a closed expression for the matrix elements
of the evolution operator.

We discuss separately the SU(2) and SU(1,1) cases.

(a) SU(2): The wave function describing the evolution
of states driven by a Hamiltonian of the type (2.1), where
the F have been identiﬁpd as the generators of the SU(2)
group (FO 2, F . =J,,F_= —J_), canbe expressed
as a linear superposmon of angular momentum states

W () = 2 C (O)J,m).

The form of the trme-dependent coefficients C,, depends on
both the wave function initial values and on the “scattering
matrix” S(t,7,) through the relation

(3.8)

A straightforward but tedious application of the angular mo-
mentum operators properties, yields for S,, ,, the following

expression (4, = 0):
s =[( 1 )G )] e n [t
mn (8) = T+ N—n_ exp[—mj;a)(v') 7']

x%—(n-#m)[sgn(n_m)]y”">_"<

xexpliy(n —m)hLF[ —J—n_,
J—n_+1Ln, —n_+1|F]

[x =arg(¥), n, =max(mn), n_ =min(mn)].

(3.11)

Therefore once 57 and ¥ are analytically known the
problem is completely solved.

(b) SU(1,1): In this case the procedure is almost simi-
lar to the previously described one. Once the F generators
are recogmzed as those of the SU(1,1) group (FO = 2K0,

=K s F.=—-K_ ), the wave function describing the
evolution of the quantum system ruled by the Hamiltonian

(2.1) can be expanded as

() = z C,()|n,k }, (3.12)
where the states |n,k ) diagonalize the compact gengrator K
as K0|n kY= (n+k)nk) and furthermore K+|n k)
={(n+Dn+2)]"2|n+ 1,k), K_|nk)=[n(n
+ 2k — 1)]"?|n — 1,k ). Finally, k is the Bergman index
specifying the eigenvalue of the Casimir invariant.!?

C, () = ] ;’:- J S, (110)C (1), (3.9) e r;Il‘alllter iixglei;:rilte rf;(:rm of the coefficients C,, (¢) depends on
and the matrix elements S,, , (,¢,) are given by S (Lto) = (k| U(tt,) | m,k ), (3.13)
S, (1) = (Jn|U(t,t4) [ Jm). (3.10)  which for #, = O reads
]
n n, + 2k —1\]? ¢

Spn(t) = [(n:)(n: 2k 1)] exp[ —i(n+k) fo a)(t)dt]

Xm0 [sgn(n — m)|F|1" "< expliy(n —m)}

X,F\(—n_,—n_—2k+1ln_—n_+1—|7F. (3.14)

This last relation completes our short analysis of the exact
solutions for SU(2) and SU(1,1) problems.

Let us now summarize the results of the present paper.

(1) We have cast the characteristic equations of SU(2)
and SU(1,1) time-ordering in a Bloch-type form.

(2) We have indicated the conditions under which the
evolution operator can be calculated analytically.

(3) We have written the expression of the “scattering
matrix” for both SU(2) and SU(1,1) state dynamics.
Similar considerations relevant to the SU(3) group will be
published elsewhere.®
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APPENDIX: EXPECTATION VALUES

In this appendix we sketch the derivation of Egs. (2.11).
The evolution operator in the interaction picture takes the
form

U, = exp{2hF,} exp{ g(VF. } exp{ AOF_}, (AD)

and the functions, 4, f, and g are deﬁn/gd l3y the system (2.4).
The average value of the operators F,, F_, and F_ can be
evaluated by means of the dot product

(U i Fo, . Upe ) (A2)

where ( | denotes the initial state assumed for sake of simpli-
city to be an eigenstate of the operator F,.

The explicit expression of the evolution operator in the
adopted representation and the commutation rules relevant
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to the algebra involved provide us with the following rela-
tions between the components of the vector .# 5 and the
average values of the F generators:

Fo (1)) = (1 = 28/2) (Fo(0)),
(F, (1)) = — 8fe= " (Fy(0)),
F_(t)) = 8ge™(1 — 6f2) (Fo(0)),

(ﬁ'o(O) ) denoting the initial average value of the operator f‘o.
By introducing the function

(A3)

g =geh’ (A4)

which by means of Egs. (2.4) can be immediately recognized
as the conjugate of the % one, defined by Eq. (2.5):
Y = ¥ *, we can recast the above relations as

Fo(n)) = — W (Fo(0)),

Fo)+ F)y = —ivV(E0), (AS)
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(F,)— (F) = —veU (Fy(0)),
and thus the relation (2.11) is proved.
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The algebraic dynamics of systems with long-range (instantaneous) interactions requires an
enlargement of the (quasi) local algebra which, in most relevant cases, includes variables at
infinity that enter in an essential way in the time evolution of local variables. The mathematical
structures emerging for the treatment of long-range dynamics are investigated also in

connection with spontaneous symmetry breaking.

I. INTRODUCTION

The algebraic treatment of quantum dynamical systems
with short-range or local interactions has been the subject of
many investigations and basic structures, like time evolution
of local field algebras, the definition of symmetries, and their
spontaneous breaking, have been clarified also in connection
with the thermodynamical limit."

The situation is less under control in the case of long-
range interactions and in general when the finite volume dy-
namics ¢}, does not converge in norm, as V- «. The case in
which ), converges weakly and suitable conditions are sat-
isfied in a given representation of the field algebra has been
discussed in literature.? The empbhasis is on the conditions of
acertain (uniform) convergence of the correlation functions
and the algebraic structure is somewhat lost. A general alge-
braic framework based on a family of physical states and the
associated weak topology has been suggested and discussed
later by Sewell.? From the point of view of the resulting gen-
eral mathematical structure our Sec. II can be regarded as a
development of a number of problems which are behind
Sewell’s structure. In particular, the relation between the
algebraic dynamics and the symmetries of the finite volume
(or infrared cutoff) dynamics has not been discussed in the
previous approaches.”* Also the role played by the algebra
of essential localization and its connection with the enlarge-
ment of the family of relevant states (see Sec. VI) has not
been discussed in the previous approaches.>” These ques-
tions are the main motivation for this paper also in connec-
tion with the phenomenon of symmetry breaking without
Goldstone’s modes. (A short account of the basic structures
which characterize long-range dynamics with emphasis on
the phenomenon of energy gap generation has been given in
Ref. 4. Here the attention is on the mathematical aspects.)

The result of our analysis is that the algebraic dynamics
of systems with long-range (instantaneous) interactions re-
quires an enlargement of the (quasi) local algebra by includ-
ing limits with respect to a weak topology defined by a family
of “relevant” states.

The nontrivial structure of such family, especially in the
presence of symmetries, gives rise to an algebra with a nontri-
vial center, which enters in an essential way in the dynamics.

1. TIME EVOLUTION WITH LONG-RANGE
INSTANTANEOUS INTERACTIONS

In this section we discuss a general algebraic framework
for describing systems with long-range instantaneous inter-
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actions. The basic problem is to describe dynamical variables
as elements of a suitable algebra % and states as positive
linear functionals on such an algebra, in such a way that the
time evolution is described by an automorphism group of % .
From a constructive point of view, one starts with a net of
Von Neumann algebras .« |, associated to the finite volumes
V. Space translations a, are generally defined as automor-
phisms of the “local algebra”

Fo=U .
| 4

The dynamics is defined in terms of finite volume dynamics
a’, which act as one-parameter groups of automorphisms of
& o, or more generally of its norm closure «. Typically a},
are generated by finite volume Hamiltonians H, affiliated to
& o; more generally a}, may describe the dynamics corre-
sponding to an interaction with an infrared cutoff V. Even-
tually, one has to take the limit V- .

For interactions with finite propagation speed, for any
Aest,, a’,(A) becomes independent of V, for V large
enough, and it defines the time evolution a‘ as an automor-
phism of ;. More generally, for interactions with suffi-
ciently short range, a’ (4) converges in norm* to an auto-
morphism group of /. For spin systems with two-body
interaction, the potential must decay faster than |x| > (Ref.
5).

In the case of long-range (instantaneous) interactions, in
particular for spin systems with potentials decaying slower
than |x| 2, the finite volume dynamics a} do not converge
in norm and a weaker topology is needed. Physical consider-
ations would suggest that the expectation values of a}, (4)
converge. The convergence for any state over the algebra .o/
coincides with the weak convergence with respect to the dual
/', and it defines a‘(A4) as an element of .&/”, the universal
Von Neumann algebra of .. In all interesting cases, how-
ever, the time evolution for large V involves strongly delo-
calized variables, the expectation values of which converge
only if the states are sufficiently regular at infinity. A de-
tailed discussion of (physically relevant) models which ex-
hibit such phenomena is deferred to subsequent papers.
Typical examples are the BCS model,*’ the Kibble model,*
and a large class of mean field spin models.®

As a matter of fact, both for gauge theories and for many
body nonrelativistic systems, simple physical considerations
indicate that the definition of the algebra itself (of dynamical
variables) makes implicit reference to a class of states. In
both cases it is therefore natural to associate to a system an
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algebra of dynamical variables and a class of states F, which
are at the basis of the physical interpretation of such an alge-
bra. In this perspective, it is natural to require that &} con-
verges weakly with respect to the above class of states. To
make the above framework more precise we consider a fam-
ily F of continuous linear functionals over </ with the fol-
lowing properties: (1) Fis closed under linear combinations;
(2) Fis norm closed and separating, i.e., ¢(4) = 0, VgeF,
implies A = 0; and (3) F is “‘stable under local operations”
in the sense that if ¢F, also @ .5 (- ) =¢ (A4 B), with 4, Be/,
belongs to F. The positive part F * of Fis thus a full foliumn as
in Ref. 8. These states can be taken to be normal states when
restricted to the Von Neumann algebras .7 ,,. We denote by
75 the weak topology defined by Fon .«'”, the universal Von
Neumann algebra of «; in particular 7 is a weak topology
for # C/”. ‘

The resulting structure is characterized by the following
propositions.

Proposition 2. 1: Let Fbe a family of linear functionals on
A with properties (1), (2), (3). Then there exists a central
projector E of the universal Von Neumann algebra .«/” such
that the elements ¢ of F are characterized as

$C) =yY(E"), ¢e'.
The closure .# of 7, with respect to the weak topology
defined on /" by F, is a Von Neumann algebra isomorphic
to the subalgebra E o/" C o&/'”. The weak topology 7 de-
fined by F on .#, coincides with the ultraweak topology
defined on .# by the subspace 7#°r = E 7°, 7 being the
space of the universal representation of .. It also coincides
with the weak topology defined on .# by F *. As an abstract
Von Neumann algebra .# is characterized as the dual of the
Banach space F and a linear functional on .# belongs to Fiff
it is 7 continuous.

The elements of F are also characterized as the linear
functionals of .27’ which are 7 continuous on 7.

Proposition 2.2: The limit lim,_ _ a} (A) exists in 4
for any Ade.«Z, in the 7, topology and it is 7 continuous on
& iff the lim,_ _ @' ¢ exists for any ¢eF, in the weak *
topology induced by . on ./’, and it belongs to F.

Under the above conditions the mapping defined on .«
by

a' =7, — lim a},

Vo oo

(2.1)

has a unique 7-continuous extension from ./ to .#, which
preserves the sums, the multiplication by scalars, and the *
operation. The extension is obtained by taking the transpose
of the mapping ¢ —¢'=lim, ', ¢.

Proposition 2.3: The mapping a' defined by Eq. (2.1) isa
morphism of .# iff &}, converges on ¢ in the ultrastrong
topology defined by Fon .# .

Any of the following conditions guarantee that o' satis-
fies the properties of Proposition 2.2 and that it is a group of
automorphisms of .#: (i) a}, converges ultrastrongly on .o/
and weakly on .#, (ii) @} converges in the norm topology
on F, and (iii) there exists a C * subalgebra % of #, % DO o,
such that for any Be %, the weak limit of &}, (B) exists uni-
formly on the compact sets of F, defined by the weak * topol-
ogy induced by & on F, and it is weakly continuous.

Proposition 2.4: Given a}, and &7 as above, the set of
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families of linear functionals ¥, with properties (1), (2),
(3) of Proposition 2.1 and (4) for all teR the weak * limit of
a’; exists on F, uniformly on the compact sets of F,,, defined
by (the topology induced on F,, by) the weak closure of .o/
with respect to F,,, maps F, into itself and satisfies the group
law in ¢, has one and only one maximal F,,, , which contains
all the families F, .

Condition (4) is equivalent to the convergence of
ay, (A4),Aes, in the ultrastrong topology defined by F,,, toa
group of automorphisms of & (see Ref. 9, Theorem 5.7
and Proposition 2.3 above).

Propositions 2.1, 2.2, and 2.3 show that, under very gen-
eral conditions, it is indeed possible to define an algebraic
dynamics also in the presence of long-range interactions.
The resulting picture is that, in this general case, the algebra
of dynamical variables must be enlarged to include variables
which are not localized. The relevant mathematical feature
is that in the presence of long-range instantaneous interac-
tions the algebraic dynamics is defined on an algebra with a
nontrivial center. This reflects the fact that the time evolu-
tion of initially localized variables involves infinitely deloca-
lized variables, which commute with .7 Since &/, is dense in
A ,the center Z of # coincides with.# N (N, &}) in ¢
and in this sense it consists of variables at infinity.

Proof of Proposition 2. 1: The first statement is essentially
Theorem 2.7, (iii), (Chap. III of Ref. 9) applied to the Von
Neumann algebra &/ ” and to its predual "

To see that .# is isomorphic to E «&/”, we note that &/
with the 7, topology is isomorphic to the subalgebra
E o/ Co/”; in fact the mapping 4 —EA, Aco/, preserves
sums, products, * operation, and seminorms (V ¢ € F, ¢(A4)

= ¢(EA)) so that it is an injection since F separates points,

and clearly it is surjective. Now if {4, } is a 7 convergent
net of elements of .27 there will exist an element A" (not
necessarily unique since in general 7 does not separate the
points of /") such that V ¢eF

$(A4,) —-4(4).

By the characteristic property of F,
$(4,)-d(A4), VoeF,

iff
Y(EA,)—>y(EA), Vyed'.

Hence the 7 closure of .« can be identified with E «/".

By Theorem 2.4, Chap. III, of Ref. 9, the weak topology
T defined by Fon E &/” =~ .# coincides with the ultraweak
topology defined on E &/" by #°r = E 7, 7 being the
universal representation of .

The dual of the Banach space Fis contained in .« ” since
any continuous linear functional on F can be extended to the
whole o’ by the Hahn—Banach theorem, because Fis a lin-
ear closed subspace of &/’. On the other hand, /" and .#
coincide on Fsince ¢(4) = $(EA), V¥V Aeo/”, so that # is
the dual of the Banach space F.

By Theorem 4.2, Chap. III of Ref. 9, every ¢eF is a
complex linear combination of elements of F* so that
Tp+ = Tg.

To prove the last statement of Proposition 2.1, we note
that by definition of 7 the elements of F are 7, continuous.
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Conversely, if e/’ and it is 7 continuous on =/, we con-

w
sider a net {4, 4 €2/}, such that, given Be o/, 4, - (1
— E)Bea/". Then A, —»0in the 7 topology, since V y € F,

¥(4,) = ¥(EA,) S y(E(1 — EYB) = y(0) = 0, and there-

fore ¢(A,)—0 since ¢ is 7 continuous. Furthermore, as
functionals of &', ¢(4,)-¢{(1—E)B), so that
#((1 —E)B)=0,ie, () =¢(E").

Proof of Proposition 2.2: If lim,,_, _ a' exists for any
¢ € F in the weak * topology induced by </ on &' and it
belongs to F, then given any fixed element 4 € &/

dlas (4)) = (ay ¢)(A) o o'(4),
and since

CACIN AN 2y
[as a consequence of |ga}, (4))|<|||| ||4 ||], ¢°(4) defines
a continuous linear functional on F, i.e., an element
a'(A) € #. Hence lim,_ _ a} (4) exists in # in the 7,
topology.

To see that a’(4) is 7 continuous in 4, 4 € &/ we note
that ¢(a’(4)) = ¢'(4) with ¢'€ F and then 4, -4 in &
implies a*(4, ) - a'(4) in the 7, topology.

Conversely, if lim, _  a}(4) exists in .# for any
A € o/ in the 7 topology and it is 7, continuous on .7, then
VéeF, lim,_ (a) ¢)=¢' exists in &’ in the topology
induced by .7 on &/’ (weak * topology) since .2/’ is com-
plete with respect to the weak * topology (the dual of a Ban-
ach space is weakly complete).

Now by assumption a’is 75 continuous, so that V ¢ € F,
¢' is 7 continuous on & and therefore by Proposition 2.1
¢ eF.

To prove the last statement of Proposition 2.2 we note
that &/ is 7 dense in .# and a’is 7, continuous on &/ so that
there is a unique 7, continuous extension of ¢’ from /' to
A : in fact

TF

A a — Ae d
implies

Bla'(4,)) = $(4,) ~ () =4(a'(4)),
which defines a’(A4) as a continuous linear functional on F,
i.e., an element of .# (by Proposition 2.1). Since V ¢ € F,
¢’ € F, &' is 7 continuous on .# . The extended mapping o'
preserves the sums, the multiplication by scalars, and the *
operation because these operations are 7, continuous.

Proof of Proposition 2.3: We start by proving the first
statement. If a%, converges on « in the ultrastrong topology

defined by F on .# then, since the product is ultrastrongly
continuous (Ref. 10, Chap. I, §3),

a‘(4B) = li,r,n a, (4AB) =lim &', (4)a’, (B)
vV
=a'(4)a'(B), VA, Be .

By the 7 continuity of the extension of &’ from & to .# and
the weak continuity of the product in each factor, separately,
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the above equation extends toany 4, Be .#:if4, ~A e #,
B,-Be.#,A,,B, € .o, then

a‘(4d)a’(B) = lim a*(4, )a'(B)
= lim lim (4, )a’(Bg)
a B
=lim lim a}, (4, Bg)
a B

=1lim a‘(4, B) = a’(4B).

Thus o' is a morphism of .# . Conversely, if o’ is a morphism
of 4, a’'(4*4) = (a'(4))* a’(4) and therefore, for each
Y € ¥ we have

ot (D Y||* = (Wh,aly (4 *)arl, (A) )
= (el (4 *0)Y) — (ha' (4 *4)¢)
= (,a'(4 *)a'(A)Y) = | e’ () Y|~

On the other hand, a}, (4)# is a weakly convergent sequence
of vectors and the convergence of the norms implies strong
convergence. Since |la}, (4)|| = ||4 ||, the strong conver-
gence in 5% coincides with the ultrastrong convergence of
a},(4) (Ref. 10, Chap. I, §3).

We now prove that condition (i) implies that @}, satis-
fies the conditions of Proposition 2.2 and that ' defined by
Eq. (2.1) is a group of automorphisms of .# . Since a}, con-
verges weakly on .#, V ¢ € F, &', ¢ is a weakly convergent
sequence in the predual of .# and therefore by Corollary 5.2,
Chap. III of Ref. 9, @) converges to an element &’ € F; thus
the conditions of Proposition 2.2 are satisfied. The ultra-
strong convergence of &}, on .7 together with the weak con-
tinuity of a’ on .# implies that &* is a morphism of .#. To
prove the group law we note that a convergent sequence
together with its limit defines a compact set with respect to
the topology by which it converges, and therefore the weak
convergence of @, on .# implies that the sequence {a’ ¢}
together with a’* ¢ defines a compact set of F with respect to
weak * topology induced by .# on F.

Now,VAec A, VopeF

#la'a’(4)) = lim lim g(a}. a3 (4))

= lim lim (&% ¢)(a} (4)),
vV vV’

and since o, (4) is ultrastrongly convergent, the limit is uni-
form on the compact set of F with respect to the weak *
topology induced by on F, so that the above limit as V'— oo is
uniform in ¥’ and therefore it is equal to

li;IP (a Pay (4)) = li,r/n dlay ay (4))

= lim glay"*(4)) = $la’**(D).

Hence, since F separates points of .#, a'‘a*=a’**on &.
Furthermore, o'a® and a’ * © are both defined and 7 contin-
uous on.# (Proposition 2.2), and since they coincide on the
7 dense subalgebra o they coincide everywhere on .#.
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We now prove that condition (ii) guarantees thata’isa
group of automorphisms of .#. The properties of Proposi-
tion 2.2 are satisfied since the norm convergence of o im-
plies that the limit belongs to F. We now show that
a'a’ = a'*° Infact

la**a"¢ —a'*¢||
=|l(a'—a})*a”"¢ + oy (a" —a})*
+ay ay ¢ —a'd|<||(af — ) e Y|
+ |lay (@@ — a5 ) %8| + [|(ey+ " —a'* )|
= [[(a' —a})*a"¢||

i@ — @) gl + (@ —arr %,
and the right-hand side converges to zero as V- o, by as-
sumption.

We now have to show that a’(4B) = a’(4)a’(B). In
fact,

VA, Be &,

Hla'(4)B) = mVn dla’, (A)B)
= li;n (ay )4 ay (B))

= li!r/n [(—ay +a) $)day(B))
+ (@ $)d ay "(B))].

On the other hand, || (&}, — a*")@|| ~0as V- « by assump-
tion and since Aay‘(B) is a bounded sequence
(4 ay "B)||<||4 || llav “(B)|| = ||4] [BI]), the first term
in square brackets goes to zero as ¥'— co and we get

#la’(4)B) = pla‘(4 a~'(B)).

The above equation extends to the case B € .# by weak con-
tinuity, and therefore by taking B = a’(C), C € .#, and us-
ing the group law, we get

a'(4)a'(C) = a'(AC).

The extension to 4 € .# follows from 7 continuity.
Convergence on &/ in the ultrastrong topology defined
by F amounts to convergence of ¢{ar}, (4)), A € o/ uniformly
for ¢ in any subset of F compact with respect to the weak
topology o (F,.# ) defined by .# on F (Theorem 5.7, Chap.
III of Ref. 9). By condition (iii), the limit is uniform on
compact sets of Fin the o (F, % ) topology, with # C 4.1t
is therefore enough to show that every compact set with re-
spect to the o (F,.#) topology is also o(F, % ) compact, i.e.,
that if any o(F,.#') open covering of a set K has a finite
subcovering, then the same occurs also for any o (F, % ) open
covering of F. This follows because .# O 4 implies that
o(F,.# ) is finer than o (F, % ) and therefore an open set with
respect to o(F,%) is also o(F,#) open; therefore a
o(F,% ) open covering is also a o(F,.#) open covering.
To prove the group law as for condition (i) we show that
VY Ae o, lim, éla} a), (4))is uniform with respect to V',
In fact a’,. together with its limit ¢’ define a compact set with
respect to the topology induced by & on F, since by assump-
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tion &', (B) converges V Be #.Hence VAe o

lim g(a- @ (4)) = lim (@} $)(a ()

converges uniformly with respect to V'. The argument is
essentially the same as for condition (i): since &' is assumed
to be 7 continuous on # D 7, it has a unique 7 contin-
uous extension to .# (Proposition 2.2) and

dla'a’(4)) = li,r,n gla’ ay (4))
= lim lim ¢{c’,. &, (4))
Vv ¥V

= lim ga} @ (4)) = $la’ +*(4)), A€ o,

where in the last but one equality we have used the unifor-
mity of the limit with respect to V'. The extension of the
above equation to .# follows from weak continuity.

Proof of Proposition 2.4: Let us consider a totally ordered

_chainF, C F, C ..,then there exists a majorant element

F=UF,=F,
]

where the bar denotes the norm closure, which satisfies
properties (1)-(4). In fact F, is obviously closed under lin-
ear combinations and multiplications by scalars are norm
continuous, property (1) follows. In a similar way one
proves property (3) since the operation ¢ - ¢, = ¢(4-B),
A, B € & is norm continuous. Property (2) is obvious. Prop-
erty (4) for F, is equivalent to the strong convergence of
ay (A, VY V¥ € #5,,V A € of with 5 = the subspace of
the space 7., of the universal representation of 7, de-
fined by Proposition 2.1. Now, property (4) for each F,
implies strong convergence of a}, (4)¥, V ¥ in a dense sub-
space D = U, & r,, of 7z (the density of D in 7%, fol-
lows because if ¢ = || || —lim @, 4, € F,, , then its repre-
sentative vector ¢ in 7% cannot be orthogonal to all 7 £, )

and therefore V ¥ € 7% by norm boundedness of a), (4).

Thus, by Zorn’s Lemma, there exist (several) maximal
elements of the form F discussed above, We now show that
given two such elements F,, F, there exists a G which con-
tains both and therefore there is only one maximal element.
In fact, let us put

G:FI"*“Fz

(i.e., the norm closure of elements of the form ¢ = ¢, + ¢.,
¢,€F,,i=12). Then G D F,, i = 1,2 and properties (1)—
(3) hold. To show that property (4) holds let 77, #°, be
the subspaces of the space 77 of the universal representation
of &, corresponding to F, and F,. Clearly the subspace 77
corresponding to G contains 7#°; and 57, and the smallest
subspace 57 containing 7%, 5¢°, represents all the states of
the form ¢, + ¢,, ¢, € F;, i = 1,2, and therefore their norm
limits. It follows that #°; is the Hilbert space generated by
7, and 5°,. Every vector x of ; can be written (in a
nonunique way) in the formx =x, + x,, x, € %, i = 1,2,
and therefore the strong convergence in #°,, %, implies the
strong convergence in & .

G. Morchio and F. Strocchi 625



As stressed before, the construction of algebraic dynam-
ics makes reference to a class of “relevant states,” which in
the nonlocal case are implicitly at the basis of the definition
of the problem, from the beginning. By Proposition 2.4 the
class of relevant states may be taken to be maximal and in
particular stable under the symmetries of the finite volume
dynamics (see Sec. III).

In conclusion, a dynamical system should in general be
defined as a triple (#, F, a‘) with .4 a Von Neumann alge-
bra with predual F and o' a one-parameter group of auto-
morphisms of .#; this structure is naturally constructed in
terms of a quasilocal algebra .7, a set of relevant states F,
and a family of finite volume (or infrared cutoff) dynamics
ay.

As we shall see in the following sections, the above
framework is rich enough to allow the algebraic discussion of
spontaneous symmetry breaking in the presence of long-
range instantaneous interactions.

This structure can be seen as a generalization of Kadis-
on’s definition of a dynamical system'!; the essential differ-
ence is, however, that here a’" is not required to be contin-
uous on F in the weak * topology defined by .. This
property is in fact equivalent (Ref. 11 and Sec. IV) to the
stability of .« under time evolution and its failure plays a
crucial role in the explanation of energy gap associated to
spontaneous breaking of continuous symmetries.

. SYMMETRIES OF NONLOCAL ALGEBRAIC
DYNAMICS

For a large class of systems in quantum field theory and
in many-body theory, one is interested in symmetries which
commute with space-time translations, sometimes called in-
ternal symmetries. As a matter of fact it is for this class of
symmetries that Goldstone’s Theorem constrains the impli-
cations of spontaneous symmetry breaking. We are thus led
to consider the analog of such symmetries in the case of non-
local dynamics.

Given an automorphism « of the algebra 7 of localized
variables the commutativity with the space translation auto-
morphism a,

(3.1

does not present problems since in general «, is a well-de-
fined automorphism of /. The situation is quite different
for time translations since, as discussed in the previous sec-
tion, in the case of nonlocal algebraic dynamics, o’ does not
leave .« stable. To define the commutation relation

aa, =a, a

3.2)

one needs an algebra stable under a and under time transla-
tions. One must therefore extend o to the algebra .# stable
under a'.

Itis worthwhile to remark that two different topological
structures are naturally associated to .# . As weak closure of
&/ with respect to the family of relevant states F, .# is a Von
Neumann algebra. On the other hand, regarded as a C *-
algebra, .# identifies a set of states (the dual of .# as C *-
algebra) which not only properly contains F, but also con-
tains states which are not identified by their values on ..

ad=dad a,

626 J. Math. Phys., Vol. 28, No. 3, March 1987

This structure would then lead to a significant enlargement
of the original problem (see Sec. II). It is an important fact
that if an automorphism a of & can be extended to an auto-
morphism of .#, as a C* algebra, then it is automatically
weakly continuous.® Therefore the extension is completely
defined in the structure (.#, F).

Proposition 3. 1: Given an automorphism a of &, a can
be extended to an automorphism of .« if and only if the
family of states F is stable under a* and (a—')*.

Since automorphisms of Von Neumann algebras are
weakly continuous and .« is weakly dense in .#/, the exten-
sion is uniquely determined by the action of @ on ..

Proof: Here a* is defined on the dual o’ of & and it is
norm preserving since « is an automorphism of 7. If a*
leaves family F'stable, then (a*@)(A4), A € .#, defines a con-
tinuous linear functional £, (¢#) on F, since

| £ @) < llegl| 14 || = ]| fi4
Therefore £, (¢) defines an element of the dual of F, i.e., an
element of .4

f4 () = 6(B)=d(a(4)).

This provides an extension of @ from & to .#, which is
weakly continuous since the weak topology is defined by the
elements of F and F is a* stable. Since .7 is weakly dense in
A , the extended  preserves the sums, the multiplication by
scalars, and the * operation, because these operators are
weakly continuous. Moreover, since the product is separate-
ly weakly continuous it follows that

a(4)a(B) = a(4B),

VY A € &/, B € A and therefore also for 4, B € .# . Finally a
is invertible on .# since @' can be extended to .# and
a*a " =1onF.

Conversely, if @ is an automorphism of .#, a is weakly
continuous (see Ref. 10) and therefore ¢(a(A4)) defines a
linear functional f, (4) on .# which is weakly continuous
since a and ¢ are also. Hence this identifies an element of F,
since the functionals of F are the only ones which are weakly
continuous on .#. Finally, since for A€/, f,(4)

= (a*@$)(A4), and the functionals of F are determined by
their values on &, one has

Jo =a*¢,
and a* maps Finto F. The same argument applies to @™ ".

In the following, we shall always consider automor-
phisms a of .« with the property that a*, a~'* leave the
family F stable, so that they can be extended to automor-
phisms of the Von Neumann algebra .#. Proposition 3.2
below shows that this property can always be guaranteed if
the algebraic dynamics a’ is defined as a weak limit of ap-
proximate (finite volume) automorphisms a}, of &/, which
are ¢ symmetric

(3.3)

This equation holds if @}, is generated by a finite volume
Hamiltonian H, (affiliated to some localized subalgebra
& ), which is invariant under a: a(H, ) = H,,. Proposi-
tion 3.3 below shows that, in the framework discussed in Sec.
II, property (3.3) constrains the algebraic dynamics a to be
a symmetric

aay, =ay,a.
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on.#. (3.4)

It is important to remark that for this result the strict invar-
iance of H,, is required since, in the presence of long-range
interactions, boundary terms arising from the transforma-
tion of H, under a may give rise to persistent effects in the
infinite volume limit.

Proposition 3.2: If the finite volume dynamics are a sym-
metric

ad'=a'a,

(3.5)

and o, defines an algebraic dynamics a' as a weak limit with
respect to a family of states F, then a}, also defines an alge-
braic dynamics with respect to a family G D F, which is
stable under a*, a~'*.

Proof: As stated in Sec. II, given a}, there is a unique
maximal (see Proposition 2.4) set of states F,, with respect
to which a}, defines an algebraic dynamics @’. On the other
side, by assumption (see Proposition 2.3, first part)
VAe o, (ad)(A) converges to d,(4), 4, € F, uniformly
on the weakly compact sets of F. Therefore

(aV a*¢)(4) = (a*ayd) (4) = (avd)a(4))
converges to ¢,(a(4)) = (a*@,)(4), a*d, € a*F, since a is
an automorphism of 7, i.e., (&% y)(A4) converges in a*F,
whenever y € a*F.

Since a is invertible, a** defines an isomorphism of the
Von Neumann algebras 277 and 27" and therefore a* de-
fines a one-to-one map between weakly compact sets of F
and weakly compact sets of @*F. In conclusion (@, y)(A4)
converges uniformly on the weakly compact sets of a*F and
a’, defines an algebraic dynamics also with respect to a*F.
Thus F,, contains a*F,,; similarly F,, containsa ~'*F,, and
therefore

a*Fyy =Fy,. (3.6)

Proposition 3.3: If the finite volume Hamiltonians H,
are ¢ symmetric,

aay =aya,

3.7

the algebraic dynamics o' defined by a*-stable family of
states F is symmetric,

aai, =a’)«a,

(3.8)

Proof: Since F is a* stable, a is weakly continuous on
M = of T (see Proposition 3.1). Since , is the weak limit of
ay,, for any 4 € o/ one has

aa'=a' a.

aa'(d) =awlimal,(4) = w-lima a}, (4)
Vv vV

= w-lim @, a(4) = d’a(4).
v

Now, both a and a' are defined and weakly continuous on
A so that by weak continuity the above equation holds on
M.

The space translations can be treated in a similar way.
We assume that the space translations define a group of au-
tomorphisms a, of .« and that the finite volume dynamics
a, is covariant under space translations

3.9)

t —1 __
a, ay &, =ay, .
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The infinite volume dynamics a}, will turn out to be
symmetric under space translations if the limit of @}, is inde-
pendent of the sequence of volumes V,,, ¥, — o, within a
class of sequences which is stable under space translations.
Under this assumption the family F of relevant states can be
chosen to be stable under space translations (see Proposition
3.2) and therefore @, has a unique extension to a group of
automorphisms of .4 which commute with o' (see Proposi-
tion 3.3),

a a'=da,. (3.10)

An automorphism a of the C *-algebra .« is said to be
broken in the representation 7 if the representation 7 © a is
not equivalent to 7. When a can be extended to .#, see Prop-
osition 4.1, a is broken in 7 iff it does not leave the corre-
sponding central projection E, € .# stable. Equivalently a
is broken in 7 iff  is not continuous with respect to the weak
topology defined by the states of 7~ (this follows from the last
part of Proposition 3.1 with F * = states of 7).

IV. SYMMETRIES GENERATED BY “LOCAL” CHARGES

A. Local approximation of symmetries and nonlocal
algebraic dynamics

In this section we shall consider symmetries § of the
algebra .7, which can be approximated by “localized” auto-
morphism B, of &7 of the form

BR(A)zURAUEl, (4.1)
with U, unitary and belonging to </, such that
B(4) = gim Br (4). (4.2)

The existence of the limit on 7, in the weak topology de-
fined by Fis enough. Actually, by norm continuity Eq. (4.2)
extends to .« and weak convergence on &, implies weak
convergence on .7 and therefore ultrastrong convergence on
&, since B is an automorphism of .«7.

For concreteness, in most examples 8, = £ on the alge-
bras localized within spheres of radius R. In this case, since
& = norm closureof U, &, B, isactually norm converg-
ing on .

In the case of a continuous one-parameter group of sym-
metries 8%, A € R, in most cases one may construct a local-
ized automorphism 8% approximating 54, by taking

Uk =exp(iQg A), (4.3)
with @, = Q% affiliated to some 7, (briefly affiliated to
& ). In this case one has on a norm dense set of vectors in
7 (see Proposition 2.1)

; d A Ay—1
Y A (¥, U A(UR) ®) Ao
= (Qr ¥, AD) — (4¥, Q0 D). (4.4)
With an abuse of notation in the following we shall write the
rhs of Eq. (4.4) as (V,[Q, 4 | D).

Definition 4.1: A one-parameter continuous group of

symmetries B*, A € R is generated by local charges Qg,

affiliated to 7, on a weakly dense algebra &/, C .4, inthe
state ¢, if V4 € o7,

G. Morchio and F. Strocchi 627



d 2 -

A # B (4)) A=0—-1glqnl¢([QR,A]). (4.5)

A crucial hypothesis for the proof of the (standard)
Goldstone Theorem about spontaneously broken symme-
tries in a given representation is the validity of Eq. (4.5) on
the ground state for an algebra <7, stable under time transla-
tions. In the standard case of strictly local dynamics, it is
enough to have 8+ generated by Q, on the local algebra <7,
since &, is stable under time evolution. For systems with
nonlocal algebraic dynamics it is by no means guaranteed
that $* is generated by Qx on an algebra stable under time
evolution; actually in most cases this property cannot hold as
the following arguments show.

Proposition 4.2: If the one-parameter group of automor-
phisms 8%, A € R is spontaneously broken in some represen-
tation of the family F, then one cannot have

BMA) = w-lim €9 4e "%,

R~

(4.6)

with Q; affiliated to .#, for all 4 € .# . More generally, giv-
en a subalgebra & C .#, stable under 8%, with a center Z
which is not pointwise invariant under 8#, Eq. (4.6) cannot
hold on #Z and B* cannot be generated (Definition 4.1) by
local charges on 4, in any state in which ¢( 8 Y 2))#(2),
for some z € Z and some 4 € R.

Proof: Clearly Eq. (4.6) implies 8#(2) =z, Vz in the
center of #, which implies 87 unbroken. The same is true
for % : if B* is generated by local charges on %, then

L A =
) #(B4(2))=0, V4,

since BA(Z)C Z.

Remark: It may be useful to note that if B (4) in Eq.
(4.1) converges as R— « on a weakly dense subalgebra
% C .#, to a weakly continuous automorphism y of %,
then (see the proof of Proposition 4.1) ¥ has a unique exten-
sion to .# and, if € O &, ¥ coincides with 8 on .#, since
y = Bon &, (Proposition 3.1). In particular, if Eq. (4.1) is
used to define an automorphism of .#, this is completely
determined by Eq. (4.1) on &,

The above Proposition rules out the possibility of ap-
proximating B* by (local) charges [Eq. (4.6)] on .#, the
obviously stable algebra under time evolution. Actually,
when variables at infinity get involved in the time evolution
of elements of .7, it is impossible to have an algebra
% C M stable under time evolution and such that the
(unique) weakly continuous extension of 3* from & to % is
generated by local charges, except, of course, the uninterest-
ing case in which 8 * is unbroken. Thus the nonlocality of the
algebraic dynamics, in the precise sense of Sec. II, provides a
natural mechanism for evading the existence of Goldstone
modes in the presence of spontaneous symmetry breaking:
essentially the equation

5(4,) =lim [Qx, 4,] (4.7)
R

does not hold.
A generalization of Proposition 4.2, which exploits the

topological aspects of the phenomenon, shows that mass gap
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generation in the presence of spontaneous symmetry break-
ing can be seen as the consequence of rather simple and gen-
eral algebraic structures. In particular, it will become clear
that assumptions like existence of a “local” conserved cur-
rent generating the symmetry, validity of the infinitesimal
form on suitable domains and even the existence of local
charges, in the sense of Eq. (4.5), are not the relevant points
for the phenomenon. As emphasized before, the important
issue is the proper definition of &’. (In particular one cannot
discuss the assumptions at the basis of the rigorous proof of
Goldstone’s Theorem, in more general cases than the strictly
local one, without facing this problem.)

An essential difference between local and nonlocal alge-
braic dynamics is given by the continuity properties of a’".

Proposition 4.3: Given the structure (&7, F, .#) (see
Sec. III) @' is continuous on F with respect to the weak *
topology induced on F by 7, iff &’ leaves o/ stable. More
generally, a'" is continuous on F in the weak * topology 75
defined on F by a subalgebra & of # iff o' leaves & stable.

Proof: 1t suffices to prove the second part. Clearly if &
leaves & stable then o' maps weak * seminorms pg on F,
defined by elements B of 4, into themselves:

Pe (@) =|(a""$)(B)| = |$(a'(B))| = Py, (8)-
(4.8)

Thus a’” is 74 continuous.
Conversely, if a'” is 74 continuous, then V Be &4,

f.:($) =¢(a’'(B)) = (a'"¢) (B)
as a composition of continuous functions defines a 75 con-
tinuous linear functional on F. Therefore given B € %, there
exist B,,..., B, € # such that

| f5.: (#)] <sup |#(B,)|, VPEeF.

By a standard argument,'? this implies that /5, (#) is of the
form ¢(Z!_, ¢; B;). In fact the above bound implies
S5.(9) =0 if ¢(B,)=0, i=1,..,n Hence ¢,(B;)

=¢,(B;), Vi implies fz,(¢$,) =[5,(¢,), and therefore
there exists a linear functional g: C”— C such that

fB,t (¢) =g(¢(Bl)” ¢(Bn))
=Zci #(B,) =¢(ZciBi)'

In conclusion

dla'(B))=¢ ( Ei:c,. B,.), VoeF,

and since F is separating for .#

(4.9)

a'(B)=>c B,

i.e., a' leaves & stable.

Remark: The first part of Proposition 4.3 also follows
from Kadison’s Theorem 4.5 and Corollary 4.7 in Ref. 11,
since F * is a full family of states in the sense of Kadison. It
may be useful to remark that all the complications in Kadis-
on’s proof come from the relation between a dense set of
(positive, normalized) states and the space of all continuous
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linear functionals on & with respect to the weak * topology
(Lemmas 4.1, 4.2, and 4.3 of Ref. 11).

The above discontinuity properties of a’* explains why
in general ¢( 8%a’(4)) does not converge to ¢( Ba'(4)).
All that is needed is that in the state ¢ the symmetry 8% is
approximated on .« by automorphisms S5 of «. [It is
enough to assume convergence of ¢( 8 % (4)) to ¢(B*(A4))
for all 4 in a norm-dense subalgebra of .. ] This is equiva-
lent to the weak * convergenceof S%° #tof* 4. In general,
one cannot expect weak convergence of 84" ¢, i.e., with re-
spect to the weak topology induced by .#; weak convergence
of B4* ¢isin fact excluded if 8% is unbroken in the represen-
tation defined by ¢ and B* is broken (see Proposition 4.2).
On the other hand, convergence of #(8 % a‘(4)), for all
A € o, is equivalent to weak * convergence of a** 8% ¢ and
a'” is weakly continuous but not weak * continuous, when-
ever .« is not a’ stable. Then, a'” 8% ¢ does not converge to
a'" B** ¢, in general. This argument shows that there is a
general topological property which prevents the combina-
tion of time evolution and the approximation of % by 8% in
the way required for Goldstone’s Theorem.

The constraints on the energy spectrum, following from
spontaneous breaking of continuous symmetries, can be
sharply characterized in terms of the time evolution of large
bubbles, as R — . To this purpose we consider a one-pa-
rameter continuous group of symmetries 84, A € R, approxi-
mated by localized automorphisms 8% in the sense of Eqs.
(4.1)-(4.3), and ¢ = (¥, V), a state invariant under space
and time translations, with ¥ in the domain of all the opera-
tors Qg . Then, since automorphisms of the form (4.1), with
Uy €. .4, clearly extended to automorphisms of the Von
Neumann algebra .#, still given by Eq. (4.1),

$([Qra’(A)]) = —i%mﬂﬁa'un

A=0

. d e pan
=—1712-(a Br ¢)(4)

, (4.10)

A=0

for any 4 in &, or more generally in .#.

The limit R — oo of the first term on the left-hand side
will be discussed in Sec. VI and related to the low momen-
tum behavior of the energy spectrum. On the right-hand side
the limit R — o can be interchanged with d /dA, for A in a
subalgebra of .#, under general technical conditions [see
Secs. IV and VI]. Thus the information on the energy spec-
trum is provided by the function

lim (a'" 8% ¢)(4).

R— oo

For A € &/, the limit (4.11) is given by the weak * limit of
the time evolution of large “bubbles” of radius R,* as R — .
In the case of local algebraic dynamics such limit exists and
it is independent of time. By Eq. (4.10) this implies the ap-
pearance of @ = 0 in the point spectrum of the energy of
excitations at k = 0. When the algebraic dynamics is nonlo-
cal, i.e., o is not o’ stable, the limit (4.11) is not in general
given by B *¢, since a’"is not weak * continuous. The time
dependence of the limit (4.11) (when it exists) is responsible
for an energy gap at low momenta.

(4.11)
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The above discussion shows that the generalization of
Goldstone’s Theorem to the nonlocal case requires the con-
trol of the limit (4.11).

B. Effective localization of the dynamics and local
approximation of symmetries

The occurrence of variables at infinity in the time evolu-
tion of local variables precludes the possibility of a local ap-
proximation of symmetries on an algebra stable under time
evolution. However, since in each factorial representation 7
of o7, stable under time evolution, the variables at infinity
become time independent ¢-numbers, it is reasonable to ex-
pect that the representation 7 defines a reduced algebraic
dynamics a!, which leaves stable an “essentially local” alge-
bra, i.e., asubalgebra &7, of .# that does not contain infinite-
ly delocalized variables. Such effective localization of the
dynamics can be formalized in the following way. First we
introduce the following.

Definition 4.4: We shall say that the algebraic dynamics
is essentially local if there exists a subalgebra &, C .#,
called algebra of essential localization (without loss of gener-
ality «, can be taken closed in the norm topology since ' is
continuous in such topology) with the following properties:

(a) 7, has a trivial center,

(b) 7, is weakly dense in .#,

(c) 